
  
Abstract—In this paper we examine the fuzzy numerical solution 

to a second order partial differential equation, called absorption 
equation, which in general describes the water movement. The 
uncertainties that appear, from either human or machine errors, in this 
equation greatly affect the results and for this reason they should be 
taken into account. The solution in this problem is to use the fuzzy set 
theory. Here, we present an implicit finite difference scheme in 
combination with fuzzy logic. Since the problem refers to a partial 
differential equation, the Generalized Hukuhara (gH) derivative was 
used in order to find the correct form of the linear system of 
equations. 
 

Keywords—Absorption equation, finite difference, fuzzy logic, 
infiltration, numerical solution. 

I. INTRODUCTION 
UZZY logic is derived from the development of fuzzy sets 
theory of Lofti Zadeh [1]; it is well structured and 

performs well in ambiguous or uncertain environments. It is 
commonly accepted that the techniques based on classical 
logic have proved unsuccessful to approximate the procedures 
of common sense, learning from experience, etc. [2]. Classical 
(two-valued) logic deals with propositions that are either true 
or false. In many-valued logic, a generalization of the classical 
logic, the propositions have more than two truth values. Fuzzy 
logic is an extension of the many-valued logic in the sense of 
incorporating fuzzy sets and fuzzy relations as tools into the 
system of many-valued logic [3].   

Many important dynamical systems in the real word can be 
described by partial differential equations. It is known that 
both analytical and numerical methods have been developed to 
solve problems of partial differential equations. However, 
calculation for solving partial differential equations is very 
difficult where the exact solution of these problems can be 
found only in some special cases. When we are studying in 
fields of physics and engineering, we often meet problems of 
fuzzy partial differential equations which have to be solved as 
numerical methods [4]. This case for numerical methods for 
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solving fuzzy differential equations have been rapidly growing 
in recent years.  

Since the above problem concerns differential equations 
regarding fuzzy logic, we should mention that a number of 
studies were carried out in that field. Initially, the concept of 
fuzzy derivative was introduced by Chang and Zadeh [5], 
followed by Dubois and Prade [6] who used extension 
principle in their approach. Fuzzy differential functions were 
studied by Puri and Ralescu [7], who extended Hukuhara 
derivative (H-derivative) of a set of values appearing in fuzzy 
sets. Kaleva and Seikkala in [8], [9], [10] developed the fuzzy 
initial value problem. But this method has presented certain 
drawbacks, and in many cases this solution was not a good 
generalization of the classic case.  The generalized Hukuhara 
differentiability (gH – differentiability) was introduced by [11] 
and [12] which overcomes this drawback. This new derivative 
is defined for a larger class of fuzzy functions than Hukuhara 
derivative. Allahviranloo in [13], introduced the (gH-p) 
differentiability for partial derivatives as an extension of the 
above theory. Tzimopoulos et al. in [14] used the above 
method and gave a fuzzy analytical solution to a parabolic 
differential equation. 

The numerical method for solving fuzzy differential 
equations was introduced by Ma [15].  Subsequently, 
numerical solutions of fuzzy differential equations were 
examined by Friedman [16], Bede [17] and Abbasbandy [18]. 
The existence of solution for fuzzy partial differential 
equations were investigated also by Buckley and Feuring in 
[19]; their proposed method works only for elementary partial 
differential equations. Based on Seikkala derivative 
Allahviranloo in [20], and Kermani et al. in [21] use a 
numerical method which is an explicit difference method to 
solve partial differential equations. Farajzadeh in [22] gives an 
explicit method for solving fuzzy partial differential equation. 
More recently, Uthirasamy in [23] gives studies on numerical 
solutions of fuzzy boundary value problems and fuzzy partial 
differential equations. 

In this article, a fuzzy numerical solution of a linear one 
dimensional infiltration equation, with initial and boundary 
conditions, is presented applying an implicit finite difference 
scheme. This equation is a parabolic partial differential 
equation, describing the water horizontal movement in porous 
medium. The calculation of water flow in the unsaturated zone 
requires the knowledge of the initial and boundaries 
conditions as well as the various soil parameters. Until today, 
these conditions and the parameters were assumed well 
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defined and this assumption is based principally in 
measurements. But in reality they are subject to different kinds 
of uncertainty due to human and machine imprecision. 

II. FUZZY SETS  
Definition 1. A fuzzy set u on a universe set X is a mapping 
𝑢𝑢: 𝑋𝑋 → [0,1] assigning to each element 𝑥𝑥 ∈ 𝑋𝑋 a degree of 
membership 0 ≤ 𝑢𝑢(𝑥𝑥) ≤ 1. The membership function u(x) is 
also defined as 𝜇𝜇𝑢𝑢(𝑥𝑥). 
Definition 2. We denote by ℝ𝐹𝐹  the class of fuzzy subsets 
𝑢𝑢:ℝ → [0,1], satisfying the following properties[7], [8]: 
1. u is normal, that is, there exists, 𝑥𝑥0 ∈ ℝ with 𝑢𝑢(𝑥𝑥0) = 1 
2. u is a convex fuzzy set. that is, 
𝑢𝑢(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑢𝑢(𝑥𝑥), 𝑢𝑢(𝑦𝑦)}, ∀𝑥𝑥, 𝑦𝑦 ∈ ℝ, ∀𝜆𝜆 ∈ [0,1] 

3. u is upper semi-continuous on ℝ. 
4. {𝑥𝑥 ∈ ℝ|𝑢𝑢(𝑥𝑥) > 0}����������������������� is compact, where 𝐴̅𝐴 denotes the closure 
of A 
Then ℝ𝐹𝐹  is called the space of fuzzy numbers. 
Definition 3. Let u be a fuzzy number. The α-level set [𝑢𝑢]𝑎𝑎  is 
a non-empty compact interval for all  0 ≤ 𝑎𝑎 ≤ 1. Denote 
𝑢𝑢−(𝑎𝑎) = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑢𝑢]𝑎𝑎  and 𝑢𝑢+(𝑎𝑎) = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑢𝑢]𝑎𝑎 . In other words, 
𝑢𝑢−(𝑎𝑎) denotes the left hand side function 𝑢𝑢−(𝑎𝑎): [0,1] → ℝ 
and is monotonic increasing-lower semi-continuous and 
𝑢𝑢+(𝑎𝑎) denotes the right side 𝑢𝑢+(𝑎𝑎): [0,1] → ℝ and is 
monotonic decreasing and upper semi-continuous. We use the 
notation [𝑢𝑢]𝑎𝑎 = [𝑢𝑢−(𝑎𝑎), 𝑢𝑢+(𝑎𝑎)]. 
Definition 4. The necessary and sufficient condition for 
(𝑢𝑢−(𝑎𝑎), 𝑢𝑢+(𝑎𝑎)) to define a fuzzy number are as follows: 
1. 𝑢𝑢−(𝑎𝑎) is a bounded monotonic increasing (non-decreasing) 
left-continuous function for all 𝑎𝑎 ∈ [0,1] and right-continuous 
for 𝑎𝑎 = 0. 
2. 𝑢𝑢+(𝑎𝑎) is a bounded monotonic decreasing (non-increasing) 
left-continuous function for all 𝑎𝑎 ∈ [0,1] and right-continuous 
for 𝑎𝑎 = 0. 
3. 𝑢𝑢−(𝑎𝑎) ≤ 𝑢𝑢+(𝑎𝑎),   0 ≤ 𝑎𝑎 ≤ 1 
Definition 5. The metric structure is given by the transformed 
Hausdorff distance, in fuzzy sets, 𝐷𝐷:ℝ𝐹𝐹 × ℝ𝐹𝐹 → ℝ+ ∪ {0}, by 

 
𝐷𝐷(𝑢𝑢, 𝑣𝑣) = sup

𝑎𝑎∈[0,1]
𝑚𝑚𝑚𝑚𝑚𝑚{|𝑢𝑢−(𝑎𝑎) − 𝑣𝑣−(𝑎𝑎)|, |𝑢𝑢+(𝑎𝑎) − 𝑣𝑣+(𝑎𝑎)|} (1) 

  
where [𝑢𝑢]𝑎𝑎 = [𝑢𝑢−(𝑎𝑎), 𝑢𝑢+(𝑎𝑎)], [𝑣𝑣]𝑎𝑎 = [𝑣𝑣−(𝑎𝑎), 𝑣𝑣+(𝑎𝑎)] 

Then it is easy to see that D is a metric in ℝ𝐹𝐹  and has the 
following properties: 
1. 𝐷𝐷(𝑢𝑢 + 𝑤𝑤, 𝑣𝑣 + 𝑤𝑤) = 𝐷𝐷(𝑢𝑢, 𝑣𝑣) 
2. 𝐷𝐷(𝜆𝜆𝑢𝑢, 𝜆𝜆𝑣𝑣) = |𝜆𝜆|𝐷𝐷(𝑢𝑢, 𝑣𝑣) 
3. 𝐷𝐷(𝑢𝑢 + 𝑣𝑣,𝑤𝑤 + 𝑒𝑒) ≤ 𝐷𝐷(𝑢𝑢, 𝑤𝑤) + 𝐷𝐷(𝑣𝑣, 𝑒𝑒) and (ℝ𝐹𝐹, 𝐷𝐷) is a 
complete metric space, for all 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑒𝑒 ∈ ℝ+ and 𝜆𝜆 ∈ ℝ. 
Definition 6. A fuzzy set u is called triangular fuzzy number 
with center z, left width 𝑧𝑧1 > 0 and right width 𝑧𝑧2 > 0, if its 
membership function has the following form: 

 

𝑢𝑢(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧1 −

𝑧𝑧 − 𝑥𝑥
𝑧𝑧1

     𝑖𝑖𝑖𝑖 𝑧𝑧 − 𝑧𝑧1 ≤ 𝑥𝑥 ≤ 𝑧𝑧

1 −
𝑥𝑥 − 𝑧𝑧
𝑧𝑧2

     𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 𝑥𝑥 ≤ 𝑧𝑧 + 𝑧𝑧2

0                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� 

 
Fig.1 fuzzy triangular number 
 
It can easily be verified that  
 

[𝑢𝑢]𝑎𝑎 = [𝑧𝑧 − (1 − 𝑎𝑎)𝑧𝑧1, 𝑧𝑧 + (1 − 𝑎𝑎)𝑧𝑧2] 
 
for all 𝑎𝑎 ∈ [0,1]. 

III. PHYSICAL PROBLEM 

A. Absorption equation 
Infiltration is a common physical phenomenon of water 

movement in porous media which is of the great interest in 
much earth and plant sciences. Historically [24] presented two 
basic ideas in the development of soil water movement: The 
capillary potential and capillary conductivity. In case of one 
dimensional horizontal flow the phenomenon is described by 
the equation: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (2) 

 
where, θ=the moisture content(cm3/cm3) and  
D=diffusivity (cm2/s) 

This equation represents the water movement in a 
horizontal column and is called absorption equation by [25], 
because it describes the wetting up for the column under 
tension. In case when the column is semi-infinite, have initial 
moisture content 𝜃𝜃0 and the initial and boundaries conditions 
are: 

 
𝑡𝑡 = 0,   𝜃𝜃(𝑥𝑥, 0) = 𝜃𝜃0 

(3) 𝑡𝑡 > 0,   𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃1,   θ
𝑥𝑥→∞

(𝑥𝑥, 𝑡𝑡) = 𝜃𝜃0 
 
For 𝜃𝜃1 > 𝜃𝜃0, (2) with conditions (3) describes the horizontal 

infiltration(absorption) of water by application of a constant 
moisture content at x=0. Analytical solutions of (2) are 
available under several simplifications as were referred in 
[25].  

B. Crisp Model 
The linearized form of (2) subject to conditions (3) is: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷0
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2 (4) 

 
Introducing now non-dimensional variables Θ, Χ, Τ,  
 

𝛩𝛩 =
𝜃𝜃 − 𝜃𝜃0

𝜃𝜃1 − 𝜃𝜃0
,   𝛸𝛸 =

𝑥𝑥
𝐿𝐿

,   𝜏𝜏 =
𝐷𝐷0𝑡𝑡
𝐿𝐿2 , (5) 
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then (4) becomes: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝛩𝛩
𝜕𝜕𝛸𝛸2 (6) 

 
subject to the following initial and boundary non-dimensional 
conditions: 
 
𝜏𝜏 = 0,   𝛩𝛩(𝛸𝛸, 0) = 0 

(7) 𝜏𝜏 > 0,   𝛩𝛩(0, 𝛵𝛵) = 𝛩𝛩1 = 1,   Θ
𝑋𝑋→∞

(𝛸𝛸, 𝜏𝜏) = 0 
 

The solution of (5) is [14]: 
 

𝛩𝛩 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑋𝑋
√4𝜏𝜏

� = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑋𝑋

2�𝐷𝐷0𝑡𝑡
� = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧), (8) 

 
where 𝑧𝑧 = 𝑋𝑋

√4𝜏𝜏
 

C. Fuzzy Model 
The boundary condition is assumed fuzzy number: 
 

�𝛩𝛩1|𝑋𝑋=0 = [1 − 𝜀𝜀 + 𝜀𝜀 ∙ 𝛼𝛼, 1 + 𝜀𝜀 − 𝜀𝜀 ∙ 𝛼𝛼] (9) 
 

where ε = the fuzziness and α = the α-level cut 
Then the following expression has been proved in [14] to be a 
solution to the fuzzy equation: 
 

�𝛩𝛩|𝑎𝑎 = {𝛩𝛩1 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)}𝑎𝑎 = [𝛩𝛩𝑎𝑎−, 𝛩𝛩𝑎𝑎+] (10) 
 

𝛩𝛩 
− = (1 − 𝜀𝜀 + 𝜀𝜀 ∙ 𝛼𝛼) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧), 

 (10a) 
𝛩𝛩 

+ = (1 + 𝜀𝜀 − 𝜀𝜀 ∙ 𝛼𝛼) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) 
 

Fig. 2 𝛩𝛩1 fuzzy boundary condition 

IV. HUKUHARA GENERAL PARTIAL DERIVATIVE  
Definition 7. Let (𝑥𝑥0, 𝑡𝑡0) ∈ 𝐷𝐷 (𝐷𝐷 is a crisp set), then the first 
generalized Hukuhara partial derivative ([gH-p]) of fuzzy 
valued function 𝑓𝑓(𝑥𝑥, 𝑡𝑡): 𝐷𝐷 → ℝ𝐹𝐹 at (𝑥𝑥0, 𝑡𝑡0) with respect to 
variables x, t are the functions 

 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔  

 and 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔

 given by: 

 
𝜕𝜕𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= lim
ℎ→0

𝑓𝑓(𝑥𝑥0 + ℎ, 𝑡𝑡0)Θ𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑡𝑡0)
ℎ

 

 

𝜕𝜕𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= lim
𝑘𝑘→0

𝑓𝑓(𝑥𝑥0 + ℎ, 𝑡𝑡0)Θ𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑡𝑡0)
𝑘𝑘

 

provided that �𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔

, 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔

� ∈ ℝ𝐹𝐹   

Definition 8. 

A. First order 
A fuzzy-valued function f of two variables is a rule that 

assigns to each ordered pair of real numbers (x, t), in a set 𝐷𝐷 a 
unique fuzzy number denoted by f(x,t). Let 𝑓𝑓(𝑥𝑥, 𝑡𝑡): 𝐷𝐷 → ℝ𝐹𝐹 , 
(𝑥𝑥0, 𝑡𝑡0) ∈ 𝐷𝐷 and 𝑓𝑓𝑎𝑎−(𝑥𝑥, 𝑡𝑡), 𝑓𝑓𝑎𝑎+(𝑥𝑥, 𝑡𝑡) be real valued functions 
and partial differentiable with respect to x and t. We say that 
[26], [27], [13]: 
• 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is [(i)-p]-differentiable w.r.t x at (𝑥𝑥0, 𝑡𝑡0) if 

 
𝜕𝜕𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= �
𝜕𝜕𝑓𝑓𝑎𝑎− (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
,
𝜕𝜕𝑓𝑓𝑎𝑎+ (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
 � 

 
• 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is [(ii)-p]-differentiable w.r.t x at (𝑥𝑥0, 𝑡𝑡0) if 

 
𝜕𝜕𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= �
𝜕𝜕𝑓𝑓𝑎𝑎+ (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
,
𝜕𝜕𝑓𝑓𝑎𝑎− (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
 � 

 
Notation. The same is valid for 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)

𝜕𝜕𝜕𝜕  
 

Definition 9. 

B. Second order 

Let 𝑓𝑓(𝑥𝑥, 𝑡𝑡): 𝐷𝐷 → ℝ𝐹𝐹 , and 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝑥𝑥𝑖𝑖.𝑔𝑔𝑔𝑔

 be [gH-p]-differentiable 

at (𝑥𝑥0, 𝑡𝑡0) ∈ 𝐷𝐷 with respect to x. We say that [26], [13]: 
 

1. 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔

 is [(i)-p]- differentiable w.r.t x if: 

 

𝜕𝜕2𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥𝑖𝑖.𝑔𝑔𝑔𝑔2 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝜕𝜕2𝑓𝑓𝑎𝑎−(𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝑥𝑥 
2 ,

𝜕𝜕2𝑓𝑓𝑎𝑎+(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥 

2

   𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 𝑖𝑖𝑖𝑖  [(𝑖𝑖) − 𝑝𝑝]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 
 

𝜕𝜕2𝑓𝑓𝑎𝑎+(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥 

2 ,
𝜕𝜕2𝑓𝑓𝑎𝑎−(𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝑥𝑥 
2  

 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 𝑖𝑖𝑖𝑖  [(𝑖𝑖𝑖𝑖) − 𝑝𝑝]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

� 

 

2. 𝜕𝜕𝑓𝑓𝑎𝑎 (𝑥𝑥0,𝑡𝑡0)
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖 .𝑔𝑔𝑔𝑔

 is [(ii)-p]- differentiable w.r.t x if: 

 

𝜕𝜕2𝑓𝑓𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖 .𝑔𝑔𝑔𝑔2 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝜕𝜕2𝑓𝑓𝑎𝑎+(𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝑥𝑥 
2 ,

𝜕𝜕2𝑓𝑓𝑎𝑎−(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥 

2

   𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 𝑖𝑖𝑖𝑖  [(𝑖𝑖) − 𝑝𝑝]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 
 

𝜕𝜕2𝑓𝑓𝑎𝑎−(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥 

2 ,
𝜕𝜕2𝑓𝑓𝑎𝑎+(𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝑥𝑥 
2  

 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 𝑖𝑖𝑖𝑖  [(𝑖𝑖𝑖𝑖) − 𝑝𝑝]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

� 
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V. FUZZY FINITE DIFFERENCE 

A. Implicit Scheme 
The main idea in the finite difference method is to replace 

the derivative in a partial differential equation with difference 
quotients. 

Assume that u is a function of the independent crisp 
variables x and t. Subdivide the x-t plane into sets of equal 
rectangles of sides h, k, by equally spaced grid lines parallel to 
𝑂𝑂𝑡𝑡 , defined by 𝑥𝑥𝑖𝑖 = 𝑖𝑖ℎ, 𝑖𝑖 = 0,1,2, … ,𝑚𝑚, and equally spaced 
grid lines parallel to 𝑂𝑂𝑥𝑥 , defined by 𝑡𝑡𝑗𝑗 = 𝑗𝑗𝑗𝑗, 𝑗𝑗 = 0,1,2, … , 𝑛𝑛, 
where m and n are positive integers with ℎ = 𝐿𝐿 𝑚𝑚�  and 
𝑘𝑘 = 𝑇𝑇 𝑛𝑛� . 

 

 
Fig. 3 Grid 
 
Using the above theory of [gH] differentiability we have the 

following results [12]: 
The first derivative with respect to x is equal to  
 

𝜕𝜕𝑢𝑢𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= �
𝜕𝜕𝑢𝑢𝑎𝑎+ (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
,
𝜕𝜕𝑢𝑢𝑎𝑎− (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
� 

 
which means that u is [(ii)-p] differentiable with respect to x 

according to definition 8. 
Also second derivative is equal to: 
 

𝜕𝜕2𝑢𝑢𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥𝑖𝑖.𝑔𝑔𝑔𝑔2 = �

𝜕𝜕2𝑢𝑢𝑎𝑎−(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝑥𝑥 

2 ,
𝜕𝜕2𝑢𝑢𝑎𝑎+(𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝑥𝑥 
2 � 

 
which means that 𝜕𝜕𝜕𝜕𝑎𝑎(𝑥𝑥0,𝑡𝑡0)

𝜕𝜕𝜕𝜕 𝑖𝑖,𝑔𝑔𝑔𝑔
 is [(ii)-p] differentiable with 

respect to x according to definition 9. 

The first derivative with respect to t is equal to  
 

𝜕𝜕𝑢𝑢𝑎𝑎(𝑥𝑥0, 𝑡𝑡0)
𝜕𝜕𝜕𝜕𝑖𝑖,𝑔𝑔𝑔𝑔

= �
𝜕𝜕𝑢𝑢𝑎𝑎− (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
,
𝜕𝜕𝑢𝑢𝑎𝑎+ (𝑥𝑥0, 𝑡𝑡0)

𝜕𝜕𝜕𝜕 
� 

 
which means that u is [(i)-p] differentiable with respect to t 

according to definition 8 [12]. 
Finally we conclude that: 
 

𝜕𝜕𝑢𝑢−

𝜕𝜕𝑡𝑡
=
𝜕𝜕2𝑢𝑢−

𝜕𝜕𝑥𝑥2 , (11a) 

and 

𝜕𝜕𝑢𝑢+

𝜕𝜕𝑡𝑡
=
𝜕𝜕2𝑢𝑢+

𝜕𝜕𝑥𝑥2 . (11b) 

 
By using implicit discretization scheme and applying Taylor’s 
theorem we get the approximate formulae: 
 

𝜕𝜕𝑢𝑢−

𝜕𝜕𝜕𝜕 𝑖𝑖,𝑗𝑗
=
𝑢𝑢𝑖𝑖,𝑗𝑗+1
− − 𝑢𝑢𝑖𝑖,𝑗𝑗−

𝑑𝑑𝑑𝑑
+ 𝑂𝑂(𝑑𝑑𝑑𝑑) (12a) 

 
𝜕𝜕𝑢𝑢+

𝜕𝜕𝜕𝜕 𝑖𝑖,𝑗𝑗
=
𝑢𝑢𝑖𝑖,𝑗𝑗+1

+ − 𝑢𝑢𝑖𝑖,𝑗𝑗+

𝑑𝑑𝑑𝑑
+ 𝑂𝑂(𝑑𝑑𝑑𝑑) (12b) 

 
𝜕𝜕2𝑢𝑢−

𝜕𝜕𝑥𝑥2
𝑖𝑖,𝑗𝑗

=
𝑢𝑢𝑖𝑖+1,𝑗𝑗+1
− − 2𝑢𝑢𝑖𝑖,𝑗𝑗+1

− + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1
−

(𝑑𝑑𝑑𝑑)2 + 𝛰𝛰((𝑑𝑑𝑑𝑑)2) (13a) 

 
𝜕𝜕2𝑢𝑢+

𝜕𝜕𝑥𝑥2
𝑖𝑖,𝑗𝑗

=
𝑢𝑢𝑖𝑖+1,𝑗𝑗+1

+ − 2𝑢𝑢𝑖𝑖,𝑗𝑗+1
+ + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

+

(𝑑𝑑𝑑𝑑)2 + 𝛰𝛰((𝑑𝑑𝑑𝑑)2) (13b) 

 
 By using the Crank-Nicolson scheme the combination of 
(12a) and (13a), gives the following equation 
 
−𝑟𝑟 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

−
 
+ (2 + 2𝑟𝑟)𝑢𝑢𝑖𝑖,𝑗𝑗+1

− − 𝑟𝑟 𝑢𝑢𝑖𝑖+1,𝑗𝑗+1
−

= 𝑟𝑟𝑢𝑢𝑖𝑖−1,𝑗𝑗
− + (2 − 2𝑟𝑟) 𝑢𝑢𝑖𝑖,𝑗𝑗− + 𝑟𝑟 𝑢𝑢𝑖𝑖+1,𝑗𝑗

−  
(14a) 

 
Similarly, by using the Crank-Nicolson scheme the 

combination of (12b) and (13b), gives also the following 
equation: 

 
−𝑟𝑟 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

+
 
+ (2 + 2𝑟𝑟)𝑢𝑢𝑖𝑖,𝑗𝑗+1

+ − 𝑟𝑟 𝑢𝑢𝑖𝑖+1,𝑗𝑗+1
+

= 𝑟𝑟𝑢𝑢𝑖𝑖−1,𝑗𝑗
+ + (2 − 2𝑟𝑟) 𝑢𝑢𝑖𝑖,𝑗𝑗+ + 𝑟𝑟 𝑢𝑢𝑖𝑖+1,𝑗𝑗

+  
(14b) 

 
where 𝑟𝑟 = 𝑑𝑑𝑑𝑑

(𝑑𝑑𝑑𝑑 )2 
 

 
Fig. 4 Crank – Nicolson grid 
 
This fuzzy numerical method called Crank-Nicolson 

method, which it is an implicit finite difference scheme that 
replace the derivative in a partial deferential equation with 
difference quotients. 

B. Matrix form of Crank-Nicolson scheme 
Implicit finite difference methods include more than one 

value of the unknown function at the next time step and in 
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order to solve them, a system of equations is required. That is 
why it is particularly useful for these methods to be expressed 
through matrices. The triangular matrices used in the Crank-
Nicolson equations are usually strong diagonally structured. 
The determinant of these matrices is not zero, so the system is 
not impossible, nor does it have an infinite number of 
solutions. 

Matrix form of the difference schemes (14a), (14b): 
 

𝑃𝑃1𝑢𝑢𝑗𝑗+1
− = 𝑄𝑄1𝑢𝑢𝑗𝑗− + 𝐺𝐺𝑗𝑗+1,          𝑃𝑃1𝑢𝑢𝑗𝑗+1

+ = 𝑄𝑄1𝑢𝑢𝑗𝑗+ + 𝐺𝐺𝑗𝑗+1 
 
where 

𝑃𝑃1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 + 2𝑟𝑟 −𝑟𝑟 0 . . . .
−𝑟𝑟 2 + 2𝑟𝑟 −𝑟𝑟    .
0  .    .
.   .   .
.    .  .
.    −𝑟𝑟 2 + 2𝑟𝑟 −𝑟𝑟
.     −𝑟𝑟 2 + 2𝑟𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑄𝑄1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 − 2𝑟𝑟 𝑟𝑟 0 . . . .
𝑟𝑟 2 − 2𝑟𝑟 𝑟𝑟    .
0  .    .
.   .   .
.    .  .
.    𝑟𝑟 2 − 2𝑟𝑟 𝑟𝑟
.     𝑟𝑟 2 − 2𝑟𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
𝑢𝑢𝑗𝑗+1
− = [𝑢𝑢1,𝑗𝑗+1

− , … , 𝑢𝑢𝑁𝑁−1,𝑗𝑗+1
− ]𝑇𝑇,   𝑢𝑢𝑗𝑗+1

+ = [𝑢𝑢1,𝑗𝑗+1
+ , … , 𝑢𝑢𝑁𝑁−1,𝑗𝑗+1

+ ]𝑇𝑇  
 

𝐺𝐺𝑗𝑗+1 = [𝑟𝑟𝑢𝑢0,𝑗𝑗
 , 0, … ,0,0, 𝑟𝑟𝑢𝑢𝑁𝑁,𝑗𝑗

 ]𝑇𝑇 
 
The finite difference schemes are solved as system of 

equations. One of the most common method of solving such 
systems is the Thomas method (algorithm) which is a 
simplified form of Gaussian elimination that can be used to 
solve tridiagonal systems of equations [28]. 

VI. APPLICATION  
We will recall (6): 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝛩𝛩
𝜕𝜕𝛸𝛸2 

 
with the initial and boundary conditions: 
 
𝜏𝜏 = 0,   𝛩𝛩(𝛸𝛸, 0) = 0 

 𝜏𝜏 > 0,   𝛩𝛩(0, 𝛵𝛵) =  𝛩𝛩1 = 1,   Θ
𝑋𝑋→∞

(𝛸𝛸, 𝜏𝜏) = 0 
 
We assume that the water content varies 15%. Thus, a 

fuzziness ε of 15% is introduced on 𝛩𝛩1, that is from (9) we 
have the boundary condition to be assumed as a fuzzy number: 

 
�𝛩𝛩1|𝑋𝑋=0 = [0.85 + 0.15𝛼𝛼, 1.15 − 0.15𝛼𝛼] 

 
and then the solution (10) becomes: 
 

�𝛩𝛩|𝑎𝑎 = {𝛩𝛩1 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)}𝑎𝑎 = [𝛩𝛩𝑎𝑎−, 𝛩𝛩𝑎𝑎+] 
with 
 

𝛩𝛩 
− = (0.85 + 0.15𝛼𝛼) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧), 

  
𝛩𝛩 

+ = (1.15 − 0.15𝛼𝛼) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) 
 
and 𝑧𝑧 = 𝑋𝑋

√4𝜏𝜏
 

  
Fig. 5 presents the membership function of the 𝛩𝛩1. 

 
Fig. 5 𝛩𝛩1 fuzzy boundary condition 
 
Since examining the first and second derivatives of (6) and 

found the degree of differentiability, the next step is to 
construct the numerical model in order to solve the problem 
with numerical method (finite difference). Thus, we will use 
the fuzzy implicit numerical scheme Crank – Nicolson and the 
system of the following equations should be solved in the 
following scheme and we have replaced the fuzzy function u 
by Θ: 

 
−𝑟𝑟 𝛩𝛩𝑖𝑖−1,𝑗𝑗+1

−
 
+ (2 + 2𝑟𝑟)𝛩𝛩𝑖𝑖,𝑗𝑗+1

− − 𝑟𝑟 𝛩𝛩𝑖𝑖+1,𝑗𝑗+1
−

= 𝑟𝑟𝛩𝛩𝑖𝑖−1,𝑗𝑗
− + (2 − 2𝑟𝑟) 𝛩𝛩𝑖𝑖,𝑗𝑗− + 𝑟𝑟 𝛩𝛩𝑖𝑖+1,𝑗𝑗

−  
(15a) 

 
−𝑟𝑟 𝛩𝛩𝑖𝑖−1,𝑗𝑗+1

+
 
+ (2 + 2𝑟𝑟)𝛩𝛩𝑖𝑖,𝑗𝑗+1

+ − 𝑟𝑟 𝛩𝛩𝑖𝑖+1,𝑗𝑗+1
+

= 𝑟𝑟𝛩𝛩𝑖𝑖−1,𝑗𝑗
+ + (2 − 2𝑟𝑟) 𝛩𝛩𝑖𝑖,𝑗𝑗+ + 𝑟𝑟 𝛩𝛩𝑖𝑖+1,𝑗𝑗

+  
(15b) 

 
where 𝑟𝑟 = 𝑑𝑑𝑑𝑑

(𝑑𝑑𝑑𝑑)2 
 

According with initial and boundary conditions the below grid 
defined. 
 

 
Fig. 6 Grid for initial and boundary conditions 
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Generally, when numerical methods are applied, 

comparison with the analytical solution of the problem -when 
it exists- is a way of verifying the results. For this reason, the 
finite difference method will be applied below and will be 
compared with the results of the analytical solution. 

Another very important point to note when using 
differential equations, it is that it is a well-posed problem 
according to Jacques Hadamard [29].  

We use (15a), (15b) to approximate the analytical solution 
with dX = 0.035, dτ = 0.0005 therefore r = 0.040816.  

Table I shows the analytical (A.S) solutions and 
approximate solutions from finite difference scheme (F.D), at 
the points     X= 3, 5, 7 and for the times τ = 0.0025, 0.005, 
0.015, 0.05 for α-cut=0. Fig. 7 shows the moisture content 
profiles for different times and Fig. 8 shows the membership 
function 𝛩𝛩(𝑋𝑋, 𝜏𝜏) at Χ=3 for finite difference scheme values. 

 
 
Table I. Analytical – Approximate solution at Χ=3, 5, 7 and for the times τ=0.0025(30 min), 0.005(1hr), 0.015(3hr), 

0.05(10hr) 

   

Χ

0.0025
0.005
0.015
0.05

Θ - Θ + Θ - Θ + Θ - Θ + Θ - Θ + Θ - Θ + Θ - Θ +

0.0025 0.2722  0.3683 0.2739 0.3705 0.0451 0.0611 0.0406 0.0549 0.0042 0.0057 0.0025 0.0034
0.005 0.4095 0.5540 0.4113 0.5565 0.1383 0.1871 0.1383 0.1857 0.0326 0.0441 0.0304 0.0411
0.015 0.5826 0.7882 0.5832 0.7890 0.3555 0.4810 0.3561 0.4818 0.1951 0.2591 0.1915 0.2591
0.05 0.7010 0.9484 0.7011 0.9485 0.5591 0.7564 0.5593 0.7567 0.4305 0.5824 0.4306 0.5826

A.S

Crisp

0.3222 0.0531 0.0477
0.1627

A.S F.D

F.D A.S F.D A.S F.D

0.0357
0.2253
0.5066

Fuzzy

0.4183
0.6578

0.1615
0.4189
0.6580

0.0384
0.2253
0.5064

0.4817
0.6854
0.8247

0.4839
0.6861
0.8248

A.S F.D A.S
0.3203 0.0050 0.0030

3 5 7
F.Dτ

τ

(a) (b) 
Fig. 7 (a) Analytical – approximate solutions for τ=30min, τ=1hr, (b) Analytical – approximate solutions for τ=1hr, τ=3hr, τ=10hr 
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Fig. 8 Membership function of 𝛩𝛩(𝑋𝑋, 𝜏𝜏) at X=3 for finite difference scheme values and for the times τ=0.0025, 0.005, 0.015, 0.05 

 

VII. CONCLUSION 
With the generalized Hukuhara (gH) derivative we can now 

have reliable results from finite difference schemes in order to 
solve partial differential equations. According to the degree of 
differentiability, we found the fuzzy system of equations of 
implicit Crank-Nicolson scheme. Then the results from 
numerical model were compared with the analytical solutions. 
The approaches according to the transformed Hausdorff 
distance were very good. In engineering it is necessary to 
handle the fuzziness of the problem. The fuzziness of soil 
water movement diminishes as flows moves up in horizontal 
column. 
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