
 

 

  
Abstract—In this paper, we argue that the improved the 

performance of speech recognition in mobiles communication 
system, in order to improve the performance of Automatic Speech 
Recognition (ASR) systems, we have achieved by two modules 
Front-End or feature extractor used  and a Back-End or recognizer. 
The Front-End we have used MFCC-MT (Multitaper Frequency 
Cepstral Coefficients features) and Gabor features GF-MFCC,  are  
the result of their ability to extract discriminative internal 
representations that are robust to the many sources of variability in 
speech signals  so  to reduce spectral variations and  correlations. In 
the back-end we have investigated different systems of classification 
in the field of speech using three systems: CHMM (Continues 
Hidden Markov Models), DNN (Deep Neural Network) and HMM-
DNN hybrid. We have examined the DNN, which is usually used to 
reduce spectral variations and the spectral correlations that exist in 
model signals. Furthermore, we focused particularly on HMM-DNN 
in continuous speech recognition tasks of the large Arabic 
vocabulary, and we gave more emphasis to the optimal number of the 
hidden units and the best feature of input for DNN as well. Our 
findings show that HMM-DNN can achieve consistently almost 8% 
of clean speech, 13% of AMR-NB coder and 8.5% of DSR coders. 
The system was trained using the 3hour training set 440 sentences 
with 20 speakers  with labels generated by Viterbi alignment from a 
maximum likelihood ML trained CHMM system using the HTK 
toolkits. 
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I. INTRODUCTION 
N these last decades, the research in the field of automatic    
speech recognition over mobile communication  networks 

has led to the development of client–server recognition 
systems, also known as Network Speech Recognition (NSR) 
(Kim et al. 2001; Peláez-Moreno et al. 2001) and  Distributed 
Speech Recognition (DSR) (Pearce 2000). This research 
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brought numerous methods to improve the recognition 
performance by increasing the robustness against variability of 
speech signals (speech coding, DSR, AMR-NB Adaptive 
Multi-Rate Narrow-Band). On the performance viewpoint, the 
mobile technologies provide access to communication 
networks anytime, anywhere, and from any device. However, 
there are several sources degradation regarding the 
performance of speech recognition. Usually be caused by the 
resulting distortions of low-bit-rate in speech coders of 
networks and the arising distortions from the transmission 
errors that occur through the associated communication 
channels. The ASR system may be divided into two modules: a 
front-end or feature extractor and a back-end or recognizer. 
The objective of ASR is to recognize human speech such as 
sentences or words and phonemes which transforms a speech 
signal into a compact representation. A feature extractor 
(front-end)  methods have been developed for robust ASR. 
The use of feature extraction techniques inspired by the 
auditory system has previously demonstrated a boost in speech 
recognition performance. The Mel Frequency Cepstral 
Coefficients features (MFCC) are the most popular and they 
demonstrate good performance in ASR. MFCC computation 
begins by multiplying a short-term frame of speech by a 
tapered window function. A major  source of problems are the 
spectral front-ends based on either discrete Fourier transform 
(DFT). Despite having low bias, a consequence of the 
windowing is increased estimator variance. In this study, the 
focus lies on the improvement of feature extraction that 
employ a better MFCC estimator based in technique for 
reducing the spectral variance  we proposed two steps. These 
two steps allow the reduction of spectral amplitude variation of 
the obtained spectrum that are, the  multitaper, that to replace a 
windowed periodogram estimate with a multiple windowed 
spectrum estimate and second step  is the Gabor features. In 
the multitaper spectral estimation method, a set of orthogonal 
tapers is applied to the short-time speech signal and the 
resulting spectral estimates are averaged, which reduces the 
spectral variance. The Gabor features were first used by 
Kleinschmidt et al , in 2002 for ASR  improved  feature 
extraction by using a set of physiologically inspired filters 
(Gabor filters), which is applied to a spectro-temporal 
representation of the speech signal. With considerable ASR 
improvements. Second module that, back-end or recognizer, 
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the Hidden Markov models (HMMs) are widely used in many 
systems, a statistical framework that supports both acoustic 
and temporal modeling. However, the HMMs make a number 
of suboptimal modeling approximations that limit their 
potential effectiveness. The Neural networks avoid many of 
these approximations, can learn complex functions, generalize 
effectively, tolerate noise, and support parallelism. Recent 
studies have shown that deep neural networks (DNNs) perform 
significantly better than shallow networks and HMMs on 
continuous speech recognition. In this paper, we are 
conducting research on the speech recognition over mobile 
network DSR and NSR based on two modules a front-end  and 
a back-end. The front-end based on MFCC-Multitaper and 
features Gabor and the back-end  based on  Hidden Markov 
Model (HMM),  deep neural networks (DNN) and  HMM-
DNN. The remainder of the paper is organized as follows. In 
Section 2 , a detailed description of the Speech codec DSR and 
AMR-NB. Front-End (features extraction) in Section 3 we 
then propose two techniques for reducing the spectral 
variance. back-end (recognition system) in section4, we 
present  three techniques HMM , DNN and HMM/DNN .  The 
experiments are presented in section 5. Finally, we summarize 
the conclusion of the presented work in section 6. 

II. SPEECH CODEC  

A. AMR-NB  Codec 
Adaptive Multi-Rate Narrow-Band (AMR-NB) speech 

coding research has progressed substantially in recent years 
and several algorithms are rapidly finding their way into 
consumer products. Research and development in 
Algebraic Code-Excited Linear Prediction (ACELP) yielded 
algorithms that have been adopted for several standards and 
employed in many network and cellular telephone applications 
[4]-[13]. The AMR speech coder consists of the multi-rate 
speech coder, a source controlled rate scheme including a 
voice activity detector and a comfort noise generation system, 
and an error concealment mechanism to combat the effects of 
transmission errors and lost packets. The coder is capable of 
operating at 8 different bit-rates denoted coder modes. The 
multi-rate speech coder is a single integrated speech codec 
with eight source rates from  4.75 kbit/s to 12.2 kbit/s [13]-
[14], and a low rate background noise encoding mode. The 
12.2 kbit/s mode is equivalent to the GSM EFR ( Global 
System for Mobile Enhanced Full Rate) coder while the 
7.4kbit/s mode is equivalent to the EFR coder for the IS-136 
system. The frame size is 20 ms with 4subframes of 5 ms. A 
look ahead of 5 ms is used. In the encoder, the speech signal is 
analyzed and the parameters of the ACELP speech synthesis 
model are extracted. The set of linear prediction filter 
coefficients are calculated for each frame. The indices for the 
adaptive and Fixed CodeBooks as well as their gains are 
extracted for each subframe. The speech synthesis is computed 
by filtering the excitation signal through synthesis filter. The 
function of the decoder consists of decoding the transmitted 
parameters (LSF parameters, adaptive codebook vector, 

adaptive codebook gain, fixed codebook vector, fixed code 
book gain) and performing synthesis to obtain the 
reconstructed speech. The Figure 1 shows a series of 
processing blocks applicable to ASR over mobile networks. 

 
 

B. Distribution Speech Recognition  DSR 
The performance of speech recognition systems receiving 

speech that has been transmitted over mobile channels can be 
significantly degraded when compared to using an speech 
clean. The degradations are as a result of both the low bit rate 
speech coding and channel transmission errors. A Distributed 
Speech Recognition (DSR) [14]-[15] system overcomes these 
problems by eliminating the speech channel and instead using 
an error protected data channel to send a parameterized 
representation of the speech, which is suitable for recognition. 
The processing is distributed between the terminal and the 
network. The terminal performs the feature parameter 
extraction, or the front-end of the speech recognition system. 
The pre-emphasis and windowing the short term spectrum is 
obtained by an Fast Fourier Transform (FFT). This linear 
spectrum is then warped into a non-linear spectral distribution 
of 24 bins using triangular weighting filters on a Mel-scale. 
The 12 cepstral coefficients are obtained by retaining the 12 
lowest frequency coefficients after taking the cosine transform 
of the logarithm of the 24 Mel-spectrum bins. The chosen 
frame rate is 10 ms. The total energy of each frame is also 
computed before the preemphas is filter. The final output 
feature vector consists of 12 cepstral coefficients (C1-C12), 
log Energy and C0. The final feature vector consists of 14 
coefficients: the log-energy coefficient and the 13 cepstral 
coefficients. The C0 coefficient is often redundant when the 
log-energy coefficient is used. These features (14 coefficients) 
are transmitted over a data channel to a remote "back-end" 
recognizer [14,15]. The end result is that the degradation in 
performance due to transcoding on the voice channel is 
removed and channel invariability is achieved. The feature 
compression method selected uses split vector quantisation 
(SVQ). The 14 coefficients are split into 7subvectors each 
consisting of a pair of cepstral coefficients.  
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Fig. 1 Block diagram of the ASR over mobile networks 
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III. FEATURES EXTRACTION (FRONT-END) 
The term “front-end analysis” refers to the first stage of 

ASR [15], whereby the input acoustic signal is converted to a 
sequence of acoustic feature vectors. The short-term spectrum 
provides a convenient way of capturing the acoustic 
consequences of phonetic events. Ideally the method of front-
end analysis should preserve all the perceptually important 
information for making phonetic distinctions, while not being 
sensitive to acoustic variations that are irrelevant phonetically. 
As a general policy for ASR, it seems desirable not to use 
features of the acoustic signal that are not used by human 
listeners, even if they are reliably present in human 
productions, because they may be distorted by the acoustic 
environment or electrical transmission path without causing 
the perceived speech quality to be impaired. 

A. MFCC standard  
The MFCC coefficient is a representation of the short term 

power spectrum of a sound (Davis and Mermelstein 1980). 
The frequency bands in MFCC are equally spaced on the mel 
scale which closely approximates the human auditory system 
response [15]-[3]. The Mel scale can be calculated by Eq.(1). 

fMel   (f)  2595 log ( 1 ).10 700
= × +                              (1) 

The MFCCs are commonly computed from FFT power 
coefficients filtered by a triangular band pass filter bank, 
where  Aj  the output of the j-th filter bank and  N  is the 
number of samples in a basic unit. 

N n jC cos( ).    n 1, ,P .n j 2 Nj 1

2 AN
π

= =
=
∑                                (2) 

MFCC-Multitaper 
Hamming windowed DFT spectrum is the used for power 

spectrum estimation. For m-th frame and l-th frequency an 
MFCC of the windowed periodogram can be expressed as:  

( ) ( ) ( )

22 lN 1
NS m , l w j s m , j

j 0
e

π−
=

=
∑                                            (3) 

Where l {0, 1,……l-1} denotes the frequency index, N is 
the frame length , s(m ,j) is the time domain speech signal and 
w(j) denotes the time domain window function called Taper . 
Windowing reduces bias difference between estimated 
spectrum and   actual spectrum but it does not reduce variance 
of the estimated spectrum therefore variance of MFCC. To 
reduce variance of estimated, replace the windowed DFT 
spectrum estimation by Multitaper spectrum estimate [16]-
[25]. The Multi-taper spectrum estimator is given by: 

 

( ) ( )p j 12w j sin , j 0 ,1 , 2 , ,N 1p N 1 N 1
π +

=   = … − + + 
      (4) 
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δ
=

= =  ≠
∑                                (5) 

( ) ( ) ( ) ( )

2i 2 tfK N 1
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j

π
λ

=

−−

=
= ∑ ∑                         (6) 

That,  k multitapers wj = [wj(0) . . . wj(N − 1)] , j =1, . . ., k, 
are used with corresponding weights λ(j). The multitaper 
estimate is therefore obtained as a weighted average of k 
individual sub-spectra. A number of different tapers have been 
proposed in literature for spectrum estimation. 
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Fig. 2 Block diagram of the front-end algorithm DSR 
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Fig. 3 Block diagram of the front-end algorithm DSR 
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Fig. 4 block diagram for the multi-taper spectrum estimation-based 
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B. Gabor features  
In this section, we describe the characteristics of the Gabor 

features. Feature extraction was proved the successful 
application of Gabor features to noise-robust ASR [26]-[29]. 
The features were first calculated by convolving the log mel 
spectrogram of speech with a set of 2D Gabor filters. Each 
Gabor filter g(n, k) is a product of a complex sinusoid s(n, k) 
with a Hann envelope function h(n, k) . 

 

( ) ( ) ( )n 0 k 0iw n n iw k k
s n , k e

 − + − =                                          (7) 

( ) ( ) ( )2 n n 2 k k0 0h n , k 0.5 0.5 cos cos
w 1 w 1n n

π π   − −
   = −    + +   

            (8) 

The ωn and ωk terms represent the time and frequency 
modulation frequencies of the complex sinusoid, while Wn 
and Wk represent time and frequency window lengths of the 
Hann window.  

C. Dimensionality Reduction Techniques LDA 
The feature vectors collected from the speech signal for 

continuous speech classification. If the technique such as DNN 
is used, the computational complexity and the memory 
requirement have been increased. Hence, the vectors are 
mapped from the feature dimensional space to the lower-
dimensional space. This is known as dimensionality reduction 
technique. The most commonly used dimensionality reduction 
technique is the Linear Discriminant Analysis (LDA) [35]. The 
LDA, the variances of the individual elements of the projected 
centroid vectors are maximized. Simultaneously, the variances 
of the individual elements of the projected vectors 
corresponding to the identical clusters are minimized. Hence, 
LDA helps in bringing down the vectors closer to each other 
and simultaneously separating the vectors farther from each 
other in the projected lower-dimensional space. The LDA 
consists of two positive definite scatter matrices, namely 
between class scatter matrix (SB) and within-class scatter 
matrix (SW) defined as follows[34]. An LDA is applied in 
order to obtain a better discrimination of clusters in feature 
space, e.g. phonemes. It is a linear transform realized by a 
matrix multiplication. The result is a compact representation of 
each cluster with an improved spatial discrimination with 
respect to other clusters. Furthermore, a dimension reduction 
can be achieved.     

IV. SPEECH RECOGNITION SYSTEM 
The  speech recognition is basically a pattern recognition 

problem, although most state-of-the-art approache to speech 
recognition are based in the use of HMMs and GMMs, also 
called Continuous Density HMMs (CD-HMMs)[30],these 
models are all based on probability estimates and 
maximization of the sequence likelihood. While the neural 
network based in Maximum A Posteriori criterion, 

A. Hidden Markov Model (HMM) 
The HMM has been the dominant techniquefor ASR for at 

least two decades. One of the critical parametersof HMM is 
the state observation probability distribution. TheGaussian 
mixture HMMs are typically trained based onmaximum 
likelihood criterion [30]-[33].  

The input speech from a microphone is converted into a 
sequence of fixed size acoustic vectorsY in a process called 
feature extraction (MFCC). The decoder then attempts to find 
the sequence of words W, which is most likely to have 
generated Y, the decoder, tries to find 

{ }
^

arg max P(w / Y )wW =                                                      (9) 
 
The Y model can be characterized by the transitions Aij and 

emitting matrix probabilities Bj(Xi). 

B. Multi-Variate Continuous Distributions 
We have just defined a Continuous Density HMM 

(CDHMM), many natural processes involve variable quantities 
which approximate reasonably well to the normal (or 
Gaussian) distribution. The normal distribution has only two 
independently specifiable parameters, the mean, kµ , and kΣ   
the covariance matrix [30]. The definition of the multi-variate 
normal distribution gives the output probability compactly in 
matrix notation: 

k

K
xb ( o ) p N( o, , )j t g k ks j k 1

µ Σ
 

= = 
  =

∑          (10) 

N( o, , )k k
1 1 -1texp( - ( o- ) ( o- ))k k kd            

212 22
  

k

  

µ Σ

µ Σ µ

π Σ

=

                (11) 

where : 
kµ and kΣ are means vector and  the covariance matrix 

respectively:  
kΣ is the determinant of kΣ . 

t( o- )kµ is the transpose of ( o- )kµ . 

C. Deep Neural Networks  
The Deep Neural Networks (DNNs)[11], [38]-[42]  is 

simply a multi-layer perceptron (MLP) with many hidden 
layers between its inputs and outputs. In this section, we 
review fundamental ideas of the DNN, thatcan be used as an 
acoustic model for speech recognition. DNNs  have achieved 
tremendous success continuous speech recognition. The Pre-
training DNNs performing back propagation training from a 
randomly initialized network can result in a poor local 
optimum, especially as the number of layers increases. To 
remedy this, pre-training methods have been proposed to 
better initialize the parameters prior to back propagation. The 
most well-known method of pre-training grows the network 
layer by layer in an unsupervised manner. This is done by 
treating each pair of layers in the network as a restricted 
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Boltzmann machine (RBM) that can be trained using an 
objective criterion called contrastive divergence. 

The DNN are typically trained based on posterior 
probability   criterionEq (6)of a class S given an observation 
vector X, as a stack of (L +1) layers of log-linear models. Each 
hidden activation hi is computed by multiplying the entire 
input V by weights W in that layer. 
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L L

l L
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z (v )e
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                                  Lsoftmatx (v )s
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∑

= ==

=
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                                  (12) 

Where Tz (v ) (w ) v a= + `, and W` and a` represent the 
weight matrix and bias vector in the l-th layer, respectively.  

D. Hybrid DNN/HMM 
The DNN-HMM [43] is a special case of the artificial 

neural network (ANN) HMM hybrid system developed in 
1990s, forwhich several adaptation techniques have been 
developed. The DNN accepts an input observation , which 
typically consists of 6 frames of acoustic features, and process 
it through many layers of nonlinear transformation [43].  

( ) ( )Tl l l l l lh z v w v ai i i iσ σ
    = = +      

                                 (13) 

Where lw  and la are the weight matrix and bias, 
respectively, at hidden layer l , l

ih  is the output of the -th 
neuron 

( ) ( )Tl l l l lz v w v a= +                                                   (14) 

is the excitation vector given input lv , and 
0v x= and ( ) ( )

1x 1 exp( x )σ =
+ −

 is the sigmoid function 

applied element-wise. At the top layer , the softmax function 
is used to estimate the state posterior probability  )x/sy(p =  
which is converted to the HMM state emission probability as : 

p( y s / x )p( x / y s ) p( x )
p( y s )

=
= =

=                                      (15) 

V. EXPERIMENTS  

A. Corpus analyses  
Our work consists of a sequence of tow  phases shown in 

Fig. They consist of: Corpus Acquisition and Phoneme 
Segmentation. 
1) 1-Corpus acquisition a 3-hour recording of standar  

Arabic speech [44]. It contains a list of Arabic sentence , 
an Arabic dictionary and script files used for manipulating 

corpus information.  
2) Phoneme Segmentation, the corpus is processed by the 

HTK (Hidden Markov Model) speech recognition engine 
to produce the phoneme and word segmentation output 
files for all utterances.  

3) Arabic phoneme, the Arabic phoneme set used in the corpus 
is shown in Table I. Every phoneme is corresponding 
English symbol. The regular Arabic short vowels /AE/,  

4) /IH/, and /UH/ correspond to the Arabic pronunciation 
Fatha, Damma, and Kasra respectively. 

 

 

B. Analysis of results   
To test the speech recognition performance of the DNN and 

HMM-DNN, we conducted series of experiments on Arabic 
database. These experiments are performed with the 8 kHz 
multi-condition, speech clean, and speech transcoded AMR 
and DSR. The training set consists of 440 utterances (about 
three hours for continuous speech and one hour for testing).  

The input layer was formed by a context window of 6 
frames which create it for the MFCC features and 
1000*2000*1500*2500 hidden units for each layer and the 
final soft-max output layer had 40 units (phonemes). The 
networks have been initialized with layer-by-layer generative 
pre-training, and then they are discriminatively trained using 

Table. I The Arabic phoneme list  
 

Phoneme Arabic 
Letter 

Phoneme Arabic 
Letter 

/AE/  ◌َ FATHA /S/ س 

/UH/  ◌ُ 
DAMMA 

/SH/ ش 

/IH/  ِ◌ KASRA /SS/ ص 

/Sh/  ْ◌ SKON /DD/ ض 

/E/ ء /AI/ ع 

/B/ ب /GH/ غ 

/T/ ت /F/ ف 

/TH/ ث /Q/ ق 

/G/ ج /K/ ك 

/HH/ ح /L/ ل 

/KH/ خ /M/ م 

/D/ د /N/ ن 

/DH/ ذ /H/ ـه 

/R/ ر /W/ و 

/Z/ ز /Y/ ي 
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600 iterations of back propagation. A learning rate of 0.15 
used for the first 5000 epochs and 0.004 for the remaining 
4000 epochs. 

These experiments were conducted using CHMM of N=3 
states and 6 numbers of Gaussian components. The frame 
length is 240 samples. They aim to study the influence of   the 
AMR-NB and DSR speech coder on the performance of the 
speech recognition system.  

C. 17BRecognition Accuracy (RA)  
The Recognition Accuracy (RA) gives the recognition 

results. 

 
-N -D SRA% 100

N
= ×                                         (16) 

 The Error Rate is given by the following equation:   
 
ER =  100% - RA%                                       (17) 

 
N:  is the total number of units (words).  
D:  is the number of deleted errors. 
S:  is the number of substituted errors. 
 

 
 
Several experiments have been conducted to test the 

performance of the proposed work. As shown in Table II , the 
overall classification accuracy using the transformed MFCCs 
that are GF-MFCC, MFCC-MT and MFCC+GF-MFCC is 

91% and 96% and 94 for speech clean, 84%,91%,89 % for 
speech transcoded AMR-NB, respectively and for speech 
transcoded DSR 88% GF-MFCC  and 90% MFCC+GF-MFCC 
by DNN. On the other hand, the speech accuracy classification 
accuracies using the traditional MFCC are calculated as 90% 
speech clean, 82% speech transcoded AMR-NB and 85% 
speech transcoded DSR by DNN classifier. The statistical 
analysis of the MFCCs features is studied [44]-[47] in age and 
gender problems. These results proved that the speech 
transcoded AMR/DSR decreases the ASR performance 
compared to the speech clean. They also showed that the DSR 
database achieved the batter rate % compared to AMR 
database rate %. The result of speech transcoded AMR can be 
explained by the degradation of signal quality which is caused 
by the effect of excitation codebooks quantification fixed and 
adaptive, and the quantized spectral parameters LSF 
quantized. It is clear that the DSR transcoded when we used 
the 14 coefficients, 12 MFCC (C1-C12), log Energy and C0, 
and the rate % is increased compared to the AMR transcoded. 
The transformed MFFCs GF-MFCC, MFCC-MT and GF-
MFCC+MFCC that are generated in this work increased the 
overall classification accuracy about 6% for speech clean, 11% 
for speech transcoded AMR-NB and 5% for speech transcoded 
DSR. 

Table III shows the results of DNN-HMM classifier with 
different speech conditions (clean and transcoded DSR/AMR) 
using MFCCs and its transformation GF-MFCC and MFCC-
MT. 

These results proved that the speech transcoded AMR/DSR 
decreases the ASR performance compared to the speech clean. 
Based on the obtained results which are displayed in the above 
tables, we can conclude that the DNN-HMM systems with 
MG-MFCC and MFCC-MT gives the better RA % for 
communication client-server in mobile networks. 

VI. 5BCONCLUSION  
The present paper aims at improving the communication 

client-server on mobile networks NSR and DSR and 
minimizing the impact of degraded performance ASR which is 
introduced by speech coder AMR-NB/DSR. For this purpose, 
the major contributions are made in the area of Front-End and 
Back-End. Starting with the Front-end which is a new 
approach introduced to generate transformed MFCCs feature 
set. Second, the classifier based on DNN and DNN/HMM. As 
one of the most popular feature sets in the speech signal 
processing, MFCCs are proved ineffective in speech 
transcoded in literature. The DNN that performs speech 
recognition in a manner that is more robust to mismatches in 
the speech recognition. The obtained results suggest that the 
MFCCs transformed GF-MFCC and MFCC-MT parameters 
with DNN-HMM classifiers could improve the ASR 
performance in mobile communication. 
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Table. II Recognition Accuracy (RA) of Arabic Continuous Speech 
with Clean and Transcoded AMR/DSR trained DNN 

codec Speech 
clean  

Speech 
transcoded 
AMR-NB 5.9 
Kbits/s 

Speech 
transcoded 
DSR 4.8 
Kbits/s 

Parametre 

MFCC 90 82 85 
gabor 91 84 88 
Gabor 
+ MFCC 

94 89 90 

Multin 
taper 

96 91  

 
Table. III Recognition Accuracy (RA) of Arabic Continuous Speech 

with Clean and Transcoded AMR/DSR trained DNN/HMM 
Speech 

condition  
Speech 

clean  
Speech 

transcoded 
AMR-NB 5.9 
Kbits/s 

Speech 
transcoded 
DSR 4.8 
Kbits/s 

Parametre 

MFCC 94 88 89 
gabor 93 90 91 
Gabor 
+ MFCC 

95 92 93.5 

Multin 
taper 

98 95  
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