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Abstract—
In this paper we propose a new neural networks based regulariza-

tion method requiring only 4 additional hyperparameter and that can
be easily injected in any machine learning architecture. It is based
on the use of auxiliary loss functions designed to appropriately learn
data momenta. Our approach can be used both for classification and
regression problems. A comparative analysis with real time series will
be provided concerning cryptocurrency data, showing improvements
in accuracy of about 5% with respect to existing approaches, without
requiring additional training data or further parameters. The presented
approach constitutes an innovative, new step towards the statistical
moments oriented regularization scheme for statistical forecasting.

Keywords— Machine learning, deep learning, neural networks,
forecasting, multitask learning, cryptocurrency.

I. INTRODUCTION

Introduced several years ago, machine learning algorithms have
learned an impressive boost during recent years mainly with
respect to recognition tasks, spanning from images to speech, as
well as concerning forecasting issues. Such an increasing interest
is essentially the by-product of a couple of factors: first the so
called big data scenarios, second the possibility to effectively
treat huge amount of data and algorithms processing them within
reasonable execution times and with relatively small costs.

This is, in particular, true when we have to analyze time
series related to, e.g., meteorological events, energy production,
financial data, human beings behavior over the net, etc.

It is worth to mention that more often than we could think,
such aspects are strictly related, as in the case of financial prod-
ucts based on renewable energy production, where we have to
take into account data coming from, e.g., solar cells and/or wind-
mills output related to meteo characteristics over specified time
periods, people beliefs about the use of such type of energies
versus oil based ones, and financial time series linked to costs
productions and management of energy derivatives over hourly
to daily markets.

Therefore, each type of data source has to be considered as
related to the other ones. This is why, traditionally, a multivariate
statistical type analysis has been considered, see, e.g., [4, 5, 17],
and references therein.

The main goal being the one to explicitly treat correlations
between different sources.

More precisely, these approaches are typically based on the
serial correlation in the data, often assuming that possible ran-
dom sources could be modeled as white noise components on
the basis of past observations. This the starting point for are au-
toregressive models family (AR), moving average models (MA),
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often combined into autoregressive integrated moving average
models (ARIMA), where the variance in time series is mod-
elled with autoregressive conditional heteroskedasticity models
(GARCH).

Usually, ARIMA and GARCH are combined to make better
forecasts and to model situation when statistics is changing over
time state space models, as, e.g., in the case of the Kalman-type
filters, see, e.g. [2, 3, 21], and references therein.

Despite these approaches are often applied, they suffer of
some relevant drawbacks. First, they are based on serial correla-
tion assumption, while the real underlying process can be highly
non-linear.

Second, these models usually are not able to efficiently treat
memory effects and are not so accurate when dealing with o long
time series. Moreover, they are difficult to be tuned with respect
to local as well as to global geometric characteristics of the data.

Furthermore, such type of methods are not concretely appli-
cable when large amount of different type of data have to be
taken into account simultaneously aiming at producing accurate
forecast in almost real time.

This is the main reason why automated analysis/selection pro-
cedures as the ones offered within the machine learning scenario
have been proposed several years by now, being then successfully
applied during recent periods, mainly exploiting the exponential
growth in computational speed and the lowering of requested
hardware.

In particular, neural networks and their related deep architec-
tures features, have shown their power from both the classifica-
tion and regression point of view, allowing to efficiently treat
a number of forecasting problems based on heterogeneous and
interconnected temporal data.

A negative side of such an approach is related to the tendency
of ML methods to overfit. This means that it is not rare the
case when multilevel NNs techniques tend to do not well model
themselves according with new input, trying, instead, to give too
much weight to old data. The latter phenomenon often give rise
to undesirable memory effects.

To overcome this issue, alternatives have been proposed, such,
e.g., L1, L2 regularizations, dropout smoothing, noise regular-
ization, data augmentation, etc.

Nevertheless, these methods are mainly based on a reduc-
tion of the number/relevance of the model parameters, hence
oversimplifying the model.

While, data augmentation techniques require a lot of efforts
and makes the model training much more time consuming. More-
over it is worth to mention that such remedies to the memory
effect need their own particular hyperparameters, which implies
a further number of hyperparameters to be trained. Last but
not least, these methods are definitively not the best in terms of
forecasting accuracy, especially when dealing with time series
characterized by medium to high level of variance.
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Taking into account previously cited issues and limits, in
this paper we propose a new regularization method, namely a
multitasking learning solution, that does not require additional
memory, being developed with just 4 additional hyperparameters
and that can be easily injected in any machine learning model.

The main idea is to use auxiliary loss functions that are de-
signed to learn data’s statistics. Moreover, our approach can be
used both for classification and regression problems.

To show the validity of our proposal, we benchmark its output
on time series from different domains, showing significant im-
provements in accuracy of financial forecasts on cryptocurrency
data, up to 5%, and requiring nor additional training data, neither
overparametrizing the model.

We believe that statistical moments oriented regularization
should become new pipeline standard for statistical forecast-
ing. In fact, our method, contrary to the ones already proposed,
instead of optimizing a single loss, as, e.g., the mean squared
error between forecast datum and its real counterpart, allow to
optimize over several tasks simultaneously.

The price we have to pay for such an optimization approach
is due to the fact that different tasks come from different sources
of data, hence requiring designing of rather complex machine
learning architectures.

This latter issue is mainly concerned with computational ef-
forts and related hardware demands, hence its relevance is rapidly
decreasing.

The work is organized as follows: we will first show that we
can augment simple feedforward neural network models with
auxiliary tasks of forecasting not just the main objective (future
price change of financial asset as our use case), but also rolling
statistics as mean, variance, skewness and kurtosis.

Calculation of these statistics is cheap, efficient and does not
increase the computational times required by training and/or
evaluation process.

Our empirical results prove that our approach allows to in-
crease directional accuracy of the forecasts up to 5% comparing
to the baseline.

Then, we show how these auxiliary tasks reduce variance of
the weights as other regularizers do, a feature that seems to do
not hold, at least empirically testing it.

Moreover, we provide several performance metrics results
both for regression and directional movement classification tasks
that are useful for evaluation of the performance.

II. BACKGROUND

In what follows we will review general machine learning ap-
proaches previously applied to financial time series forecasting.
This will be helpful later to better underline the advantages due
to our new proposal applied to real time series.

Before the deep learning era advent, a lot of statistical clas-
sifiers have been applied as, e.g., logistic regression [22] , Sup-
ported Vector Machine (SVM) techniques [16], decision trees
and random forests techniques, [18], with respect to a rather
large class of data and features.

Because of the tumultuous developments reached within the
NNs scenario during recent years, it even more interesting to

focus our attention in reviewing last developments related to
the interplay between NNS and their deep learning realizations,
particularly from the financial point of view, see, e.g., [7, 8].

In fact, in such framework both genetic algorithms and re-
inforcement learning approaches have been applied to attack
nested portfolio optimization problems whose intrinsic nature
does not suit traditional statistical approaches.

In this direction several examples can be made, see, e.g., [1]
where the long-term (one month ahead) forecasting of prices
in Japanese stock market have been analyzed by deep learning
techniques, [13], where deep neural networks were compared
to decision trees on different data sets including prices, volume
of trades and dummy variables to encode date and time infor-
mation, or in [19], where NNs approaches have been compared
versus classical time series analysis, outlining significant im-
provements; moreover NNs neworks have been also applied
to macroeconomic indicator forecasting, as in [?], and high-
frequency trading applications, see [14], again showing their
potentials.

III. DATA PREPARATION

In our analysis, as a benchmark data, we have used prices of
well known cryptocurrency Ethereum (ETH), indexed as high,
open, low and close prices, for every day and considering trading
volume, market cap and the amount of tweets on this currency
from the 7th of August 2015, and until the 21st January of 2018
(figure 1).

This implies that we have 7 variables for each trading day, and
we have considered a window over 7 days to predict the next
one.

Figure 1: ETH close prices

To normalize data we use first order differences which gives
us weakly stationary time series centered around zero, but with
varying variance (figure 2).

After several experiments, we decided to use the first 80%
of data as training set, while the last 20% has been adopted as
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Figure 2: ETH returns

testing data. For multitask auxiliary targets we computed rolling
mean, volatility, skewness and kurtosis,
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considering a rolling window size equal to 7. Hence, before
training the neural networks we got a data set with 528 samples
of train samples, each size of 49 variables, because we have to
consider 7 days of 7 variables, and target vectors with varying
length equal to 1, 2 or 5 depending on the experiment. Moreover
we did not assume auxiliary task (baseline), while we have taken
a single auxiliary task or all tasks together.

It is worth to mention that we have trained our network to
forecast real values, but, for the trading applications, it is often
needed to have a binary indicator, as, e.g., call for action.

This has implied our choice to concentrate on evaluation of
metrics for binary classification, which also imples that our con-
tinuous output have been appropriately transformed into binary
ones, hence allowing to consider the sign of variation as the
variable to be forecasted.

IV. NEURAL NETWORK ARCHITECTURE

For the sake of clarity in performing our computations, we de-
cided to use a very simple neural network architecture. In partic-
ular, we considered a single hidden layer perceptron, composed
by 16 neurons in the hidden layer, while the activation function
has been chosen to be the Rectified Linear Unit (ReLU) one:

f (x) = x+ = max(0,x) (5)

The equations of a feedforward neural network are straight-
forward: superposition of functions (in our case - layers):

y(x1, . . . ,xn) = f (w1x1 +w2x2 + . . .+wnxn) (6)

And as the last activation for the prediction we use no non-
linearity (as we want to foreacst real value).

This choice could seem as an over-semplification of the prob-
lem, since more sophisticated approaches can be used as well,
as, e.g., deep learning architectures, that exploit local geometry,
hence using convolutional neural networks, or long-term mem-
ory methodologies, hence exploiting recurrent neural networks.

Figure 3: Schematic neural network architecture

Nevertheless, some considerations should be taken into ac-
count.

In particular, we aim at discovering how additional losses
affect the training phases even when simple approaches are con-
sidered. Of course, we could choose logistic regression as an
alternative baseline, but it tends to overfit without accurate regu-
larization, and this is a characteristic that we do not to use.

Moreover, and this is a crucial point, when dealing with poor
data-sets, more advanced NNs methodologies tend to produce
high errors, even in case of short-time forecasting, see, e.g.,
[11, 23, 24] and references therein.

This is exactly our case, since we cannot count on a large
amount of training data. It is worth to mention that well perform-
ing deep learning architectures require hundreds of thousands of
samples.

Modern financial market theories as the Capital Asset Market
Pricing (CAPM) or Arbitrage Pricing Theory (AP), typically
assume explanation of price movements as a combination of
linear factors, hence without using advanced non-linear based
analysis instruments.

Last but not least, auxiliary losses are connected to the main
one (with index 1) as following

L1(y1, t1)+∑
N

λi ·Li(yi, t i) ; (7)

which implies that, while backpropagating, the error produced
by the process itself results from all the losses with pre-defined
weights λi.
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As the optimizer for the neural network, we have chosen the
Adam algorithm, improved following the recent AMSGrad, [20],
approach. In particular, our techniques improves the already
obtained results allowing for a better convergence stability.

The learning rate has been chosen relatively small, i.e.: 0.0001,
and we have adopted the early stopping approach as the only
regularization method. Therefore, we stopped learning if perfor-
mance (decrease of the loss) did not improve over the last 10
epochs.

Adaptive Moment Estimation (Adam) is a method that com-
putes adaptive learning rates for each parameter.

In addition to storing an exponentially decaying average of
past squared gradients, it also keeps an exponentially decaying
average of past gradients mt, similar to momentum.

Whereas momentum can be seen as a ball running down a
slope, Adam behaves like a heavy ball with friction, which
thus prefers flat minima in the error surface. We compute the
decaying averages of past and past squared gradients respectively
as follows:

mt = β1mt−1 +(1−β1)gtvt = β2vt−1 +(1−β2)g2
t (8)

As mt and vt are initialized as vectors of 0’s, the authors
of Adam observe that they are biased towards zero, especially
during the initial time steps, and especially when the decay rates
are small (i.e.β1 and β2 are close to 1). They counteract these
biases by computing bias-corrected first and second moment
estimates:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(9)

They then use these to update the parameters just as we have
seen in Adadelta and RMSprop, which yields the Adam update
rule:

θt+1 = θt −
η√

v̂t + ε
m̂t (10)

Concerning the right weight for each auxiliary loss, we have
used a Bayesian optimization type algorithm, namely the Tree
of Parzen Estimators (TPE), see, e.g., [10, 6]. This method
is particularly used to hyperparameters optimization purposes,
acting as black-box optimizer.

The objective, for the hyperparameter optimization process,
has been chosen to be R2 score (4), where the numerator is the
sum of squares of residuals, while the denominator equals the
total sum of squares, proportional to the variance of the data,
then using this metric as the main one to explain the variance
values characterizing the obtained forecasts. In particular, using
standard notations, we have

MAE = ∑ |xi− x̂i| (11)

MSE = ∑(xi− x̂i)
2 (12)

R2 = 1− σ2

σ2
x

(13)

MCC =
T P∗T N−FP∗FN

(T P+FP)∗ (T P+FN)∗ (T N +FP)∗ (T N +FN)
(14)

It is worth to mention that even if we have conducted our com-
putations in view of regression tasks, particularly aiming at pre-
dicting continuous time values, we also re-calculated forecasts
as a direction.

This is because we focus on the forecast of sign, evaluating
its accuracy as a binary classification problem.

Let us also recall that the regression metrics used are MSE
and MAE.

As regression metrics we use Mean Squared Error (MSE),
Mean Absolute Error (MAE) and R2 score, while, as binary clas-
sification metrics, we used simple accuracy, confusion matrix,
precision, recall and Matthews correlation coefficient, see eq.
(14) , calculated directly exploiting the confusion matrix using,
respectively, false positive, false negative, true positive and true
negative values, see, e.g., [12].

V. EXPERIMENTAL RESULTS

We have set up our experiments as following:

1. Learn a baseline network with a single loss and evaluate it

2. Learn a baseline network and auxiliary loss for rolling mean
forecasting

3. Learn a baseline network and auxiliary loss for rolling
volatility forecasting

4. Learn a baseline network and auxiliary loss for rolling
skewness forecasting

5. Learn a baseline network and auxiliary loss for rolling
kurtosis forecasting

6. Learn a baseline network with all above mentioned auxiliary
losses together

In each experiment we have established appropriate weights
for auxiliary losses with TPE algorithm.

The results of our experiments have been summarized in tables
below, as well as by the graphs we provided to better show the
price change forecasts.

i. Baseline

The MSE, MAE , R2 and Matthews correlation coefficient for
the aforementioned computations, have been defined as fol-
lows:MSE = 0.0069, MAE = 0.0611, R2 = -0.4721 MCC =
0.0341, hence gaining something more with respect to the sim-
ple random guessing approach. Moreover, the neural networks
weights have distribution with mean 0.0362 and variance 0.1737
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Figure 4: Baseline network with a single loss forecasts

Precision Recall F1 score
DOWN 0.47 0.50 0.48
UP 0.57 0.53 0.55

Table 1: Precision / recall / F1 score for a network with a single loss

ii. Single auxuiliary loss

In what follows, we report the results obtained adding each of the
auxiliary losses to the baseline network. The forecasting plots
are on the figures 4, 5, 6, 7, while the main metrics comparisons
have been summarized in table 6.

Figure 5: Baseline network with a main loss + mean prediction loss

iii. All auxiliary losses

The MSE, MAE , R2 and Matthews correlation coefficient for
this last experiment have been chosen to be equal to: MSE =
0.0079, MAE = 0.0684, R2 = -0.9727, MCC = -0.04516. The
weights λi for auxiliary losses are 0.6359, 0.5271, 0.2230 and
0.2812, respectively.

Figure 6: Baseline network with a main loss + volatility prediction loss

Figure 7: Baseline network with a main loss + skewness prediction loss

We underline that this network could not converge to an ac-
ceptable result, see table 7.
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Figure 8: Baseline network with a main loss + kurtosis prediction loss

Precision Recall F1 score
DOWN 0.52 0.53 0.52
UP 0.61 0.59 0.60

Table 2: Precision / recall / F1 score for a network with a main loss +
mean prediction loss

VI. EXPERIMENTS DISCUSSION

Our baseline approach after conversion results to the binary
classification could get 0.52 of F1 score. This witnesses how
such a model already can find some useful patterns in the data.

We should notice though that recall for the down price move-
ment is just 0.5, while for the up movement, we have 0.53, which
is most likely happening due to class imbalance.

It also clear, comparing obtained results, that the additional
tasks that could boost performance at most, are represented by
rolling mean and rolling kurtosis.

In fact, they could improve final F1-score to 0.55 and 0.56,
respectively.

Success of mean auxiliary loss can be explained with the
fact of describing momentum of the price changes. Skewness
prediction success is even more interesting result. In particular,
assuming that price changes according to a Gaussian distribution,
the skewness parameter provides us useful info about which side,
positive or negative, will be followed by price changes.

We also have tried to build a forecasting algorithm includ-
ing all the four auxiliary losses to the architecture alongside
with main objective, but it has shown worse performance even
comparing to the baseline.

This is not an unexpected result, since we have to take into
account the high impact of objectives showing bad performance,
namely volatility and kurtosis.

Moreover, we also have to consider possible fails within the
hyperparameter optimization processes.

Latter point is surely an interesting line for future research.
In particular, we aim at extending to an analytical approach

the search for the right weight of a loss, which is, until now, a

Precision Recall F1 score
DOWN 0.51 0.43 0.47
UP 0.59 0.66 0.62

Table 3: Precision / recall / F1 score for a network with a main loss +
volatility prediction loss

Precision Recall F1 score
DOWN 0.52 0.53 0.52
UP 0.61 0.59 0.60

Table 4: Precision / recall / F1 score for a network with a main loss +
skewness prediction loss

hyperparameter chosen according to the results of a number of
experiments, hence empirically obtained, or is tuned by hyperpa-
rameter optimization process, as in the tree-structured Parzen es-
timator (TPE) approach, or incorporated in the NN-architecture
itself, being a part of a bigger meta-learning architecture.

We also had a hypothesis that auxiliary losses will act like
more known regularizers, like L1 or L2 regularization. This put
less importance to the algorithm parameters that can be closer to
zero.

That is why, after every experiment, we have also taken
weights matrix to be between inputs and hidden layer, then
checking for its mean and variance.

As it is easy to note looking at the associated numerical tables
below, such choices do not produce a significant reduction of
variance of the ways.

Therefore, we conclude that auxiliary loss functions in finan-
cial forecasting could not be taken as a classical regularizers,
even if they have been injected to the training process in a similar
way, but, instead, they should be intended as an additional term
to the general optimization objective.

Having said that, it is also important to note that an improve-
ment ranging from 3% to 6%, w.r.t. the baseline, constitutes a
rather important result.

This is even more evident when taking into account that we
are considering the financial scenario, where small leverage
opportunities can raise to large monetary returns.

Let us also underline that a lot of other time series properties
can be calculated in a rolling fashion and then used the same
way as auxiliary losses.

For example, we can forecast rolling autocorrelation of time
series or even parameters of ARIMA or GARCH models to make
a connection with classical time series analysis theory.

We also can use this data as inputs to the neural network.
Nevertheless, following this approach, we might want to use
deeper models, more data and more time to train the models,
hence contradicting our primary goal.

In future research we aim to better study the aforementioned
path, which seems to be highly related to the two mathematical
fields of representation theory and optimization theory.

In particular, from the representation theory point of view,
we need to remember that we add auxiliary losses because we
want our neural network to incorporate several properties that
could not be learnt automatically, namely by a straight learning
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Precision Recall F1 score
DOWN 0.50 0.47 0.48
UP 0.58 0.62 0.60

Table 5: Precision / recall / F1 score for a network with a main loss +
kurtosis prediction loss

MSE MAE R2 MCC Loss λi
Mean aux. 0.0059 0.0564 -0.4199 0.1220 0.9474
Volat. aux. 0.0062 0.0587 -0.4208 0.0929 0.2590
Skew. aux. 0.0058 0.0551 -0.3711 0.1310 0.1482
Kurt. aux. 0.0092 0.0721 -1.2131 0.0837 0.027

Table 6: Metrics for single auxiliary tasks experiments

approach on raw data.
While, to what concerns optimization theory, we can use its

techniques to consider previously mentioned additional tasks as,
e.g., regularizers, penalty constraints, multicriteria optimization
approaches, leading to totally different research paths.

VII. CONCLUSION

In this paper we developed and evaluated multitask approach to
financial time series forecasting. We defined statistical moments
of the first four orders as auxiliary tasks that predictive model
has to optimize alongside the main one - price change prediction.

As the benchmark for evaluation we have chosen Ethereum
cryptocurrency prices time series, solving price change in per-
centage regression and considering related regression and direc-
tion forecasting as well.

Our results show that rolling volatility and rolling skewness
are the best auxiliary objectives to forecast, being able to obtain
directional accuracy better up to 5%. We also used Bayesian
optimization to find the best regularization parameters to these
tasks, obtaining values equal to 0.25, and 0.15, respectively.

This shows that volatility impact is rather higher than skew-
ness effect. We also analysed how additional tasks affect weights
distribution, but without noticing any significant difference.
Hence, we can conclude that multitask regularization acts differ-
ently from known L1/L2 penalty regularizers.

In our future works we plan to test the aforementioned ap-
proach considering heterogeneous datasets, hence without limit-
ing the analysis to consider only financial time series.

Moreover, we aim at discover the impact due to different
auxiliary tasks drawn from statistical models, as, e.g., in the case
of the ARIMA, GARCH models, as well as w.r.t. other rolling
properties, as, e.g., rolling autocorrelation, rolling slope, etc., by
studying them analogously to what can be done with the Kalman
filter.

Precision Recall F1 score
DOWN 0.42 0.37 0.39
UP 0.53 0.55 0.55

Table 7: Precision / recall / F1 score for a network with a all losses
together

Last but not least, we are going to research other paths defined
in Chapter VI, even if we would like to underline that the pre-
sented method based on regularization with statistical moments
auxiliary tasks, looks as one of the promising approaches in view
of improving machine learning models without overparametriza-
tion and/or additional data.
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