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Abstract—High dimensional data is the challenging task in
Video-based Face Recognition system. Due to the curse of di-
mensionality, it needs a more memory space and more processing
time (training or testing time). We propose a novel approach of
concatenation of Graph Wavelet (GW) and Multi-radius Local
Binary Pattern (MRLBP) to Video-based Face Recognition. After
pre-processing step, the combination of Graph Wavelet (GW)
and Multi-radius Local Binary Pattern (MRLBP) provide a
flexible model to extract the data features of video and image
face database. Independent component Analysis (ICA) is used
to reduce these data features. Euclidean distance (ED) is used
for matching the data features. Different experiments has been
done with different face databases (Casia database for image to
image recognition and NRC-IIT & HONDA-UCSD for video to
video recognition). Experimental results show that the system
achieves better performance, more accuracy, less processing time
and less memory space than other video-based face recognition
(VFR) algorithms on challenging, high dimensional video face
databases and thus advancing the state-of-the-art.

Keywords: High dimensional data, Video-based Face
Recognition (VFR), Graph Wavelet (GW), Multi-radius Local
Binary Pattern (MRLBP), Independent Component Analysis
(ICA), Euclidean distance (ED).

I. INTRODUCTION

In daily lives humans perform routinely and effortlessly
the task of Face recognition. Wide availability of powerful
and low-cost desktop and embedded computing systems has
created an enormous interest in automatic processing of digital
images and videos in a number of applications, including
biometric authentication, surveillance, human-computer
interaction and multimedia management [1], [2]. The concept
of face recognition is from 1963. Woodrow Wilson Bledsoe
is called as a father of face recognition. Bledsoe developed
a system that could classify photos of faces by hand [3].
After 1963, many researchers are trying to work on many
challenges of face recognition. The performance of face
recognition systems has improved significantly since the first
automatic face recognition system was developed by Kanade
in 1973 [4]. Face Recognition is roughly classified into two
broad categories face recognition through images and face
recognition through videos. There are many challenges like
illumination variation, occlusion, facial expression, resolution
variation, high dimensional data and pose variation. In this
paper our task is to work on high dimensional data in
video databases. In order to evaluate the performance of
our system, we use different databases like NRC-IIT [5],

Honda-UCSD database [6] for video to video face recognition,
for image to image face recognition Casia database [7]. Face
recognition algorithms are distinguish between model based
and appearance based algorithms [8], [9], [10], model based
algorithms use 2D or 3D face models and appearance based
algorithms directly use image pixels or features extracted
from image pixels [1].
The literature survey shows that many efforts have been taken
into the pose invariant face recognition and high dimensional
data. Sunil K. Narang et. al. proposes the construction of
two-channel wavelet filter banks for analysing functions
defined on the vertices of any arbitrary finite weighted
undirected graph. These graph based functions are referred
to as graph-signals as we build a framework in which many
concepts from the classical signal processing domain, such
as Fourier decomposition, signal filtering and downsampling
can be extended to graph domain [11], [12]. Dong Chen et.
al. proposed sparse projection method, named rotated sparse
regression, both computation and model storage for high
dimensional face recognition [13]. Tingjin Luo et. al. propose
a novel unified framework named adaptive discriminative
analysis (ADA), which combines the sample’s importance
measurement and subspace learning in a unified framework
[14]. David J. Baymer described the earliest appearance-based
multi-view algorithm [15]. The algorithm geometrically aligns
the probe images to candidate poses of the gallery subjects
using the automatically determined locations of three feature
points. Pentland et. al proposed a view-based approach to
localize the object (or features on an object) and identify the
correct 2D aspect [16]. M. Turk and Alex Pentland extended
eigenface approach for face recognition [17].

A. High Dimensional Data

High dimensional data arises nowadays in a wide variety
of applications, it rule rather than exception in areas like
information technology, bio-informatics or astronomy. The
word “high-dimensional” refers to the situation where the
number of unknown parameters which are to be estimated
is one or several orders of magnitude larger than the num-
ber of samples in the data [18]. Now a days there is a
tremendous increase of data acquisition of audio, images,
videos, medical/biological data, industrial processes and social
networks. Automatic analysis becomes critical for industries,
science medicine, Internet search and new services [23]. High-
dimensional statistics refers to statistical inference when the
number of unknown parameters p is of much larger order than
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sample size n, that is p � n. This encompasses supervised
regression and classification models where the number of
covariates is of much larger order than n, unsupervised settings
such as clustering or graphical modeling with more variables
than observations or multiple testing where the number of
considered testing hypotheses is larger than sample size.
High-dimensional statistical inference comes into play when-
ever the number p of unknown parameters is larger than
sample size n typically, we have in mind that p is an order of
magnitude larger than n, denoted by p � n. Most often, we
associate a setting where we have more variables than n, for
example in a linear model,

Y = Xβ + ε (1)

High dimensional statistics has relations to other areas. The
methodological concepts share some common aspects with
non-parametric statistics and machine learning, all of them
involving a high degree of complexity making regularization
necessary. An early and important book about statistics for
complex data is Breiman et al. [19] with a strong emphasis
placed on the CART algorithm. The influential book by Hastie
et al. [20] covers a very broad range of methods and techniques
at the interface between statistics and machine learning, also
called “statistical learning” and “data mining”. From an algo-
rithmic point of view, convex optimization is a key ingredient
for regularized likelihood problems which are a central focus
of the book and such optimization arises also in the area
of kernel methods from machine learning, cf. Scholkopf and
Smola [21]. It include also some deviations where nonconvex
optimization or iterative algorithms are used. Regarding many
aspects of optimization, the book by Bertsekas [22] has been
an important source for our use and understanding. Further-
more, the mathematical analysis of high-dimensional statistical
inference has important connections to approximation theory,
cf. Temlyakov [24], in particular in the context of sparse
approximations.
A simple yet very useful model for high-dimensional data is
a linear model

Yi = µ+

p∑
j=1

βjX
(j)
i + εi(i = 1......n), (2)

High-dimensional statistical inference is possible, in the sense
of leading to reasonable accuracy or asymptotic consistency,
if

log(p).(sparsity(β))� n (3)

depending on how we define sparsity and the setting under
consideration. Early progress of high-dimensional statistical
inference has been achieved a while ago: Donoho and John-
stone [25] present beautiful and clean results for the case of
orthogonal design in a linear model where p = n. A lot of
work has been done to analyze much more general designs in
linear or generalized linear models where p� n, as occurring
in many applications nowadays, cf. Donoho and Huo [26],
Donoho and Elad [27], Fuchs [28] and many other references
given later. Much of the methodology and techniques relies
on the idea of `1-penalization for the negative log-likelihood,
including versions of such regularization methods. Such `1-
penalization has become tremendously popular due to its
computational attractiveness and its statistical properties which
reach optimality under certain conditions. Other problems in-
volve more complicated models with e.g. some non-parametric

components or some more demanding likelihood functions as
occurring in e.g. mixture models. High-dimensional data ap-
plications include text mining, pattern recognition in imaging,
astronomy and climate research.

B. Overview of Graph Wavelet

Graphs provide a very flexible model for representing data
in many domains. Many networks such as biological networks
[29], social networks [30], [31] and sensor networks [32],
[58] etc. have a natural interpretation in terms of finite graphs
with vertices as data-sources and links established based on
connectivity, similarity, ties etc. The data on these graphs
can be visualized as a finite collection of samples, which
we term graph-signals. For example, graphs can be used to
represent irregularly sampled datasets in Euclidean spaces
such as regular grids with missing samples. In many machine
learning applications multi-dimensional datasets can be rep-
resented as point-clouds of vectors and links are established
between data sources based on the distance between their
feature-vectors [11], [12]. The sizes (number of nodes) of the
graphs in these applications can be very large, which presents
computational and technical challenges for the purpose of
storage, analysis etc. In some other applications such as
wireless sensor-networks, the data-exchanges between far-off
nodes can be expensive (bandwidth, latency, energy constraints
issues). Therefore, instead of operating on the original graph, it
would be desirable to find and operate on smaller graphs with
fewer nodes and data representing a smooth approximation of
the original data.
A graph wavelet can be denoted as G = (V,E) with vertices
(or nodes) in set V and links (or edges) as tuples (i, j) in
E. The graphs considered are undirected graphs without self-
loops and without multiple edges between nodes. The edges
can only have positive weights. The size of the graph N =| V |
is the number of nodes and the geodesic distance metric is
given as d(v,m), which represents sum of edge weights along
the shortest path between nodes u and v, and is considered
infinite if u and v are disconnected. The j-hop neighborhood
Nj,n = {v ∈ V : d(v, n) ≤ j} of node n is the set
of all nodes which are at most j-hop distance away from
node n. Algebraically, a graph can be represented with the
node-node adjacency matrix A such that the element A(i, j)
is the weight of the edge between node i and j (0 if no
edge). A two-channel wavelet filterbank on a graph provides
a decomposition of any graph-signal into a low pass (smooth)
graph-signal and a high pass (detail) graph-signal component.
The two channels of the filterbanks are characterized by the
graph-filters {Hi, Gi}i∈{0,1} and the downsampling operations
βH and βL as shown in Figure 1. The transform H0 acts as a
lowpass filter, i.e., it transfers the contributions of the low-
pass graph-frequencies, which are below some cut-off, and
attenuates significantly the graph-frequencies which are above
the cut-off. The highpass transform H1 does the opposite, i.e,
it attenuates significantly, the graph frequencies below some
cut-off frequency. The filtering operations in each channel
are followed by downsampling operations βH and βL, which
means that the nodes with membership in the set H store the
output of highpass channel while the nodes in the set L store
the output of low pass channel. For critically sampled output
we have: | H | + | L | = N [11].
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Fig. 1. Graph Wavelet (GW) [11].

C. Multi-radius Local Binary Pattern (MRLBP)

The framework of multi-radius analysis, has been de-
veloped by the computer vision, image analysis and signal
processing communities with complementary motivations from
physics and biological vision. The motivation for having a
multi-radius representation of the face image comes from the
basic observation that real-world objects are composed of
different structures at different scales. In this section, a simple
but powerful texture representation, called multi-radius Local
Binary Pattern (MRLBP), is proposed for face recognition.
This multi-radius representation based LBP can be obtained by
varying the sample radius R and combining the LBP frames
or images. It has been suggested for texture classification and
the results for this application show that its accuracy is better
than that of the single scale local binary pattern method. In
general, this multi-radius LBP representation method can be
realised in a way that it can be accomplished by increasing
the radius of the operator. Moreover, this kind of feature has
been proven to be important for face detection under different
conditions. In summary, increasing the radius of the LBP
operator, while keeping the size of the lobe constant overcomes
this problem. In our system, the size of the lobe is set to be
one pixel. Thus, by sliding a set of LBP operators of different
radii over an image and combining their results, a multi-radius
representation capable of capturing non-local information can
be extracted [38].
However, the general problem associated with the multi-
radius analysis is the high dimensionality of the representation
combined with the small training sample size. It limits the total
number of LBP operators to at most 3. One of the approaches is
to employ a feature selection technique to minimise redundant
information. We propose another method which achieves a
dimensionality reduction by feature extraction.
Certainly, extracting a multi-radius representation by using a
set of LBP operators of different radii may give an unstable
result because of noise effect, but this problem can be min-
imised by using aggregate statistics, such as histogram. There
are several advantages in summarising the LBP results in the
form of histogram. First, the statistical summary can reduce
the feature dimension from the image size to the number of
histogram bins. Secondly, using histogram as a set of features
is robust to image translation and rotation to a certain extent
and therefore the sensitivity to mis-registration is reduced.
Finally, although the contribution to the histogram of the
unstable LBP responses due to noise is small, it can be further
reduced by controlling the number of histogram bins and /or
projecting the histogram in other spaces, such as ICA. Zhao et
al. [36] have proposed to combine the local binary pattern
representation with Kernel Fisher Discriminant Analysis in
order to improve the face verification performance of LBP and
they also mentioned that the performance of combining LBP

histogram (LBPH) with Linear Discriminant Analysis method
is worse than the LBP histogram itself.

D. Our Face Descriptor for high dimensional analysis

To achieve a more comprehensive description of local facial
patterns, the LBP operators with different numbers of sampling
points and various neighborhood radii can be combined. The
Multi-radius LBP were introduced for facial description [37],
to reduce sensitivity of LBP-based face representations to the
scale of face images (Figure 2). It proved that a boosted

Fig. 2. Multi-radius LBP operator (MRLBP) [37].

classifier of Multi-radius LBP consistently outperforms that
of single scale LBP, and the selected LBP bins are distributed
at all scales on the Video Face database. In our approach,
we combine the multi-radius Local Binary Pattern (MRLBP)
representation with Graph Wavelet (GW) [39]. Graph Wavelets
based MRLBP here is not a specific extension of the original
LBP, but denotes a set of approaches that combine Graph
Wavelets and the MRLBP features in various ways. It is
concluded that Graph wavelets and the MRLBP features are
mutually complementary, since MRLBP captures small appear-
ance details while Graph features encode the facial shape over
a broader range of scales. The two types of features can be
fused at the feature level, the matching score level as well
as the decision level. Such fusion schemes require that the
Graph wavelets and MRLBP features are extracted from the
raw image or frames in the parallel way. Local Binary Pattern
operators at R scales are first applied to a face image. This
generates a grey level code for each pixel at every dimension.
The resulting LBP frames or images, shown in Figure, are
cropped to the same size and divided into non-overlapping
sub-regions, M0,M1, ..MJ1. As illustrated in Figure 3, for a
face frame or image, multiple Graph feature maps (GFM) are
computed by convolving the image with the multi-radius and
multi-orientation Graph filters. Each GFM is then divided into

Fig. 3. The illustration of Graph Wavelet (GW) and Multi-radius Local
Binary Patter (MRLBP)

small non-overlapped regions from which MRLBP histograms
are extracted and concatenated into a feature histogram for
GFM. Moreover, the feature histograms extracted from all
GFM are concatenated into a single feature histogram as the
final facial representation [39]. In many similar serial method
using both wavelets and MRLBP. It first adopts wavelets
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to decompose the images into four frequency images: low
frequency, horizontal high frequency, vertical high frequency
and diagonally high frequency, as the inputs of the original
LBP. The method gives promising results for Video-based Face
recognition.

hP,r,j(i) =
∑

x′,y′∈Mj

B(LBPP,r(x
′, y′) = i) (4)

B(v) = {1, v ≥ 0
B(v) = {0, v < 0
B(v) is a Boolean indicator. The set of histograms computed at
different scales for each region, Mj , provides regional informa-
tion. L is the number of histogram bins. By concatenating these
histograms into a single vector, we obtain the final regional
face descriptor presented in equation 5.

fj = [hP,1,j , hP,2,j , ...., hP,R,j ] (5)

This regional facial descriptor can be used to measure the
face similarity by fusing the scores of local similarity of the
corresponding regional histograms of the pair of images being
compared. However, by directly applying the similarity mea-
surement to the multi-radius LBP histogram, the performance
will be compromised. The reason is that this histogram is of
high dimensionality and contains redundant information. The
dimension of the descriptor can be reduced by employing the
Independent component analysis (ICA). we refer to the use of
ICA to produce statistically independent compressed images.
It generates compressed data with minimum mean-squared re-
projection error, ICA minimizes both second-order and higher-
order dependencies in the input. ICA is used to extract the
statistically independent information as a prerequisite to derive
discriminative facial features. Thus a regional discriminative
facial descriptor, dj , is defined by projecting the histogram
information, fj , into ICA space W ica

j , i.e.

dj = (W ica
j )T fj (6)

This discriminative descriptor, dj , gives 4 different levels
of locality: 1) the local binary patterns contributing to the
histogram contain information at the pixel level, 2) the patterns
at each scale are summed over a small region to provide
information at a regional level, 3) the regional histograms
at different scales are concatenated to produce multi-radius
information, 4) the global description of face is established by
concatenating the regional discriminative facial descriptors of
Graph wavelet (GW) and MRLBP. The diagram of our pro-
posed system is shown in Figure 4. Our results presented in this
chapter show that combining Multi-radius Local Binary Pattern
Histogram (MRLBP) with Graph Wavelet (GW) is more robust
for high dimensional Video-based Face Recognition System.

II. VIDEO-BASED FACE RECOGNITION SYSTEM

In this segment, we present the complete architecture of
high dimensional video-based face recognition system (VFR)
in detail as shown in Figure 4. The proposed system consists of
four separate modules. These modules are; (1) detection of the
face in the given video frame using Viola-Jones detector (3)
feature extraction using the concatenation of GW and MRLBP
to represent the face and (4) at last recognizing the test face
from the train video face database.
The database (Casia, IIT-NRC, HONDA-UCSD) consist of

male/female videos. In one video clip it consist of 14
frames/second, nearby 300 frames in each Video. Video is a
combination of frames/images with respect to time. In this
approach we have done a experiment on video databases.
We have taken selected frames from all videos of databases,
it’s advantage is recognition time and memory space required
is less, accuracy is 96% to 100%, For training and testing

Fig. 4. Block Diagram of high dimensional Video-based Face Recognition
System

purpose, we consider the selected frames. We present a high
dimensional VFR system based on GW and MRLBP for Video
face databases. For this high dimensional data Graph Wavelet
is very effective. The concatenation of MRLBP and GW gives
the reduced extracted features. We apply GW and MRLBP
for feature extraction, The motivation behind using MRLBP
is that, MRLBP is one of the good algorithms that deal with
Video-based face recognition. In this approach GW is apply
on face image to lower the dimension then the face image
is divided into a small non-overlapping blocks or regions,
where a histogram of the MRLBP for each region (block) is
constructed. The similarity of two images are then computed
by summing the similarity of histograms from correspond-
ing regions. For this reason, GW and MRLBP concatenated
features are more suitable for face recognition across high
dimensional. These concatenated features are applied to the
Independent Component Analysis (ICA) for feature reduction
purpose. The euclidean distance classifier is used for face
recognition.

A. Face detection

The process of locating the face in a given image and
to separate it from the remaining background is called the
face detection. Several approaches have been proposed to
achieve this with different techniques [55]. Nevertheless, al-
most most approaches work effectively for frontal faces, where
both the eyes are present in the face image. In contrast, if
the performance of skin-segmentation based face detection is
investigated it proves to a larger degree of variation in poses.
After detecting the face next step is face cropping.
Once the face is cropped from the input video frame/image,
the classification of the face image is another most important
module for our VFR system.

B. Feature extraction using the fusion of GW and MRLBP

After the face detection and face cropping, to represent the
face in terms of feature vector to make a machine learning
model there is a need of feature extraction technique. In this

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018 

ISSN: 1998-4464 707



fragment we discuss the feature extraction through fusion of
Graph wavelet (GW)and MRLBP, this fusion is applied on
cropped faces. Once the features have been extracted, we
studied it for a large number of images or frames and we
came to a conclusion, that being the reason for choosing these
fusion of the features for high dimensional data.

C. Feature reduction by Independent Component Analysis

Independent Component Analysis focuses on independent
and non-Gaussian components, Higher-order statistics and
Non-orthogonal transformation
A signal(x) is generated by linear mixing(A) of independent
components(s) ICA is a statistical analysis method to estimate
those independent components(z) and mixing rule(W)

W ∗X = U = X = A ∗ U (7)

W−1 = A (8)

In Independent Component Analysis a one variable can not be
estimated from other variables, it is independent. By Central
Limit Theorem, a sum of two independent random variables
is more gaussian than original variables distribution of inde-
pendent components are nongaussian. To estimate Independent
Components, z should have nongaussian distribution, i.e. we
should maximize nonguassianity. ICA is a Proper to blind
source separation or classification using ICs when class id of
training data is not available.

D. Feature matching using Euclidean distance

All the images are easily discussed in dimensional Eu-
clidean space, called image space. It is natural to adopt the
base to form a coordinate system of the image space, where
it corresponds to an ideal point source with unit intensity
location. Thus an image is converted to the gray level at that
pixel, is represented as a point in the image space, and is
the coordinate with respect to that face image. The origin
of the image space is an image whose gray levels are zero
everywhere. Although the algebra of the image space can
be easily formulated. The Euclidean distance of images (i.e.
the distance between their corresponding points in the image
space) could not be determined until the metric coefficients
of the basis are given. The metric coefficients are defined as
the scalar product and the angle. Euclidean distance converts
images into vectors according to gray levels of each pixel and
then compares intensity differences pixel by pixel. Here we
compare the GW and MRLBP features of test data with GW
and MRLBP features of train data using Euclidean distance
from which we recognize test video data with the help of video
train data. The formula to calculate Euclidean distance is given
by,

d(x, y) =

√√√√ k∑
i=1

(mi − ni)2 (9)

Where mi = train image pixel & ni = test image pixel

E. Database Description

The Honda-UCSD dataset [6] contains 20 different subjects
distributed over 59 videos. It contains male as well as female

videos. Each video sequence is recorded in an indoor envi-
ronment at 15 frames per second and each lasted for at least
15 seconds. We extracted the faces in these video sequences
using Viola and Jones method [55]. We resized the gray-scale
images to 20× 26 pixels and applied histogram equalization.
Figure shows cropped and re-sized face images from Honda
dataset.
NRC-IIT database consists of pairs of short video clips cap-
tured by an Intel web-cam mounted on the computer monitor. It
shows a wide range of facial expressions and orientations. This
database is downloaded from the FRiV technical website [5].
The details of the database are as follows: The video capture
resolution is 160 × 120. Average file size: 1.5 MB, Average
duration: 10-20 secs. Average total number of frames in a clip:
300.
CASIA Face Database Version 5.0 (or CASIA-FaceV5) con-
tains 2,500 color facial images of 500 subjects. The face
images of CASIA-FaceV5 are captured using Logitech USB
camera in one session [7]. The volunteers of CASIA-FaceV5
include graduate students, workers, waiters, etc. All face
images are 16 bit color BMP files and the image resolution
is 640*480. Typical intra-class variations include illumination,
pose, expression, eye-glasses, imaging distance, etc.

Fig. 5. (a) Honda-UCSD (b) NRC-IIT (c) Casia Database

III. EXPERIMENTAL SET-UP

We compare the proposed algorithms with 14 object clas-
sification techniques including Canonical Correlation Analysis
(DCC) [40], Covariance Discriminant Learning (CDL) [41],
Manifold to Manifold Distance (MMD) [42], Regularized
Nearest Points (RNP) [43], Manifold Discriminant Analysis
(MDA) [44], Mean Sequence Sparse Representation Classifi-
cation (MSSRC) [45], the Linear Affine Hull-based Image Set
Distance (AHISD) [46], Sparse Approximated Nearest Points
(SANP) [47], the Convex Hull-based Image Set Distance
(CHISD) [46], and Set to Set Distance Metric Learning (SS-
DML) [48]. Standard implementations provided by the original
authors are used in our experiments. However, Hu′s [47] im-
plementation of MDA is used, while CDL is self-implemented.
We use the standard experimental protocol defined previously
by [41], [42], [44], [47] and [46], to conduct our experiments.
We carefully choose the hyper parameters of each technique
involved in our study. For DCC, a 10-dimensional subspace is
used to represent image sets. Similarly, 10 maximum canonical
correlations are used for discriminative learning. For MMD
and MDA, we follow the recommendations of [42] and [44]
to configure the hyper parameters. The ratio of Euclidean and
geodesic distances is optimized for each dataset. We search
different values in the range and report the best results. The
top most canonical correlation is used to calculate the MMD.
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A search space is used to find the best number of connected
nearest neighbours for geodesic distance in MDA and MMD.
Similarly, a search space of (80%, 85%, 90%, 95%, 99%) is
used to select the best value for the number of PCA basis used
to represent each image set in AHISD, CHISD and SANP.
Parameter C is set to 100 in the SVM optimization framework
of CHISD. For RNP [43], 90% PCA energy is preserved and
same weight parameters are used as in [43]. MSSRC [45] and
SSDML [48] are parameters free.
For Honda-UCSD, NRC-IIT and Casia data sets, we used one
image set from each class to construct the gallery while the
remaining are used for testing. We performed experiments,
each time randomly selecting gallery and test set combinations.
For these dataset, we perform experiments based on the
standard experimental protocol. Specifically, the experiments
are designed in which the complete dataset is divided equally
into two parts. Each part of one video consists of minimum
300 frames for each class. In each train-video data set and test-
video dataset, gallery is constructed by randomly selecting five
frames per class. The training video sets are further partitioned
randomly into gallery sets. Specifically, 5 frames (train data
set) or images are chosen for the gallery while the other
frames or images (test data set) are set aside for validation.
Experiments are repeated 5-folds with different combinations
of gallery and validation sets in each fold.
The learning process of MLDA and KLDA require at least two
samples from every class. Therefore, for the classes having
only a single image set available in the gallery, we construct
two disjoint image sets from the single one by randomly
partitioning it. In our experiments, we preserve 100% energy
of the basis, because all discarded basis had zero singular
values. In Graph wavelet (GW) [11] based classification, we
use the Graph Wavelet feature maps (GFM) to report the
results. We perform analysis of GW+MRLBP accuracy for
the appropriate choice of the selected frames. Figure 5 shows
accuracy variations as the order is changed from average 300
frames. For the Honda-UCSD, NRC-IIT and Casia datasets,
the highest accuracy was achieved by selecting the 5 random
or consecutive frames.

A. Frame Set Classification Results

Table I summarizes the results of our Frame set clas-
sification experiments using the three benchmark datasets.
In the case of Honda-UCSD dataset, GW+MRLBP combi-
nation of our proposed descriptors achieved 100% accuracy
and outperformed the comparative methods. The accuracy
of SANP, AHISD, and CHISD is lower compared to our
proposed descriptor. The first image or frame set of each
subject was chosen for gallery and the rest were used as probes.
Also, we use 20 × 26 images in our experiments whereas
the image size was 40 × 40 in [46] and [47]. The effect of
high dimension, illumination, pose and resolution has been
normalized using MRLBP filtering and increases speed of
training and testing using Graph Wavelet (GW). The proposed
descriptors GW+MRLBP performed better than CDL which
is based on 2-nd order statistic (Table I). AHISD, MDA and
MSSRC also perform good on this dataset. These experiments
show that the GW+MRLBP descriptor performs better than
single order descriptors used in CDL, AHISD, MDA and
MSSRC. Thus this combinations of proposed descriptor is
best than the others. On these dataset, the combination of

TABLE I. COMPARATIVE RESULTS FOR THREE DATABASES FOR
DIFFERENT METHODS

Algorithms Honda UCSD NRC-IIT Casia
DCC [40] 94.67% 93.61% 73.33%
MMD [42] 94.87% 93.19% 69.72%
MDA [44] 97.44% 97.06% 45.53%
CDL [41] 100% 95.83% 75.00%
AHISD [46] 89.74% 97.36% 51.52%
CHISD [46] 92.31% 96.41% 51.67%
SANP [47] 93.08% 96.94% 49.17%
MSSRC [45] 96.75% 97.05% 67.50%
SSDML [48] 89.41% 85.75% 73.20%
RNP [43] 95.95% 96.11% 50.21%
Fj+MLDA [49] 100.00% 97.36% 72.91%
Vj+MLDA [49] 100.00% 97.50% 79.58%
Fj+KLDA [49] 100.00% 97.50% 73.19%
Vj+KLDA [49] 100.00% 97.64% 80.00%
GW+MRLBP 100.00% 100.00% 100.00%
(our approach)

the proposed descriptors outperformed the existing methods
(Table I and Figure 6). The image sets in this dataset are
relatively more noisy and their structure cannot be perfectly
estimated. Therefore, the structure based algorithms (DCC,
CDL) perform poor compared to sample based algorithms
(AHISD, CHISD, SANP, MSSRC, RNP). The Multiple Linear
Discriminant Analysis (MLDA), Kernel Linear Discriminant
Analysis (KLDA), Fj +KLDA, Fj +MLDA, Vj +MLDA
and Vj + KLDA [49]. In contrast, the proposed descriptors
combine both the sample as well as the structural properties
of the image or frame sets and are therefore more accurate
than the existing methods. Our use of the MRLBP histogram
features increases the discrimination. Therefore, our algorithms
achieve relatively higher accuracy than previously reported on
this dataset [41], [47].

Fig. 6. Comparison graph of different methods for three data sets

B. Robustness of Experiments

We used the Honda-UCSD dataset for robustness exper-
iments. We first evaluated the proposed algorithm for its
robustness to the number of samples available in each image
and Video set for modeling. We randomly selected (25, 50,
75, 100, 125, 150, 175, 200, 225, 250, 275, 300) (frames or
images) samples to form a set. The accuracy of the proposed
algorithms is relatively lower when 12 frames or images
per set were used. However, as the number of images used
to construct a set increases, the accuracy of the proposed
algorithms increases dramatically and GW+MRLBP achieves
100% recognition rates at 50 images or frames per set. All
other algorithms exhibited very different behaviours with the
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increase in the number of images per set. SANP and CHISD
obtained their maximum recognition rates of 96.92% and
97.69% respectively at 20 images per set and further increase
in the number of images per set was mostly unfavourable for
these two algorithms. The accuracy of MDA linearly increased
until 60 images per set however, the accuracy dropped at 70
images followed by a liner increase. The accuracy of DCC
increased in a piece-wise liner fashion. The accuracy of MMD
increased with a big jump from 10 to 20 images per set
however, it quickly reached a saturation value at 50 followed
by a decreasing trend for 60 and 70 images per set. A second
increasing trend followed for 80 and 90 images per set reaching
a saturation level of 92.56% at 100 images per set. The
maximum gain in accuracy for the proposed descriptors was
till 50 images per set and a saturation level of 100% accuracy
was reached at 60 images for all the variants of the proposed
descriptors. This shows that 60 random frames per set are
optimal for capturing the first and the second order statistics in
this dataset. Moreover, the accuracy of the proposed algorithms
monotonically increases with the increase in the number of
images used to form a set and also have no negative effects of
addition of more samples.
In the next experiment, we evaluated the robustness of the
proposed descriptors and compared it to other algorithms in a
set-up similar to [46]. Using the Honda-UCSD dataset, In this
experiment we consider all continuous frames (average 300
frames) of video dataset we constructed a clean gallery and test
image sets each containing 300 continuous frames or images.
This is to ensure that each set should be the same number
of frames. In this experiment as we have taken all continuous
frames, it increases the the training and testing time (increases
time delay) due to MRLBP Histogram. To overcome this
problem we combine MRLBP with GW. The results in Figure
6 shows that the proposed descriptor GW+MRLBP exhibited
robustness to time delay better than the other algorithms. As
expected, the structure based techniques are more robust to
time delay compared to the sample based techniques (AHISD,
SANP, CHISD). This is because the holistic model of set
structure has a smoothing effect which reduces the influence
of time delay. In contrast, sample based algorithms usually
generate interpolated samples from the original samples. This
can lead to in-accurate representation.
We have performed one more experiments. We set up the
experiment such that (g-1)nf samples are added to each test
set, where g is the gallery size and nf is the number of
randomly selected frames from the other gallery sets. By
varying nf from 1 to 3 we added 15, 30 and 45 frames to
each probe set. Table II shows a comparison of accuracy of
different algorithms for these three challenging cases. The
drop in the recognition rate of our proposed descriptors is
significantly lower compared to the others. For example, in the
case of the proposed GW+MRLBP algorithm, the drop in the
recognition rate when nf = 3 is 0.5% which is significantly
less than the 5.38% drop of CDL and 1.92% drop of SANP.
This experiment demonstrated the robustness of the proposed
descriptor GW+MRLBP to time delay in the image sets.

In Figure 7 and Table II, we compare the recognition rate of
different methods with different images or frames per set. We
compare the proposed algorithm (GW+MRLBP) with different
techniques like DCC [40], Covariance Discriminant Learning
(CDL) [41], Manifold to Manifold Distance (MMD) [42],

TABLE II. COMPARISON OF THE AVERAGE ACCURACY OF DIFFERENT
ALGORITHMS

Algorithms nf = 1 nf = 2 nf = 3
MMD [42] 93.83% 93.04% 89.74%
MDA [44] 97.44% 96.73% 95.73%
CDL [41] 98.72% 96.92% 94.62%
AHISD [46] 88.21% 87.31% 87.03%
CHISD [46] 92.11% 91.81% 91.03%
SANP [47] 92.82% 91.54% 91.16%
DCC [40] 93.59% 92.93% 92.31%
Fj+MLDA [49] 100.00% 100.00% 94.87%
Vj+MLDA [49] 100.00% 100.00% 98.12%
Fj+KLDA [49] 100.00% 98.97% 96.92%
Vj+KLDA [49] 100.00% 100.00% 99.49%
GW+MRLBP 100.00% 100.00% 100.00%
(our approach)

Fig. 7. Comparison graph of the average accuracy of different algorithms

Regularized Nearest Points (RNP) [43], Manifold Discriminant
Analysis (MDA) [44], Mean Sequence Sparse Representation
Classification (MSSRC) [45], the Linear Affine Hull-based
Image Set Distance (AHISD) [46], Sparse Approximated Near-
est Points (SANP) [47], the Convex Hull-based Image Set
Distance (CHISD) [46] and Set to Set Distance Metric Learn-
ing (SSDML) [48], the Multiple Linear Discriminant Analy-
sis (MLDA), Kernel Linear Discriminant Analysis (KLDA),
Fj +KLDA, Fj +MLDA, Vj +MLDA and Vj +KLDA
[49].

C. Comparison of Computational Time

Table III, summarizes the average execution times of all
algorithms in our study. The execution time is calculated for
classifying one probe image set by matching with the 125
gallery image-sets in the Honda-UCSD, NRC-IIT and Casia
dataset. The average time of experiments is reported for each
algorithm. A Intel(R) core(TM) i3-2120 CPU, 3.30 GHz
processor with 8 GB RAM and MATLAB implementations
are used to conduct these experiments. These comparisons
verify that all variants of the proposed descriptors are
significantly faster than existing techniques. For example, the
proposed GW+MRLBP is faster than different methods like
CDL [41] and SANP [47], the Convex Hull-based Image
Set Distance (CHISD) [46] and Set to Set Distance Metric
Learning (SSDML) [48], the Multiple Linear Discriminant
Analysis (MLDA), Kernel Linear Discriminant Analysis
(KLDA), Fj + KLDA, Fj + MLDA, Vj + MLDA and
Vj +KLDA [49] respectively. Our use of MRLBP histogram
features increases the discrimination but makes the feature
dimension d very high (d = 928). Therefore, the existing
algorithms suffer from computational complexity as well as
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TABLE III. COMPARISON OF THE EXECUTION TIMES (IN SECONDS) OF
DIFFERENT ALGORITHMS.

Algorithm Training Time (Sec) Testing Time (Sec)
DCC [40] 167.49 8.08
MMD [42] 313.57 78.32
MDA [44] 580.70 201.48
CDL [41] 345.88 13.08

AHISD [46] N/A 18.10
CHISD [46] N/A 190.61
SANP [47] N/A 17.94

MSSRC [45] N/A 30.82
SSDML [48] 400.01 21.87

RNP [43] N/A 6.42
Fj+MLDA [49] 11.52 0.05
Vj+MLDA [49] 10.63 0.07
Fj+KLDA [49] 5.28 0.04
Vj+KLDA [49] 8.21 0.06
GW+MRLBP 6.20 0.07
(our approach)

space complexity. However, even for such high dimensional
features, all the variants of the proposed descriptors are
significantly faster. This shows that the proposed descriptors
have better scalability for high dimensional and large datasets.
We have also significantly optimized the implementation of
CDL to achieve faster execution times.

IV. CONCLUSION

In this paper, we propose the concatenation of Graph
Wavelet (GW) and Multi-Radius Local Binary Pattern
(MRLBP) for high-dimensional video and image database.
Dimensionality of the descriptors is reduced using Independent
Component Analysis (ICA). The proposed descriptors are
compared with 14 existing algorithms on three datasets. Exper-
imental results demonstrate that the proposed descriptors are
computationally efficient, robust and highly accurate for video-
based face recognition tasks. Experiments also demonstrate
that the Multi-Radius Local Binary Pattern and Graph Wavelet
descriptors are robust to small number of samples per set and
the large number of samples per set in the probe sets as well in
the gallery sets. In terms of execution time speed-up, the pro-
posed descriptors are more faster than the nearest competitor.
Therefore, in future the proposed descriptors will potentially
be used for real time face recognition with occlusion in videos.
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