
 

 

  
Abstract— A new method for contrast enhancement of RGB 

color images is presented in this paper. The approach is based on a 
three-output recursive operator that adopts fuzzy relations in order to 
perform detail sharpening and noise reduction as well. The optimal 
amounts of sharpening and smoothing can be easily achieved by 
choosing a set of parameter values. Results of computer simulations 
dealing with color pictures corrupted by Gaussian noise show that the 
proposed method is very effective. It can sharpen the details of a 
color image and reduce the noise. 
 
Keywords— image processing, image enhancement, image 

sharpening, nonlinear filters, fuzzy models.  

I. INTRODUCTION 
ECHNIQUES for contrast enhancement are widely adopted 
in a number of research and application areas where 

digital images have rapidly become the most important source 
of information such as medical systems, remote sensing, video 
surveillance, biometrics and robotics. Since contrast 
enhancement can highlight important features embedded in the 
image data, it can improve the accuracy of subsequent 
operations devoted to parameter estimation, object recognition 
and scene interpretation. Contrast enhancement is also 
typically adopted in consumer electronics dealing with digital 
cameras and camcorders in order to improve the visual quality 
of still images and video sequences. The noise increase 
possibly produced by the sharpening process, however, is a 
very important problem in the design of any image 
enhancement system. A classical example of this annoying 
effect is offered by the linear unsharp masking (UM) method 
[1-2]. In this technique, a fraction of the high-pass filtered 
image is added to the original data and the resulting effect is 
edge enhancement and noise amplification. In order to solve 
this problem, more advanced approaches have adopted 
nonlinear algorithms that can limit the noise increase during 
detail sharpening [3-7]. As an example, very interesting results 
were obtained using weighted medians (WM) and permutation 
weighted medians (PWMs) instead of high-pass linear filters in 
the UM scheme [8-10]. Polynomial UM methods such as the 
Teager-based operator [11-12] and the cubic UM method [13-
14] were also proposed in order to control the noise 
amplification. Nonlinear techniques such as the rational UM 
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operators can avoid noise increase and excessive overshoot on 
object contours too [15]. Nonlinear methods based on 
piecewise linear functions have also been proposed for the 
enhancement of noisy images [16-17]. As a key feature, these 
techniques offer a very easy control of the sharpening and 
smoothing effects. Other methods combining sharpening and 
noise reduction are available in the literature: they include 
techniques adopting bilateral filtering [18], non-local means 
(NLM) [19] and anisotropic diffusion for the processing of 
grayscale [20] and color pictures [21-22]. In this framework, 
contrast enhancement approaches that try to avoid color 
distortion have been proposed in [23-25]. Fuzzy models too 
are a powerful resource for contrast enhancement of noisy 
images. Indeed, fuzzy set-based techniques are well suited to 
address the uncertainty that typically occurs when conflicting 
tasks must be combined, for example, sharpening and noise 
reduction [26-27]. 

In this paper we present a novel fuzzy method for the 
enhancement of noisy color pictures that extends and improves 
our previous techniques for grayscale images. The proposed 
approach consists in a three-output operator that combines 
sharpening and noise reduction of RGB data by resorting to 
simple fuzzy relations. In order to preserve the chroma 
information, the sharpening is applied to luminance only. The 
method is recursive and operates on pixel patterns of 
appropriate shapes in order to limit image distortion. The 
resulting behavior of the operator can be finely adapted to the 
specific needs by choosing a set of parameter values. The 
parameter tuning is not a critical process and a satisfactory 
behavior can be easily achieved by adopting a heuristic 
approach. Results of computer simulations show that the 
proposed method is effective in the enhancement of RGB data. 
This paper is organized as follows. Section II describes the 
new three-output recursive enhancement system, Section III 
discusses the results of many computer simulations and, 
finally, Section IV reports conclusions. 

II. RECURSIVE THREE-OUTPUT ENHANCEMENT SYSTEM 

     The proposed method deals with the 11-pixel neighborhood 
shown in Fig.1. The operation is composed of three processing 
steps dealing with the pixel subsets A (Fig.1a), B (Fig.1b) and 
C (Fig.1c), respectively. The first two steps perform detail-
preserving filtering in the RGB color space. The third step 
operates in the YCbCr [1] color coordinate system and applies 
the sharpening effect to the luminance channel only.  
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                                                       (a)                                                                  (b)                                                                (c) 
 

Fig.1 – Pixel subsets for multiple-output recursive processing: (a) pixel subset A, (b) pixel subset B, (c) pixel subset C. 
 
 

A. Processing the pixel subset A 

The first processing step performs detail-preserving smoothing 
of Gaussian noise.  Let x(i+2,j)=[x1(i+2.j), x2(i+2.j), x3(i+2.j)]T 
be the vector (in the RGB space) representing the pixel at 
spatial position (i+2,j) in the input noisy image (i=1,…, N1; 
j=1,…, N2), where x1, x2 and x3 briefly denote the R, G and B 
components, respectively. Let each component be digitized by 
adopting Q different levels: 0 ≤ xk ≤ Q−1 (Q=256 for a 24-bit 
RGB color picture). Similarly, let y(i+2,j)=[y1(i+2.j), y2(i+2.j), 
y3(i+2.j)]T be the corresponding output of the processing, given 
by the following relationships: 
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k + is an estimate of the noise amplitude at 
location (i+2,j) in the k-th channel and µSI(u,v,p,q) is the 
parameterized membership function that describes the fuzzy 
relation  “u is similar to v”: 
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where p and q are parameters (0 < p < Q, q >1). An example 
of graphical representation of µSI(u,v,p,q) is depicted in Fig.2a. 
The processing defined by (1-3) is very simple. In order to 
reduce detail blur, the operation considers small pixel 
differences (possibly caused by Gaussian noise) and aims at 
excluding large differences that denote object borders. When 
all absolute differences between the central pixel and its 
neighbors are smaller than p, only noise is assumed to be 
present. Hence, the processing performs strong smoothing and 
the result is the arithmetic mean of the pixel values in the 
neighborhood. According to this model, differences larger than 
pq represent edges and then their contribution is zero. The 
shape of the membership function µSI(u,v,p,q) performs a 
gradual transition between these opposite effects. An 
appropriate choice of the parameter values p and q determines 
how much a pixel difference should be considered unwanted 
noise to be cancelled or useful information to be preserved.  
Typically, large noise variances require large values of the 
parameter p, at the price of a lower detail preservation. 
Conversely, the choice of the parameter q is much less critical 
and good results can be obtained in the range 3≤q<8. The 
processing is recursive, i.e., the new value y(i+2,j) is 
immediately assigned to x(i+2,j) and re-used for further 
processing. 

   B. Processing the pixel subset B 
The second processing step deals with the pixel subset B 
centered on x(i+1,j) and reinforces the noise cancellation. It is 
worth pointing out that the pixel values in subset B are the 
results of previous processing. Indeed, the processing is 
recursive and the window scans the image from left to right 
and from top to bottom. The second operation performs 
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                                                       (a)                                                                                                                             (b) 
 

Fig.2 – Example of graphical representation of membership functions: (a)  µSI (p=15, q=10), (b) µDI (a=15, b=50, c=100, d=220). 
 
 
smoothing of prefiltered data and then the noise cancellation 
increases. Like the previous processing step, the output 
y(i+1,j)=[y1(i+1.j), y2(i+1.j), y3(i+1.j)]T is defined by the 
following relationships: 
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where )j,1i(g )B(

k +  is an estimate of the noise amplitude at 
location (i+1,j) in the k-th channel, The new value y(i+1,j) is 
immediately assigned to x(i+1,j) and re-used for further 
processing. 
 

   C. Processing the pixel subset C 
The third processing step deals with the pixel subset C 

centered on x(i,j) and performs detail sharpening. Let xL(i,j) be 
the luminance of the pixel at location (i,j) after conversion 
from the RGB to the YCbCr color space. The output yL(i,j) is 
evaluated by means of the following relations: 
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where µDI(u,v,a,b,c,d) is defined by the following relationship:  
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and a,b,c,d are parameters: a<b<c<d. 
The parameterized membership function µDI(u,v,a,b,c,d) 
describes the fuzzy relation “u is different from v”. We adopt 
this kind of fuzzy relation because sharpening aims at 
highlighting the differences among pixel values. An example 
of graphical representation of µDI(u,v,a,b,c,d) is reported in 
Fig.2b. It should be observed that the membership function 
shape is of paramount importance in providing the correct 
behavior of the sharpening effect. In particular, the sensitivity 
to noise depends upon the parameter a whereas the responses 
to small, medium and strong edges is controlled by the 
parameters b, c and d, respectively. The goal is to limit the 
noise increase, to strongly enhance small edges, to moderately 
enhance medium edges and not to enhance large edges in order 
to avoid annoying overshoots along the object borders. The 
parameter λ easily controls the overall amount of sharpening.
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                                                                    (a)                                                                                                                  (b) 
 

Fig.3 – Modified  24-bit RGB test pictures with superimposed uniform regions of interest (ROI) for noise measurements: (a) “Lena”, (b) “Parrots”. 
 
 

 III. COMPUTER SIMULATIONS 
We performed many computer simulations in order to study 

how the behavior of the new enhancement system depends 
upon different parameter settings. In these experiments, we 
considered two 24-bit color images whose size is 512-by-512 
pixels. We slightly modified the well-known test pictures  
“Lena” (Fig.3a) and  “Parrots” (Fig.3b), superimposing a small 
uniform region (R=G=B=128) in the proximity of the upper 
right corner in order to ease the measurement of residual noise 
after sharpening.  

We analyzed the effects of parameter settings on smoothing 
and sharpening.  

A. Smoothing 
In this  first  group of experiments  we  considered  the  

effect of  parameters p1, q1, p2 and q2 on noise cancellation. For 
the sake of simplicity, we considered p2=p1 and q1=q2. We set 
λ=0, in order to disable the sharpening and to focus on the 
smoothing only. A portion of the “Lena” image corrupted by 
Gaussian noise with variance σ2=100 is depicted in Fig.4a. 
Examples of filtered data (p2=p1, q1=q2=4). are shown in 
Fig.4b (p1=5), Fig.4c (p1=15) and Fig.4d (p1=30). 

 
 

                                (a)                                                         (b)                                                         (c)                                                          (d)  
 

Fig.4 – (a) Portion of the “Lena” image corrupted by Gaussian noise with σ2=100. Smoothing yielded by different choices of p1 (p2=p1, q1=q2=4):  
(b) p1=5 (CPSNR=29.15 dB, CPSBR=40.18), (c) p1=15 (CPSNR=32.94 dB, CPSBR=35.30), (d) p1=30 (CPSNR=31.19.15 dB, CPSBR=32.39).
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                                                 (a)                                                                                                                                (b) 
 
Fig.5 – CPSNR and CPSBR evaluations for different values of parameters p1 and q1 (p2=p1, q2=q1): (a) “Lena” image corrupted by Gaussian 
noise with σ2=50, (b) “Lena” image corrupted by Gaussian noise with σ2=100.  
 
  

                                                 (a)                                                                                                                                (b) 
 

Fig.6 – CPSNR and CPSBR evaluations for different values of parameters p1 and q1 (p2=p1, q2=q1): (a) “Parrots” image corrupted by Gaussian 
noise with σ2=50, (b) “Parrots” image corrupted by Gaussian noise with σ2=100.  

 
 
 

It can be seen that the removal of noise becomes more 
effective as the value of p1 increases, at the price of some 
detail blur. In general, p1 (and so p2) strongly depend upon 
the noise variance σ2 and a tradeoff between noise 
cancellation and detail preservation should be adopted. A 
quantitative evaluation of the filtering effects can be 
achieved by resorting to full-reference metrics such as the 
well-known color peak signal-to-noise ratio (CPSNR) and 
the recently introduced color peak signal-to-blur ratio 
(CPSBR) [28-29]. Since the CPSBR is the CPSNR 

component that measures the color/detail preservation 
yielded by a color filter, it can be adopted in conjunction 
with the classical and widespread adopted CPSNR in order 
to fully characterize the behavior of a color denoising 
system. CPSNR and CPSBR evaluations for different 
choices of parameters p1 and q1 (p2=p1, q2=q1) are 
graphically depicted in Fig.5 (“Lena”) and Fig.6 (“Parrots”) 
for different values of noise variance. We can observe that 
larger values of q1 typically yield lower values of CPSBR 
and  so  of detail  preservation. On the other hand, too small 
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                                 (a)                                                         (b)                                                         (c)                                                        (d)  
 

Fig.7 – Portion of the original noise-free “Lena” image (a), sharpening yielded by  λ=2 (b),  λ=4  (c),  λ=6 (d).  
 
 

                                 (a)                                                         (b)                                                         (c)                                                          (d)  
 

Fig.8 – Portion of the original noise-free “Parrots” image (a), sharpening yielded by  λ=2 (b),  λ=4  (c),  λ=6 (d).  
 

 
 
values of q1 reduce the noise smoothing (the maximum 
CPSNR is lower). This effect should be carefully taken into 
account because the sharpening step might amplify the residual 
noise. For many applications, satisfactory choices can be 
found in the range 3≤ q1<8 (for example, q1=4). 

B.  Sharpening  
According to (6-8), the behavior of the fuzzy sharpener is 

controlled by five parameters λ, a, b, c and d. We first 
considered the effect of the parameter λ on the sharpening 
effect. For this purpose, we chose noise-free input data and 
p1=p2=0 in order to focus on the sharpening only. For the sake 
of simplicity, we chose the following values for the remaining 
parameters: a=0, b=50, c=100, d=150. A portion of the 
original “Lena” image is depicted in Fig.7a. Examples of 
processed data are shown in Fig.7b (λ=2), Fig.7c (λ=4) and 

Fig.7d (λ=6). Clearly, the detail sharpening becomes more 
effective as the value of λ increases. Too large values, 
however, typically generate excessive overshoot on object 
contours, although the proposed sharpening architecture is 
designed to limit this effect. Similar results are obtained using 
the “Parrots” picture (Fig.8). A portion of the original 
“Parrots” image is depicted in Fig.8a. Examples of processed 
data are shown in Fig.8b (λ=2), Fig.8c (λ=4) and Fig.8d 
(λ=6). The parameter a is very important because it controls 
the sensitivity to noise. Since small luminance differences are 
considered as noise, no sharpening (µDI=0) is performed if 
xL(i,j) is not very different from xL(m,n), i.e., when 
|xL(i,j)−xL(m,n)|<a, according to (7-8). Large values of this 
parameter reduce noise amplification at the price of a 
(possibly) negligible enhancement of fine details. Conversely, 
too  small  values  of  the parameter a can significantly amplify  
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                           (a)                                                        (b)                                                           (c)                                                         (d) 
 

Fig.9 – Effects of sharpening parameters on a noisy input picture (“Lena” image corrupted by Gaussian noise with σ2=100): (a) a=0, b=50, c=100, 
d=150, λ=4;  (b) a=30, b=50, c=100, d=150, λ=4;  (c) a=60, b=80, c=100, d=150, λ=4;  (d) ) a=0, b=200, c=225, d=250, λ=4. 

 
 

                           (a)                                                          (b)                                                         (c)                                                         (d) 
 

Fig.10 – Effects of sharpening parameters on a noisy input picture (“Parrots” image corrupted by Gaussian noise with σ2=100): (a) a=0, b=50, c=100, 
d=150, λ=4;  (b) a=30, b=50, c=100, d=150, λ=4;  (c) a=60, b=80, c=100, d=150, λ=4;  (d) ) a=0, b=200, c=225, d=250, λ=4. 

 
 
the noise. A satisfactory choice can be easily achieved by 
aiming at a compromise between these opposite effects. As an 
example, let us consider again the “Lena” image corrupted by 
Gaussian noise with σ2=100 (Fig.4a). Examples of correct and 
unsatisfactory parameter settings are depicted in Fig.9. (Notice 
that no noise attenuation can be obtained in any case). 
Focusing on the parameter a, we see that the choice a=0 
(Fig.9a) is unsatisfactory for a noisy picture: the sharpening 
effect is activated (µDI≠0) for any luminance difference, and 
the noise increase is apparent. Conversely, the choice a=30 
(Fig.9b) can limit noise amplification and can sharpen many 
image details as well. A larger value of this parameter further 
decreases noise amplification. The price to be paid, however, 
is a strong limitation of detail enhancement (Fig.9c). The 
strength of the sharpening action actually depends on the slope 
of the membership function µDI, that is also determined by 

parameters b, c and d. The parameter b (typically b<50). 
controls the response to small-medium details that occur when 
a<|x(i,j)−x(m,n)|≤b. A strong sharpening action is necessary in 
order to effectively highlight such details. Too large values of 
the parameter b should be avoided, because they could reduce 
the strength of the sharpening. An example is reported in 
Fig.9d (a=0, b=200), for visual inspection. We can see that the 
resulting contrast enhancement is more limited than for the 
data in Fig.9a (a=0, b=50). The choice of the remaining 
parameters c and d is not very critical too. They aim at 
avoiding an excess of overshoots along image edges, because 
this effect would be rather annoying.  According to this idea, 
the sharpening is gradually disabled when the luminance 
differences become medium (b<|x(i,j)−x(m,n)|≤c), large 
(c<|x(i,j)−x(m,n)|≤d) and very large (x(i,j)−x(m,n)|>d).  
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                                  (a)                                                         (b)                                                          (c)                                                        (d)  
 

Fig.11 – Portion of the “Lena” image corrupted by Gaussian noise with variance σ2=80 (a), results yielded by the proposed method (b), by our 
previous technique (c) and by the linear unsharp masking operator (d).  

 

                                 (a)                                                         (b)                                                         (c)                                                         (d)  
 

Fig.12 – Portion of the “Parrots” image corrupted by Gaussian noise with variance σ2=50 (a), results yielded by the proposed method (b), by our 
previous technique (c) and by the linear unsharp masking operator (d). 
 
 

 

C.  Combining smoothing and sharpening 
In this experiment we evaluated the performance of the 
complete operator in the presence of noisy image data. A 
portion of the (modified) “Lena” picture corrupted by 
Gaussian noise with variance σ2=80 is depicted in Fig.11a. 
The result yielded by the novel enhancement system is shown 
in Fig.11b (p1=12, p2=12, q1=q2=4, a=12, b=50, c=100, 
d=150, λ=3.5). For a comparison, the results given by our 
previous fuzzy method [27] and by the classical linear unsharp 
masking technique are reported in Fig.11c and 11d, 
respectively. From visual inspection, we can see that the 
proposed method can perform edge enhancement and noise 
cancellation as well. On the contrary, some noise amplification 
affects the data processed by our previous technique. This 
effect becomes very annoying if we consider the result yielded 

by the linear  operator. A quantitative estimate of the resulting 
noise can be easily achieved by computing the CPSNR in the 
uniform region of interest (ROI) located at the upper-right 
corner of the modified test images. The CPSNRROI evaluations 
are: 39.51 dB (proposed method), 25.07 dB (previous 
technique [27]) and 15.35 dB (linear unsharp masking).  
Finally, we considered the (modified) “Parrots” picture 
corrupted by Gaussian noise with variance σ2=50 (Fig.12a). 
The result given by the new enhancement system is shown in 
Fig.12b (p1=10, p2=10, q1=4, q2=4, a=10, b=50, c=100, 
d=150, λ=3.5). The results yielded by our previous fuzzy 
method [27] and by the classical linear unsharp masking 
technique are reported in Fig.12c and 12d, respectively. As in 
the previous experiment, we compute the CPSNR in the 
uniform ROI in order to obtain an estimate of the resulting 
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noise. The CPSNRROI evaluations are 41.76 dB (proposed 
method), 24.53 dB (previous method) and 18.35 dB (linear 
unsharp masking technique).  

IV. CONCLUSION 
A new operator for contrast enhancement of color images 

has been presented. The proposed approach adopts recursive 
processing based on fuzzy models in order to combine edge 
sharpening and noise reduction. Edge-preserving noise 
smoothing is directly performed on RGB data, whereas detail 
sharpening operates on the luminance channel of the image in 
order to avoid chroma distortion. Unlike other methods, the 
processing can be finely adjusted by acting on many 
parameters. The parameter tuning, however, is not a critical 
process: indeed satisfactory results can be easily achieved 
focusing on few parameter settings. Computer simulations 
dealing with 24-bit RGB pictures have shown that the novel 
fuzzy operator can effectively sharpen image details and 
reduce noise, yielding better results than other methods in the 
literature. 
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