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Abstract—The non-integer (fractional) order PID (FOPID or 

PID) controller was introduced almost two decades and 
demonstrated to perform the better responses in comparison with the 
conventional integer order PID (IOPID). The design of an optimal 
FOPID controller for induction motor speed control system by the 
cuckoo search (CS), one of the most efficient metaheuristic 
optimization search techniques, is presented in this paper. Based on 
the modern optimization framework, five parameters of the FOPID 
controller are optimized by the CS to meet the response 
specifications of the three-phase induction motor (3-IM) speed 
control system defined as particularly constraint functions. Results 
obtained by the FOPID controller are compared with those obtained 
by the IOPID designed by the CS. As simulation results, the FOPID 
can provide superior speed responses to the IOPID, significantly. 
 

Keywords—Fractional order PID controller, Cuckoo Search, 
metaheuristic optimization.  

I. INTRODUCTION 
HE fractional order PID (FOPID) controller (or PID) 
was firstly proposed by Podlubny in 1999 [1], as an 

extended version of the conventional integer order PID 
(IOPID). Based on the fractional calculus, the FOPID 
controller is characterized by five parameters: proportional 
gain (Kp), integration gain (Ki), derivative gain (Kd), 
integration order () and derivative order (). Once the 
FOPID is compared with the IOPID, there are two extra 
parameters  and  making the FOPID controller more 
efficient, but more complicate than the IOPID in design and 
implementation procedures. By literatures, the FOPID has 
been successfully conducted in many applications, for 
instance, process control [2], automatic voltage regulator 
(AVR) [3], DC motor control [4], power electronic control 
[5], inverted pendulum control [6] and gun control system [7]. 
Several design and tuning methods for FOPID have been 
consecutively launched, for example, rule-based methods 
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[8],[9] and analytical methods [10],[11]. Review and tutorial 
articles of the FOPID controller providing the state-of-the-art 
and its backgrounds have been completely reported [12],[13].  

Recently, control synthesis has been changed from the 
conventional paradigm to the new framework based on 
modern optimization using metaheuristics as an optimizer 
[14],[15]. The cuckoo search (CS), firstly proposed by Yang 
and Deb in 2009, is one of the most powerful population-
based  metaheuristic optimization search techniques [16]. The 
CS was proved for the global convergent property [17] and 
successfully applied to many real-world engineering 
problems, such as wind turbine blades [18], antenna arrays 
[19], power systems [20], travelling salesman problem [21], 
structural optimization problem [22], wireless sensor network 
[23], flow shop scheduling problem [24], job shop scheduling 
problem [25] and control systems [26]. The state-of-the-art 
and its applications of the CS have been reviewed and 
reported [27]. In this paper, the CS is applied to optimally 
design the FOPID controller for the 3-IM speed control 
system. The rest of the paper is outlined as follows: fractional 
calculus and fractional order PID (FOPID) controller are 
briefly described in section II. Problem formulation of the CS-
based FOPID controller design for the 3-IM speed control 
system is performed in section III. Results and discussions are 
illustrated in section IV, while conclusions are summarized in 
section V.   

II. FRACTIONAL CALCULUS AND FOPID CONTROLLER 

A. Fractional Calculus  
In fractional calculus, a generalization of integration and 

differentiation can be represented by the non-integer order 
fundamental operator 

ta D , where a and t are the limits of 
the operator. The continuous integro-differential operator is 
defined as expressed in (1), where    stands for the order 
of operation.  

There are three definitions used for the generally fractional 
differintegral. The first definition is Grunwald-Letnikov (GL) 
as stated in (2), where ][  is integer part and n is an integer 
satisfying the condition nn  1 . The binomial 
coefficient is stated in (3), while the Euler’s gamma function 

)(  is defined by (4). 
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The second definition is Riemann-Liouville (RL) as 

expressed in (5), for nn  1 . The third definition is 
Caputo definition as shown in (6), where n is an integer and 

nn  1 . Among those, the Caputo definition is most 
popular in engineering applications [12]. 
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For solving engineering problems, the Laplace transform is 

routinely conducted. The formula of the Laplace transform of 
the RL fractional derivative in (5) is stated in (7), for 

nn  1 , where js   denotes the Laplace transform 
(complex) variable. Under zero initial conditions for order   
(0 <  < 1), the Laplace transform of the RL fractional 
derivative in (5) can be expressed in (8). 

 
)()}({ sFstfDta

  L  (8) 
 

B. FOPID Controller  

The fractional order PID controller (FOPID or PID) is an 
extended version of the conventional integer order PID 
(IOPID). The generalized transfer function of the FOPID is 
given by the differential equation as stated in (9), where u(t) is 
the control signal, e(t) is the error signal and  and   0, and  
by the Laplace transform as expressed in (10). 
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Relationship between the IOPID and the FOPID can be 

represented by a graphical way as visualized in Fig. 1. In 
general, the range of fractional orders   ( and ) is varied 
from 0 to 2. However, in most research works, the range of  
and  is varied from 0 to 1. Referring to Fig. 1, if  =  = 1, it 
is the IOPID controller. 

 

PD

P
PI

PID

 
 

Fig. 1 relationship between IOPID and FOPID controllers 

III. PROBLEM FORMULATION 
In this section, the FOPID control loop, the 3-IM model 

and the CS-based FOPID controller design are consecutively 
presented as follows. 

A. FOPID Control Loop  
The FOPID control loop is represented by the block 

diagram as shown in Fig. 2, where Gp(s) and Gc(s) are the 
plant and the FOPID controller models, respectively. The 
FOPID receives the error signal E(s) and produces the control 
signal U(s) to control the output signal C(s) and regulate the 
disturbance signal D(s), referring to the reference input R(s). 

 

FOPID
U(s)E(s) C(s)R(s)

D(s)

+
-

Plant

Gc(s) Gp(s)

 
 

Fig. 2 FOPID control loop 
 

B. Induction Motor Model  

In this work, a 0.37 kW, 1400 rpm, 50 Hz, 4-pole 3-IM 
was conducted. Such the motor was tested as shown in Fig. 3 
to record its speed dynamics. By using MATLAB and system 
identification toolbox [28], the third-order transfer function 
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was identified as given in (11). Good agreement between the 
model plot and the experimental speed (sensory data) can be 
observed in Fig. 4. The plant model in (11) will be used as the 
plant Gp(s) in Fig. 2.  

 

 
 

Fig. 3 3-IM testing rig 
 

 
 

Fig. 4 model plot against sensory data 
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Fig. 5 CS-based FOPID design framework 
 

C. CS-Based FOPID Controller Design  

Based on modern optimization framework, application of 
the CS to design optimal FOPID controller for 3-IM speed 
control system can be represented by the block diagram in Fig. 
5. The CS algorithms [16] mimic the behaviour of cuckoo 
species and the Lévy flight behaviour of some birds and fruit 
flies. Two essential parameters of the CS are a number of 
cuckoos (n) and a fraction pa denoting the ability of host birds 
that can find the cuckoos’ eggs. Referring to Fig. 5, the 
objective function J, sum-squared error between the reference 
speed R(s) and the actual speed C(s) in (12), will be fed to the 
CS to be minimized by searching for the appropriate values of 
the FOPID parameters, i.e. Kp, Ki, Kd,  and  subject to 
inequality constraint functions satisfying to the predefined 
response specifications as stated in (13).  

 

 
 N

i ii crJ 1
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In CS algorithms, new solutions x(t+1) for cuckoo i can be 

generated by Lévy distribution as expressed in (14), where a 
symbol Lévy() represents the Lévy distribution having an 
infinite variance with an infinite mean as expressed in (15). 
The step length s of cuckoo flight can be calculated by (16), 
where u and v stand for normal distribution as stated in (17). 
Standard deviations of u and v are also expressed in (18). The 
CS algorithm is applied for the FOPID design application as 
follows: 
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Step-1 Perform objective function J(x), x = (Kp, Ki, Kd, , 

)T in (12), initial number of cuckoos (n), fraction 
pa and search spaces, randomly generate x as initial 
solutions and set Max_Gen and Gen = 1. 

Step-2 If Gen  Max_Gen, n cuckoo find the new nests by 
Levy flight and lay their eggs in the random nests 
according to (14) – (18) to create new solutions x*. 
Otherwise, go to Step-7.  

Step-3 If pa  rand, m (m <= n) cuckoo’s egg is found by 
host birds. m cuckoo find the new nests by Levy 
flight again and lay their eggs in the random nests 
according to (14) – (18) to create new solutions x*. 
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Step-4 Evaluate all cuckoos’ eggs via J(x). 
Step-5 If J(x) < J(x*) in (12) and satisfy to (13), update x = 

x*. 
Step-6 Update Gen = Gen+1, and go back to Step-2. 
Step-7 Terminate the search process, and report best 

solution x found. 

IV. RESULTS AND DISCUSSIONS 
To optimal FOPID design for the 3-IM speed control 

system, the CS algorithms were coded by MATLAB version 
2017b (License No.#40637337) run on Intel(R) Core(TM) i5-
3470 CPU@3.60GHz, 4.0GB-RAM. The FOPID is 
implemented by MATLAB with FOMCON toolbox [29],[30] 
where Oustaloup’s approximation is realized for fractional 
order numerical simulation. Number of cuckoos n = 40 and 
fraction pa = 0.2 are set according to recommendations of 
Yang and Deb [16],[17]. Search spaces and constraint 
functions in (13) are then performed as stated in (19), where tr 
is rise time, Mp is percent maximum overshoot, ts is settling 
time and Ess is steady-state error, respectively. The maximum 
generation Max_Gen = 100 is then set as the termination 
criteria (TC). 50 trials are conducted to find the best solution 
(optimal FOPID controller for the 3-IM speed control 
system). For comparison with the IOPID,  and  in (19) will 
be set as one ( =  = 1). 
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Once the search process stopped, the CS can successfully 

provide the optimal parameters of the IOPID and FOPID 
controllers for the 3-IM speed control system as expressed in 
(20) and (21), respectively. The convergent rates of the 
objective functions in (12) associated with inequality 
constraint functions in (19) proceeded by the CS over 50 trials 
are depicted in Fig. 6. The step responses of the 3-IM speed 
control system without controller, with IOPID controller and 
with FOPID controller designed by the CS are shown in     
Fig. 7.  

Referring to Fig. 7, the step response of the 3-IM speed 
control system without controller provides tr = 0.65 sec., ts = 
0.72 sec., without Mp and Ess. Once controlled by the IOPID, 

the step response of the 3-IM speed control system yields tr = 
0.11 sec., ts = 0.43 sec., Mp = 9.85% and without Ess. Finally, 
the step response of the 3-IM speed controlled system with 
FOPID controller provided tr = 0.11 sec., ts = 0.32 sec., Mp = 
3.12% and without Ess. This can be noticed that the FOPID 
controller designed by the CS can provide very satisfactory 
speed response of the 3-IM speed control system superior to 
the IOPID controller, significantly. 
 

 
 

Fig. 6 convergent rates over 50 trials 
 

 
 

Fig. 7 step responses of 3-IM speed control 
 

V. CONCLUSIONS 
An optimal fractional order PID (FOPID or PID) 

controller design for the 3-IM speed control system by the 
cuckoo search (CS) has been proposed in this paper. 
Characterized by five parameters, the FOPID could perform 
the better responses once compared with the conventional 
integer order PID (IOPID). In this paper, fractional calculus 
and FOPID controller have been briefly described. The CS-
based FOPID controller design framework has been 
formulated according to modern optimization context. By 
numerical simulation with MATLAB and FOMCON toolbox, 
five parameters of the FOPID controller have been 
successfully optimized by the CS meeting the predefined 
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response specifications as inequality constraint functions. As 
simulation results, it was found that the FOPID designed by 
the CS could yield very satisfactory speed response of the 3-
IM speed control system satisfying to the inequality constraint 
functions and superior to the IOPID controller. For the future 
research, the fractional order PIDA (FOPIDA) controller 
design by the CS will be alternatively conducted to extend the 
fractional controller applications. 
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