
 

 

Abstract—This paper studied a perishable inventory system with a 
service facility, which is a kind of production inventory system that 
require a certain service time before customers receive the specified 
goods. The continuous review (s, S) production inventory policy was 
adopted for the system. It means that productive facilities start to 
produce goods, while the inventory level decreases to s; otherwise, the 
productive facilities will be stopped to produce goods, while the 
inventory level achieves to S. The customers arrive according to a 
Poisson process. All arriving customers during stockout are lost. The 
life time of the item, production time and service time are assumed to 
have independent exponential distributions. The stationary joint 
distribution of the queue length and the on-hand inventory is obtained. 
Various system performance measures are derived and the total 
expected cost is calculated. The impact of different parameters to the 
system performance measures and the total expected cost are 
illustrated numerically. 

Keywords—production inventory system, (s, S) policy, positive 
service time, perishable products 

I. INTRODUCTION 

OR a classical model of inventory management, the 
arriving demand will be immediately satisfied while the 
storehouse exists sufficient stock; otherwise, the customers 

have to wait or leave dependent on themselves willing while the 
storehouse is out of stock. In this case, a single item inventory 
will be actually between the two processes of supply and 
demand. However, a certain time is necessary before the 
customers receive the inventory items in a real production 
inventory system, and the certain time can be called as a service 
time. That is in such system, satisfying each demand needs not 
only an on-hand inventory item but also some service time. 
Following the definition, assignment, packing, and delivery 
times can be regarded as a service time [1]. 

Sigman and Simchi-Levi [2] investigated an M/G/1 
queueing-inventory system. They developed a light traffic 
systems with positive service time. Berman and Kim [3] and 
heuristic approximation procedure for finding performance 
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measures of the system. This is the first work on inventory 
Berman and Kim [4]  addressed the optimal inventory control 
in a supply chain with a service facility, and found the optimal 
replenishment policy to maximize profit by using a Markov 
decision process.  

Krishnamoorthy and his colleagues firstly studied a 
production inventory system considering positive service time 
[5]. A continuous review (s, S) production inventory policy was 
adopted, to decide the starting and stopping time points of 
producing facilities through assessment of inventory levels. 
Their study deduced the steady state probability vector in an 
explicit product form by application of matrix analysis method. 
A cost function in s and S was constructed to numerically 
investigate their optimal values. Baek and Moon [6] studied a 
production inventory system with service time, where the 
stocks were replenished either by an external order under a (r, 
Q) policy, or by an internal production. They derived the 
stationary joint distribution of the queue length and the on-hand 
inventory in product form. By comparison of the results in the 
reference [7], it was concluded that the inventory process of the 
system with internal production is more stable than the model 
without the internal production. Afterwards, Baek and Moon 
[8] applied same method to extend its study from single server 
to multiple servers. They proved the independence of the 
inventory level process and the queue length process and 
derived the explicit stationary joint probability in product form. 
The cost function was developed and investigated numerical 
examples. 

However, the above studies lose their sights into perishable 
character of the items of inventory. Krishnamoorthy et al. [9] 
studied a perishable inventory system with service time by 
application of N service policy. It assumed that the server begin 
to provide services only while the amount of the waiting 
customers achieves N numbers and the demands will lost 
during the stock out periods. The items of inventory have 
exponential life time. They obtained the joint probability 
distribution of the number of customers and the inventory level 
in the steady state case. Some performance measures of the 
system were derived. Manuel et al. [10] analyzed a perishable 
inventory system with a service facility. They assumed that the 
arrival processes of positive and negative customers form 
Markovian arrival processes, the service time has phase-type 
distribution, the lead time and the life time of the item have 
exponential distribution. Manuel et al [11] extended the model 
with retrial customer at service facility. Shophia Lawrence et al. 
[12] considered a case in which the demands are generated by a 
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finite homogeneous population. The service time and the lead 
time are followed phase-type distribution, the life time of the 
item has exponential distribution. A numerical example was 
used to investigate the changing situations of mean waiting 
times, while the service time and the lead time are followed the 
three special cases of exponential, Erlang and hyper 
exponential distributions, respectively. Hamadi et al. [13] 
studied a perishable inventory control problem at a service 
facility with impatient customers where customers arrive at 
service facility according to a Poisson process. The lead time, 
the service time, the life time of item and the reneging time 
have exponential distribution. The optimal service rate that 
minimizes the long run expected cost rate has been derived. 

To the best of our knowledge, no research has been found on 
the production- inventory system considering both positive 
service time and perishable products. In this paper we have 
considered a perishable production-inventory system with 
positive service time.  

Related to the paragraph structure, the second part is 
organized to describe research problem and establish 
corresponding systematic model. The third part is for 
theoretical analyses and its solution to deduce stationary joint 
probability distribution for the inventory level and the number 
of customers, and further calculate system performance 
measures to establish system cost function. In the fourth part, 
numerical analyses are applied to evaluate influences of 
different system parameters on the performance measures; 
moreover, a proposed algorithm was demonstrated to obtain 
optimal inventory control variables. Additionally, a 
comprehensive conclusion was given in the final part. 

II. MODEL DESCRIPTION 

Considering a production inventory system while the 
inventory goods is perishable, the following hypotheses are 
defined for the studying topic. 

Customers arrive in the system according to a Poisson 
process with parameter λ , and the customers come to the 
system as a queue by a coming order. 

The server serves the arrived customers one by one under a 
First-Come, First-Served (FCFS) discipline. The service times 
are exponentially distributed with parameter µ . Each customer 
leaves the system with one item from the inventory at his 
service completion epoch.  

The system has a single production facility and the 
production times are exponentially distributed with parameter 
η . The life time of each item has exponential distribution with 
parameter τ . 

An (s, S) production inventory policy is adopted. When the 
inventory level becomes S, the production facility is turned off; 
and when the inventory level depletes to s, the production 

facility is immediately turned on, and is kept in the on model 
until the inventory level becomes S.  

During the period when the inventory level is zero, all new 
arriving customers are rejected and lost.  

III. MODEL ANALYSIS 

Let )(tN  be the number of customers in the system at time 
t , )(tI  the on-hand inventory level at time t , and )(tJ  the 
status of the production process at time t ,which is defined as, 





=
.timeatstate-offinisfacilityproductiontheif,0
,timeatstate-oninisfacilityproductiontheif,1

)(
t
t

tJ  

Then the process { } { }0),(),(),(0),( ≥=≥ ttJtItNttX  is a 
continuous-time Markov process with the state space 
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  The infinitesimal generator of the process { }0),( ≥ttX  is as 
follows 
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where 
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where 
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A. Stationary Condition 

Theorem 1: The process { }0),( ≥ttX  with the infinitesimal 
generator Q  is positive recurrent if and only if  

µλ <                                                                                     (6) 

Proof: Let a matrix 321 QQQH ++= , which is given by 
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where  
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    Let 
))0,(),1,1(),0,1(,),1,1(),0,1(),1,(,),1,0(( SSSsss ααααααα −−++= α

be the steady state probability vector of the generator H . Then 
the vectors α  should satisfy equations: 

1,0 == αeαH                                                                          (8) 

where e  is a column vector of 1's of appropriate dimension. 
Based on Neuts [14], the stochastic process { }0),( ≥ttX  with 
the infinitesimal generator Q  is positive recurrent if and only if  

eαQeαQ 13 < ,                                                                          (9) 

the following equations can be derived by calculation of eαQ3  
and eαQ1 , 
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Thereby, if and only if µλ < , the process { }0),( ≥ttX  is 
positive recurrence, and the system is stable. The proof is 
completed. 

B. Steady State Distribution 
A perishable production inventory system neglecting service 

time is established. Before solving the steady probability 
distribution of process { }0),( ≥ttX , it is necessary in the 
beginning to consider a perishable production inventory system 
where the service of customers is instantaneous and no 
backlogs are allowed when the inventory level depletes to zero. 
Thereby the waiting customers do not exist in this production 
inventory system, and the coresponding Markov process can be 
defined as { } { }0),(),(0),(ˆ ≥=≥ ttJtIttX ,where )(tI  and )(tJ  
have the same definition as process { }0),( ≥ttX . The state 
space of the process { }0),(ˆ ≥ttX  is given as, 
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and all other submatrices are as defined previously in matrix 
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and then the vector π  satisfies the following equations  
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where e  is a column vector of 1's of appropriate dimension. 

    The equation (13) can be rewritten as follows 
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To solve the equation set (14) - (19), and obtain the solutions 
as follows 
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By the normalizing equation (20), the following result can 
be deduced as, 
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A perishable production inventory system considering 
service time is established. Let ),,,( 210 PPPP =  be the steady 
state probability vector of the process { }0),( ≥ttX , where iP  is 
a row vector of order sS −2 , and P  satisfies the following 
equations 

1, == Pe0PQ                                                                         (27) 
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where e  is a column vector of 1's of appropriate dimension. 

    Theorem 2: If µλ < , the steady state probability 

distribution of the perishable production inventory system with 

positive service time is given by 
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where vector π  is derived from the equations (21) - ( 26). 

      Proof: When 0PQ =  from the equation (27), the following 

equations can be derived as, 
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where ξ  is a constant. Now it is to validate the equation (28) 

satisfying the equations  (29) and (30). 

   Substituting equation (28) into the left sides of equations (29) 

and (30), we have 
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    From the structure of the matrices 0Q , 1Q , and Q̂ , it is easy 
to verify that  

QQQ ˆ
10 =+

µ
λ

 

Moreover, due to 0ˆ =Qπ  from equation (13), the left sides 
of equations (29) and (30) are equal to zero. Thereby, 
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Afterwards, further considering normalizing conditions 
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Therefore, under the condition of µλ < , µ
λξ −=1 . The proof is 

finished.  

Remark: Theorem 2 shows that the steady state 
probability distribution of the system can be decomposed as 
two independent parts: one part is the distribution of  the queue 
length in the classical M/M/1 queue system, and another part is 
the distribution of the inventory level in the perishable 
production inventory system without considering the service 
time.  

C. System Performance Measures 
Expected number of customers in the system is 
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   Expected customer loss rate while the inventory level is zero 
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    Expected rate at which production process is switched on  
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    Expected perishable rate is 
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IV. OPTIMAL CONTROL STRATEGY 

A. Cost Function 
On the basis of the derived system steady state performance 

measures, the expected total cost per unit time for this model is 
defined to be  

dedNwonolosslprpinvh ECECECECECECSsF +++++=),(             (41) 

where hC  is the inventory holding cost per unit item per unit 
time, pC  is the cost of production per unit item per unit time, lC  
is the cost caused by a loss of a customer, oC  is the cost for 
starting the production, wC  is the waiting cost of a customer per 
unit time, dC  is the perishable cost per unit item per unit time.  

   Afterwards, as an objective of minimum the expected total 
system cost ),( SsF , it is to obtain optimal value of the 
production switching on inventory level s and the maximum 
inventory level S. Normally, it is always difficult to obtain the 
optimal by application of analytic method, because the 
expression complexity of system performance measures. 
However, in a real situation of inventory management, the 
maximum inventory level is always bounded, and it is 
impossible as a infinite value. Therefore, a searching program 
is developed to calculate optimal s and S values for the 
minimum expected total cost ),( SsF . The searching steps can 
be simply demonstrated as,  

    Step 1. To set the maximum S value as Smax, and maximum s 
value as Smax-1;  

    Step 2. To calculate corresponding F values of the cost 
function for each S and s, and all of the F values is preserved in 
the Smax*Smax-1 dimensional matrix.  

    Step 3. To search s and S values corresponding to the 
minimum factor in matrix F, and it is namely optimal inventory 

),( ∗∗ Ss , by application of the developed searching program.  

 

B. Numerical Analysis 
The effect of system parameters on performance measures 

and cost function is analysed. Now, we conduct a numerical 
analysis to consider the effect of parameters λ , η  and τ  on 
some performance measures and the expected total coat. The 
cost parameters are given as: 2=hC , 15=pC , 200=lC , 

400=oC , 1=sC , and 5.1=dC . The numerical results are 
shown in Table 1, Table 2 and Table 3 respectively. 

    As presented in Table 1, the expected production rate prE , 
the expected customer loss rate lossE  and the expected total cost 

),( SsF  increased with the increase of the customer arrival rate 
λ . Inversely, the expected inventory level invE , the expected 
switched on rate of production process onE , the expected 
perishable rate deE  decreased with the increase of the customer 
arrival rate λ . 

    As presented in Table 2, the expected inventory level invE , 
the expected production rate prE , the expected switched on rate 
of production process onE , the expected perishable rate deE , and 
the expected total cost ),( SsF  increased with the increase of 
the production rate η ; inversely, only the expected customer 
loss rate lossE  decreased with the increase of the production rate 
η . 

 

TABLE 1. The effect of the arrival rate λ  on some performance 
measures and expected total cost. The other parameters are give as: 

4,6.0,0.3,0.5 ==== sτµη  and S=16. 

λ  invE  prE  lossE  onE  deE  ),( SsF  

0.8 6.828 4.893 0.0036 0.0023 4.097 95.20 

0.9 6.683 4.905 0.0045 0.0023 4.010 95.20 

1.0 6.537 4.916 0.0057 0.0022 3.922 95.21 

1.1 6.390 4.925 0.0070 0.0021 3.834 95.25 

1.2 6.242 4.934 0.0086 0.0020 3.745 95.31 

1.3 6.093 4.942 0.0104 0.0019 3.656 95.41 

1.4 5.945 4.949 0.0125 0.0018 3.567 95.56 

1.5 5.796 4.955 0.0148 0.0017 3.478 95.77 

1.6 5.648 4.960 0.0174 0.0016 3.389 96.05 

1.7 5.501 4.965 0.0204 0.0015 3.301 96.40 
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TABLE 2. The effect of the production rate η  on some performance 
measures and expected total cost. The other parameters are give as: 

4,6.0,0.3,1.5 ==== sτµλ  and S=16. 

η  
invE  

prE  
lossE  

onE  
deE  ),( SsF  

5.0 5.796 4.955 0.0148 0.0017 3.478 95.77 

5.2 6.088 5.134 0.0118 0.0024 3.653 98.98 

5.4 6.370 5.307 0.0094 0.0033 3.822 102.26 

5.6 6.641 5.471 0.0075 0.0044 3.984 105.57 

5.8 6.898 5.628 0.0060 0.0057 4.139 108.88 

6.0 7.140 5.774 0.0048 0.0072 4.284 112.16 

6.2 7.366 5.911 0.0039 0.0090 4.420 115.39 

6.4 7.576 6.038 0.0031 0.0109 4.546 118.53 

6.6 7.769 6.154 0.0026 0.0131 4.661 121.58 

6.8 7.945 6.260 0.0021 0.0154 4.767 124.52 
 

As presented in Table 3, the expected production rate 
prE , 

the expected customer loss rate lossE , the expected perishable 
rate deE , and the expected total cost ),( SsF  increased with the 
increase of the perishable rate τ ; inversely, the expected 
inventory level 

invE , and the expected switched on rate of 

production process onE  decreased with the increase of the 
perishable rate τ . 

 

TABLE 3. The effect of the perishable rate τ  on some performance 
measures and expected total cost. The other parameters are give as: 

4,0.3,5.0,1.5 ==== sµηλ  and S=16. 

τ  
invE  prE  lossE  onE  deE  ),( SsF

 0.1 9.668 2.486 0.0005 0.0807 0.967 91.47 

0.2 9.207 3.342 0.0011 0.0577 1.841 95.58 

0.3 8.650 4.088 0.0020 0.0330 2.595 97.11 

0.4 7.784 4.604 0.0040 0.0146 3.114 96.95 

0.5 6.747 4.859 0.0081 0.0053 3.374 96.17 

0.6 5.796 4.955 0.0148 0.0017 3.478 95.77 

0.7 5.031 4.986 0.0236 0.0005 3.521 96.06 

0.8 4.433 4.995 0.0340 0.0001 3.546 96.98 

0.9 3.963 4.998 0.0455 6.02×10-

5 
3.567 98.37 

1.0 3.586 4.999 0.0577 2.17×10-

5 
3.586 100.10 

 

The Effect of Perishable rate on Optimal Inventory Policy 
and Cost Function is analysed. By given other system 
parameters: 1.5λ = , 5.0η = , and 3.0µ = , the cost parameters 
of the each system performance measures can be set as: 2hC =

, 15pC = , 200lC = , 400oC = , 1sC = , and 1.5dC = . 

Thereby, in Table 4, the values of optimal production 
inventory policy ),( ∗∗ Ss and cost function ),( ∗∗ SsF are 
estimated for the different values of perishable rate τ , under 
the precondition of the value setting of the maximum system 
inventory level as 50. 

As observed in Table 4, the value ∗s  in the optimal 
production inventory policy decreases with the increase of the 
perishable rateτ ; meanwhile, the value ∗S  decreases in the 
beginning, and then increases with the increase of the 
perishable rateτ . However, there is no significantly monotonic 
relation between the optimal cost function ),( ∗∗ SsF and 
perishable rateτ .  

 

TABLE 4. The effect of perishable rate τ  on optimal policy and cost 
function. 

τ  ),( ∗∗ Ss  ),( ∗∗ SsF  

0.1 (2,18) 85.59 

0.2 (2,16) 92.63 

0.3 (2,15) 95.51 

0.4 (2,14) 96.14 

0.5 (3,14) 95.86 

0.6 (3,14) 95.68 

0.7 (4,14) 96.04 

 

V. CONCLUSIONS 

This paper mainly discussed production inventory system 
with positive service time where the inventory items are 
perishable. The stationary joint probability distribution of the 
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number of customers in the system and the inventory level was 
obtained by using the matrix technique. The important stable 
performance measures were deduced to establish system cost 
function, and a simple calculation algorithm was designed to 
estimate optimal inventory policy. The effect of system 
parameters on some performance measures was investigated 
using numerical examples. The monotonic behavior of the 
optimal policy and the optimal cost on the perishable rate was 
illustrated numerically. 

REFERENCES   

 

[1] R. Haji, A. Haji, and M. Saffari, “Queueing inventory system in a two-level 
supply chain with  one-for-one ordering policy”, Journal of Industrial and 
Systems Engineering, vol. 5, no. 1, pp. 52–62, 2011. 

[2] K. Sigman and D. Simchi-Levi, “Light traffic heuristic for an M/G/1 queue 
with limited inventory”, Annals of Operations Research, vol. 40, pp. 
371–380, 1992. 

[3] O. Berman and E. Kim, “Stochastic models for inventory management at 
service facilities”, Stochastic Models, vol. 15, no. 4, pp. 695–718, 1999. 

[4] O. Berman and E. Kim, “Dynamic inventory strategies for profit 
maximization in a service facility with stochastic service, demand and lead 
time”, Mathematical Methods of Operations Research, vol. 60, no. 3, pp. 
497–521, 2004. 

[5] A. Krishnamoorthy and C. N. Viswanath, “Stochastic decomposition in 
production inventory with service time”, European Journal of Operational 
Research, vol. 228, no. 2, pp. 358-366, 2013. 

[6] W. J. Baek and K. S. Moon, “The M/M/1 queue with a 
production-inventory system and lost sales”, Applied Mathematics and 
Computation, vol. 233, pp. 534–544, 2014. 

[7] M. Saffari, S. Asmussen, and R. Haji, “The M/M/1 queue with inventory, 
lost sale, and general lead time”, Queueing System, vol. 75, no. 1, pp. 65–77, 
2013. 

[8] W. J. Baek and K. S. Moon, “A Production-inventory system with 
Markovian service queue and lost sales”, Journal of the Korean Statistical 
Society, vol. 45, no. 1, pp. 14–24, 2016. 

[9] Krishnamoorthy A, Anbazhagan N. Perishable Inventory System at service 
facilities with N policy”, Stochastic Analysis and Applications, vol. 26, no. 
1, pp. 120–135, 2008. 

[10] P. Manuel, B. Sivakumar, and G. Arivarignan, “A perishable inventory 
system with service facility, MAP arrivals and PH-service times”, Journal 
of Systems Science and Systems Engineering, vol. 16, no. 1, pp. 62–73, 
2007. 

[11] P. Manuel, B. Sivakumar, and G. Arivarignan, “A perishable inventory 
system with service facilities and retrial customers”, Computers & 
Industrial Engineering, vol. 54, no. 3, pp. 484–501, 2008. 

[12] A. L. Shophia, B. Sivakumar, and G. Arivarignan, “A perishable 
inventory system with service facility and finite source”, Applied 
Mathematical Modelling, vol. 37, no. 7, pp.4771–4786, 2013. 

[13] AI. M. H. Hamadi and N. Sangeetha, “Optimal control of service 
parameter for a perishable inventory system maintained at service facility 
with impatient customers”, Annals of Operations Research, vol. 233, pp. 
3–23, 2015. 

[14] F. M. Neuts, Matrix Geometric Solutions in Stochastic Models–An 
Algorithmic Approach, John Hopkins University Press, Baltimore, 1981,  
pp. 101–200. 

 

 

Yaling Qin was born on Dec. 18, 1980. She received the Master degree in 
computational mathematics from Yanshan University of China. Currently, she 
is a lecturer at Yanshan University, China. Her major research interests include 
queuing theory, and systems reliability analysis. She has published 6 papers in 
related journals.  

 

Dequan Yue was born on Apr. 4, 1964. He received the PhD degree in 
operational research and cybernetics Institute of Applied Mathematics, 
Academy of Mathematics and System Science, Chinese Academy of Science, 
China. Currently, he is a professor at the School of Science, Yanshan  
University, China. His major research interests include queuing theory, systems 
reliability analysis, stochastic orders, and their applications in reliability and 
probability statistics. He has published 40 papers in related journals. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 155


	Introduction
	Model Description
	Model Analysis
	Stationary Condition
	Steady State Distribution
	System Performance Measures

	Optimal Control Strategy
	Cost Function
	Numerical Analysis

	Conclusions
	References



