
 

 

  
Abstract—A fractional wavelet based on fractional order system 

and its analog current-mode switched-current (SI) circuit 
implementation with few components and simply structure is 
presented. Firstly, it is shown that the impulse response of a fractional 
order band-pass filter satisfies the admissibility condition to be 
considered a wavelet base. Then the wavelet filter circuit is designed 
using single SI integrator and the different scale wavelet functions for 
implementing wavelet transform (WT) are obtained by only changing 
the clock frequency with the same circuit architecture. The time and 
frequency domain responses of the fractional wavelet filter circuit are 
given. Meanwhile, the sensitivity and imperfection of the designed 
circuit is analyzed. Finally, Simulations verify the correctness and 
feasibility of the proposed method. 
 

Keywords—Fractional wavelet, fractional order systems, wavelet 
transform, fractional wavelet filter, switched-current circuit. 

I. INTRODUCTION 
HE wavelet transform (WT) is a very promising 

mathematical tool that gives good estimation of time and 
frequency localization for analysis of non-stationary and fast 
transient signals [1-3]. So in the last few decades the WT was 
widely applied to signal processing in various fields. Wavelet 
analysis is performed using a prototype function referred to the 
wavelet base (or mother wavelet), which decomposes a signal 
into components appearing at different scales. Traditionally, the 
WT is implemented using digital circuit such as Digital Signal 
Processor (DSP) and Field Programmable Gate Array (FPGA). 
However, in low power consumption applications such as 
wearable and implantable medical devices, the WT 
implementation by means of digital circuit is not suitable 
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because such devices impose strict constraints on the power 
consumption. From the power perspective, an obvious 
alternative is to use analog circuits. Therefore, the analog circuit 
realization of the WT becomes a crucial research field. 

Recently, there have been significant advances for 
implementing the WT in analog filter, the impulse response of 
which is the approximated wavelet base [4-16]. The solutions of 
the WT at various resolutions are obtained by the convolution of 
the signal with a dilated impulse response of the designed 
analog filter, mapping the signal onto a two dimensional 
function of time and frequency. The main ideal of the WT is to 
look at a signal at various windows and analyze it with various 
scales. However, these approaches mainly research the classical 
wavelet bases such as the first derivative of a Gaussian, 
Mexican hat and Morlet wavelet, etc. Moreover, these systems 
have to be high order filter in order to obtain good 
approximation, which leads to complex circuit architecture, 
since the shape of classical wavelet is not the natural impulse 
response of the analog filter. It is well known that different 
wavelet bases have various transform characteristics for a given 
signal, so constructing the new wavelet bases become a 
significant research topic in wavelet analysis theory and 
practical application. Subsequently, a special wavelet and its 
analog voltage-mode circuit realization are proposed in [17]. 
The wavelet base is the natural impulse response of the designed 
filter circuit, so the WT circuit is simple and easy to 
implementation. However, the considered second order system 
in the work is integer order rather than fractional order system. 
Furthermore, the analog WT implementation applies 
voltage-mode operational transconductance amplifier (OTA) 
circuit, this approach need huge capacitors, which is difficult to 
generate precisely. In addition, the designed voltage-mode 
circuit performance suffers as supply voltages are scaled down. 
To the authors' best knowledge, fractional wavelet based on 
fractional order system and analog fractional wavelet filter 
design have not yet been approached, which is the target of our 
work. In our work, a new fractional wavelet based on a 
fractional order system is constructed and the analog 
current-mode switched-current (SI) fractional wavelet filter is 
designed using SI single integrators. 

The rest of this paper is organized as follows. In Section II, 
the theory of wavelet base is introduced, and then a fractional 
order system is analyzed and the impulse response of this 
system is proved as a wavelet base. In Section III, the fractional 
wavelet filter is implemented using single SI integrators with 
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simply structure and few components. In section IV, the SI 
fractional wavelet circuit is simulated and analyzed. The 
simulation results verify the feasibility of the proposed method. 
Subsequently, an example is presented using numerical 
simulation method to demonstrate the fractional wavelet has a 
near performance with the traditional wavelet base in Section V. 
Finally, Section VI presents the conclusions. 

II. WAVELET BASE AND FRACTIONAL WAVELET 

A. Wavelet Base Theory 
From the wavelet theory, we know that the wavelet analysis 

is performed using a wavelet base ( )tψ . The main characteristic 
of the wavelet base is given by 

( ) 0t dtψ
∞

−∞
=∫                               (1) 

This means that the wavelet base is oscillatory and has zero 
mean value. Also, this function needs to satisfy the admissibility 
condition as 

2( )
C d

ω
ω

ω
∞

Ψ −∞

Ψ
= < ∞∫                      (2) 

where ( )ωΨ is the Fourier transform of the wavelet base. The 
admissible condition implies that the Fourier transform of the 
wavelet base must have a zero component at zero frequency. 
Therefore, a new wavelet base constructed must be satisfied 
with the admissibility condition. In order to construct a 
fractional wavelet, the fractional order system will be 
introduced and analyzed in the next content.  

B. Fractional Order Systems and Fractional Wavelet Base 
The research of fractional order calculus is an old topic in 

nonlinear system theory. But in the last two decades it has been 
gaining increasing attention in various fields. Traditionally, the 
Laplacian operator s is raised to an integer exponent such as s, 
s2,…, sn. However, a Laplacian of non-integer exponent sα 
where 0<α<1 is mathematically valid and is representative of a 
fractional order system [18]. Unlike the integral order operator, 
the amplitude and phase characters of fractional order sα are 
(20α) dB/dec and (απ/2), respectively. They are not limited to 
some countable numbers such as 20dB/dec, 40dB/dec, … and 
π/2, π,…. Therefore, the fractional order system can describe a 
practical system better than the integer order system using their 
properties [19]. A fractional derivative may according to the 
Riemann-Liouville definition [20-22] be given by 

0

1( ) ( ) ( ) ( )
(1 )

td df t D f t t f d
dtdt

α
α α

α τ τ τ
α

−≡ = −
Γ − ∫  (3) 

Where 0<α<1, ( )Γ ⋅ is the gamma function. Zero initial 
conditions yield the Laplace transform of the above derivative 
as 

{ }0 ( ) ( )tL d f t s F sα α=                         (4) 
where sα is the fractional Laplacian operator. Consider a 
fractional order system 

( )
1

sH s
s

β

α=
+

                                 (5) 

From the stability point of view, this system is stable if and 
only if α<2 while it will oscillate if and only if α=2. The 
magnitude of this system is [21] 

2
( )

2 cos( / 2) 1
H j

β

α α

ωω
ω ω απ

=
+ +

          (6) 

The magnitude responses of the considered fractional order 
system for different values of α and β are shown in Fig.1. Note 
that for β<α, lim ( ) 0H jω ω→∞ = and hence the filter is a 

band-pass filter. For α=β, lim ( ) 1H jω ω→∞ = , which makes 
the filter a high-pass filter. From Fig.1it is seen here that there 
is always a maximum point in the magnitude response if β<α. 
When α=2β, the maxima frequency ωm is equal to the centre 
frequency ω0. Furthermore, Note from Fig. 1 that the center 
frequencyω0 is not necessarily equal to ωm, which is 
significantly different from what is know in integer order 
system. It is well known that the wavelets are inherently 
bandpass filters in the Fourier domain. Next, we will prove that 
the impulse response of the fractional order system (β<α) 
satisfies the admissibility condition of the WT, as is required to 
be considered a prototype wavelet. Now we split the 
expression in (2) as 

0

0

2 2

0

( ) ( )
2 2

H H
C d d

ω

ψ ω

ω ω
ω ω

ω ω
∞

= + < ∞∫ ∫        (7) 
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Fig.1 Magnitude response of the considered fractional order system for 

different values of α and β 
In the Bode plot of Fig. 2, we can see that the integrand 

2( ) /H jω ω is bounded, so the first integral in (7) must be 
bounded. Hence the convergence of Cψ is determined by the 
second integral in (7). Similarly, from Fig.2 it is easy to see that 
the curve of the integrand is convergent in the interval [ω0, ∞] 
because lim ( ) 0H jω ω→∞ = when β<α, so the second integral 
converges in (7). The above analysis proves the constructed 
wavelet satisfies the admissibility condition of the WT. 

III. FRACTIONAL WAVELET FILTER IMPLEMENTATION USING 
SIMPLY CIRCUITS 

Since design and analysis tools developed under the linear 
circuit theory are based on integer order differential equations, 
the fractional order system is usually implemented using an 
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integer order transfer function approximation of the fractional 
order Laplacian operator sα. There are many methods used to 
create an approximation of sα that include continued fraction 
expansion (CFE) [21]. Using the CFE method we obtain the 
following approximation for the general Laplacian operator to 
first order 

(1 ) (1 )
(1 ) (1 )

ss
s

α α α
α α

− + +
≈

+ + −
                                 (8) 
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Fig. 2 Bode plot of the integrand 

 
As an example, we set α=1, β=0.5 and a=b=1, the rational 
approximation of the fractional system in (5) is obtained as 

2

3 1( )
4 3

sH s
s s

+
=

+ +
                                 (9) 

The impulse response of this system, before referred to as 
wavelet base, is shown in Fig.3. Next, this system is 
implemented using single SI integrator biquad stage. SI is an 
analogue sample-data signal processing technology. A key 
feature of using SI circuit for implementing the proposed system 
is that dilations of a given circuit may be easily and very 
precisely controlled. The SI integrator biquad stage [23] is 
shown in Fig.4. The z domain transfer function of this biquad 
stage is described as 

2
5 6 1 3 5 6 6

2
4 2 3 4

( ) ( 2 )
( )

(1 ) ( 2) 1
z z

H z
z z

α α α α α α α
α α α α

+ + − − +
= −

+ + − − +
    (10)  

The bilinear z transform 1 12(1 ) / [ (1 )]s z T z− −→ − + is applied to 
(9), and then the coefficients of the z domain transfer function 
compare with those of (10) to obtain the coefficient values 
α1-α6. The current-mode wavelet circuit with single SI 
integrator biquad stage as main building block in ASIZ 
software [24] is shown in Fig.5. In Fig.5 the reference current 
source is omitted according to the requirement of the software. 
“①” and “②” are the network labels in the circuit and the same 
labels indicate the physical connection. The transistor M14 may 
use to adjust the output amplitude of the designed SI circuit. 
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Fig. 3 Impulse response of the designed system 
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IV. CIRCUIT SIMULATION AND ANALYSIS 
In order to verify the feasibility of the designed SI fractional 

wavelet circuit in this work, the wavelet circuit has been 
simulated using ASIZ program. Firstly, the transistor 
transconductances (gm) corresponding to the coefficients α1-α6 
in the circuit are set according to the calculated values in Table 
1. Then we select the input current source is 1A, the load 
resistance r=1Ω (ASIZ program prefers a normalized circuit, 
with all the capacitances, resistances and transconductances and 
so on with values close to 1). The transfer function in (9) can be 
denormalized to any desired centre frequency in the practical 
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application. The sample frequency can be determined by the 
sample theorem. Herein, the center frequency is selected to be 
0.24 Hz (scale a=1) as an example. By changing the clock 
frequency of the designed SI circuit, different scales wavelet 
functions can be gained with the same system architecture for 
implementing the WT, this characteristic is in general 
unachievable using conventional analogue designs. So the 
relevant sample frequencies are selected as 10 Hz, 5 Hz, 2.5 Hz 
and 1.25 Hz for scale a=1, 2, 4 and 8, respectively. The different 
scale impulse and frequency responses are shown in Fig.6 and 
Fig.7, respectively. In Fig. 6 the time domain waveforms 
achieve the positive peak value 0.37 A at t=0, which is closed to 
the ideal normalized value 0.3 A. In Fig. 7 the frequency domain 
waveform achieve the maximum value -2.52 dB at 1.52 rad/s, 
0.76 rad/s, 0.38 rad/s Hz and 0.19 rad/s, respectively, which is 
small difference with ideal value -2.38 dB. 

Table 1 The transistor transconductances of SI fractional wavelet 
circuit 

Coefficient Transistor Transconductance (gm) 
α1 M4 0.1238 
α2 M12 0.3715 
α3 M9 0.1000 
α4 M13 0.4954 
α5 M5 0.3715 
α6 M6 0.1827 

 

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 
scale a=1
scale a=2
scale a=4
scale a=8

Time (s)

O
ut

pu
t c

ur
re

nt
 (A

)

 
Fig. 6 Impulse responses of the fractional wavelet circuit at 

different scale a=1, 2, 4, 8 
 
Secondly, to demonstrate the low sensitivity of the proposed 

SI fractional wavelet circuit, the sensitivity of the wavelet 
circuit using ASIZ program is analyzed. Now assuming 
uncorrelated ±3% random errors in all the transistor 
transconductances of the circuit with parasitic effects ignored, 
the error margins of frequency response at scale a=1 are 
plotted in Fig.8, which is computed by the statistical deviation 
of the gain. We are easy to see that the frequency points agree 
quite closely the nominal gain curve. The maximum gain error 
between nominal and practical gain is only 0.6382 dB, which 
shows that the designed fractional wavelet circuit has low 
sensitivity due to the simple structure and few components. 

Thirdly, the imperfection simulation of the fractional wavelet 
circuit is made with the basic form, without enhancement circuit. 
The effect of finite ratio Gm/Gds in the transistors, and parasitic 
Cgd capacitances are considered. Assuming Gm/Gds and Cgs/Cgd 
ratio of 1000, with the biasing and signal current sources 
assumed as ideal, the frequency response of the circuit at scale 
a=1 is shown in Fig.9. It is seen that the gain of the imperfection 
circuit is small different from one of the perfection circuit. The 
maximum gain error between the imperfection and the 
perfection circuit is only 0.327 dB. Therefore, the designed 
circuit has litter effect in the sensitivity to the imperfection. 
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Fig. 7 Frequency responses of the fractional wavelet circuit at 

different scale a=1, 2, 4, 8 
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Fig. 8 Frequency response with error margins 

V. EXPERIMENT ANALYSIS AND VERIFICATION 
To verify the constructed fractional wavelet has a near 

performance with the traditional wavelet base, an example is 
presented using numerical simulation method in this section. 
The input non-stationary signal s(t) is composed of three 
sinusoidal pulses of 40 rad/s, 20 rad/s and 10 rad/s, respectively. 
The envelope of this signal is a half sinusoidal wave of 1 rad/s. 
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The WT coefficients based on fraction wavelet is shown in Fig. 
10. For comparison, Fig. 10 also showed the traditional 
Gaussian WT with the same input signal. We can see that the 
proposed fractional wavelet performs the WT and reflects the 
higher frequencies at lower scales and the lower frequencies at 
higher scales. The experiment results indicate the fractional WT 
has better time-frequency resolution for the non-stationary 
signal and may be employed to signal processing in the 
application. 
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Fig. 9 Frequency response with imperfections 
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Fig. 10 Fractional WT example 
 

VI. CONCLUSION 
This paper has presented a new fractional wavelet based on a 

fractional order system and designed the fractional wavelet 
filter for implementing the fractional WT using current-mode SI 
circuit. First, a fractional order system is considered and 
analyzed. Meanwhile, the impulse response of this fractional 
order system is proved as a mother wavelet, namely a fractional 
wavelet. Then the transfer function of the fractional order 
system is approximated by applying CFE method and the 

fractional wavelet filter is implemented using single SI 
integrator with simple structure. Finally, the time and frequency 
domain responses of the designed SI fractional wavelet filter are 
simulated and analyzed. In additional, the low sensitivity and 
imperfection of the circuit are analyzed to verify the 
performance of the designed fractional wavelet circuit. 
Comparing reported methods in the literature for implementing 
the WT, the proposed method in this article has the following 
advantages: (i) a new fractional wavelet is presented based on a 
fractional order system rather than integer order system. (ii) the 
designed wavelet circuit has few components and simply 
structure. (iii)  the shown approach can be applied to fractional 
order filter design using SI circuit. 
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