
 

 

  
Abstract—The Euler method is introduced for stochastic 

differential equations (SDEs) with piecewise continuous arguments 
driven by Poisson process under the generalized Khasminskii-type 
conditions which cover more classes of such equations than classical 
conditions. To our known, few results are presented to such equations 
in current literature. Here, three results are obtained for such 
equations. Firstly, the existence and uniqueness of global solutions to 
such equations are proved by Itô formula and mathematical induction. 
Secondly, the Euler method with a given step-size is constructed. 
Lastly, the convergence of the Euler method in probability for such 
equations under the generalized Khasminskii-type conditions is 
investigated by means of the continuous-time Euler method. All the 
results show that on the basis of the existence of such equations, the 
Euler method is convergent in probability under the Khasminskii-type 
conditions. Moreover, some numerical examples are given to the 
results. 
 

Keywords—Stochastic differential equations, Poisson process, 
Piecewise continuous arguments, Convergence in probability, Euler 
method.  

I. INTRODUCTION 
HE SDEs, Poisson process and piecewise continuous 

arguments are important and are applied widely in 
mathematical modeling in many fields (see [1]). The explicit 
solutions of SDEs with piecewise continuous arguments driven 
by Poisson process can hardly be got. Therefore, it is 
significative in theory and in application to investigate 
appropriate numerical methods and their properties. 

As far as I know, few results about convergence of the Euler 
method in probability to SDEs with piecewise continuous 
arguments driven by Poisson process, which are important and 
widely used, were presented under some conditions. In [2-4], 
the convergence of the Euler method and the implicit Euler 
method is proved respectively for SDEs with Poisson process.  
In [5], the exact convergence rate of the Euler method is 
considered for SDEs driven by a homogeneous Poisson process 
with intensity. Moreover, great progress has been made in the 
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research work on the equations with piecewise continuous 
arguments. In [6], the Oscillatory and asymptotic behavior are 
presented for third order differential equations. Other authors 
also focused on the property of periodic solutions in [7, 8]. 

So far, there are many SDEs with piecewise continuous 
arguments driven by Poisson process, such as highly nonlinear 
equations, which do not satisfy the classical conditions and 
satisfy the generalized Khasminskii-type conditions (see [9]). 
The primary purpose here is to fill the gap in the convergence 
with the Euler method for such equations under the 
Khasminskii-type conditions. To show the major aim, the 
generalized Khasminskii-type conditions are presented in 
section II,  the existence and the property of the global solution 
to such SDEs under the conditions are proved in section III,  the 
Euler method with a given step-size is introduced  and some 
properties are proved in section IV,  and the convergence in 
probability of the Euler method under  the generalized 
Khasminskii-type conditions is proved in section V. 

II. PRELIMINARY 

Throughout this paper, | |⋅ is the Euclidean norm in R , Nd d ∈ , 
If A  is a matrix, its trace norm is denoted by 

T| | trace( )A A A= . 
0

2L ( ;R )d
F Ω and denotes the family of R d

-measurable random variables ξ with 2E| |ξ < ∞ .

1 2 1 2max{ , },u u u u∨ = 1 2 1 2min{ , }.u u u u∧ = The indicator 

function  is 
1,

I ( )
0,A

x A
x

x A
∈

=  ∉
. inf Φ = ∞ , Φ denotes empty 

set.  [ ]z  denotes  the max  integer which is less than or equal to
z   in R . 

The following d-dimensional SDEs with piecewise 
continuous arguments driven by Poisson process is concerned 
in my paper 

 

~

d ( ) ( ( ), ([ ]))d ( ( ), ([ ]))d ( )

( ( ), ([ ]))d ( )

x t f x t x t t g x t x t W t

h x t x t N t

− − − −

− −

= +

+
      (1) 

 
where 0t > , initial value

0

2
0 L ( ;R )d

Fx ∈ Ω and ( ) lim ( )
s t

x t x s
−

−

→
= . 

The drift coefficient : R R Rd d df × → , the diffusion 
coefficient : R R Rd d dg × → , and the jump coefficient   

Convergence of the Euler Method in Probability 
to SDEs under the Generalized Khasminskii-type 

Conditions 
Hui Yu 

T 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 251



 

 

: R R Rd d dh × →  are assumed to be Borel measurable 
functions and the coefficients are sufficiently smooth.  

A one-dimensional Brownian motion ( )W t  is defined on a 

filtered probability space 0( , , ( ) , P )W W W W
t tF F ≥Ω . A Poisson 

process ( )N t  with intensity λ  is defined on a filtered 

probability space 0( , , ( ) , P )P P P P
t tF F ≥Ω  and 

~
( ) ( )N t N t tλ= −  is 

a martingale. The process ( )x t  is thus defined on a product 
space 0( , , ( ) , P)t tF F ≥Ω , where = W PΩ Ω × Ω , = W PF F F× , 0( )t tF ≥ =  

0 0( ) ( )W P
t t t tF F≥ ≥× , P=P PW P×  and 0F contain all P-null sets. The 

Brownian motion ( )W t  and the Poisson process ( )N t  are 
mutually independent. 

In the following, the generalized Khasminskii-type 
conditions  are given in the form of  four  assumptions. 

Assumption 1 For each positive integer k , there is a 
positive constant kC  such that 

 
2 2

2 2

| ( , ) ( , ) | | ( , ) ( , ) |

(| | | | )k

f x y f x y g x y g x y

C x y x y

− ∨ −

≤ − + −
            (2) 

 
where | | | | | | | | , , , , R dx y x y k x y x y∨ ∨ ∨ ≤ ∈ . 
 

Assumption 2 There is a positive constant C such that 
 

2 2 2| ( , ) ( , ) | (| | | | )h x y h x y C x y x y− ≤ − + −          (3) 
 

where , , , R dx y x y ∈ . 
 

Assumption 3 There exists a function C(R ;R )dV +∈  and a 
constant µ  such that 
 

| |
lim ( )
x

V x
→∞

= ∞                             (4) 

 
and 
 

( , ) (1 ( ) ( ))LV x y V x V yµ≤ + +                    (5) 
 

where the operator is defined by 
 

T1( , ) ( ) ( , ) trace( ( , ) ( ) ( , ))
2

+ ( ( , )) ( ) ( ) ( , )

x xx

x

LV x y V x f x y g x y V x g x y

V x h x y V x V x h x y

= +

+ − −
  (6) 

 
and , , , R dx y x y ∈ . 
 

Assumption 4 There is a positive constant L  such that 
 

2| (0,0) |h L≤                              (7) 
 

III. EXISTENCE OF GLOBAL SOLUTIONS 
In this section, the existence and the property of the global 

solution to (1) under the generalized Khasminskii-type 
conditions are given. 

To demonstrate the existence of the global solution to (1), the 
following concepts are given. 

Definition 1 Let ( )x t  be an R d -valued stochastic process. 
The process is said to be càdlàg if it is right and for almost all 
ω ∈Ω the left limit lim ( )

s t
x s

−→
 exists and is finite for all 0t ≥ . 

Definition 2 Let kτ  be a stopping time such that 0 k Tτ≤ ≤

a.s. An R d -valued tF -adapted and càdlàg process 
{ ( ) : 0 }x t t τ∞≤ <   is called a local solution of  (1) on 0t ≥  if  
there is a nondecreasing sequence 1{ }k kτ ≥ of stopping times 
such that 0 kτ τ∞≤ ↑  a.s. and 
 

0

0

~

0

( ) ( ( ), ([ ]))d

( ( ), ([ ]))d ( )

( ( ), ([ ]))d ( )

k

k

k

t

k

t

t

x t f x s x s s

g x s x s W s

h x s x s N s

τ

τ

τ

τ
∧ − −

∧ − −

∧ − −

∧ =

+

+

∫

∫

∫

 

 
holds any for 0t ≥  and 1k ≥  with probability 1. If, 
furthermore, 
 

lim sup | ( ) | ,
t

x t T
τ

τ
∞

∞→
= ∞ <  

 
then it is called a maximal local solution of   (1) and τ∞  is 
called the explosion time. A local solution { ( ) : 0 }x t t τ∞≤ < to   
(1) is called a global solution if τ∞ = ∞ . 

Lemma 1 Under Assumption 1 and 4, there exists a unique 
maximal  local  solution  to (1). 

Proof: For each integer 1k ≥ , we define 
 

( ) ( )| | , 0 0
| |

k kz kZ z
z
∧

= =  

 
for  R dz ∈ . And then we define the truncation functions 

 
( ) ( )

( ) ( )

( ) ( )

( , ) ( , )

( , ) ( , )

( , ) ( , )

k k
k

k k
k

k k
k

f x y f x y

g x y g x y

h x y h x y

=

=

=

 

 
for , R dx y ∈ and 1k ≥ . Moreover, we define the following 
equation 

 

~

d ( ) ( ( ), ([ ]))d ( ( ), ([ ]))d ( )

( ( ), ([ ]))d ( )

k k k k k k k

k k k

x t f x t x t t g x t x t W t

h x t x t N t

− − − −

− −

= +

+
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on [0, ]t T∈ .  
Obviously, the equation satisfies the global Lipschitz 

conditions and the linear growth conditions. Therefore 
according to [10], there is a unique global solution  ( )kx t and its 
solution is a càdlàg process. And the stopping time are defined 
by 

 
: lim kk

σ σ∞ →∞
=  

 
and 
 

: inf{ 0 :| ( ) | , N }k t x t k kσ += ≥ ≥ ∈  
 

which means 1{ }k kσ ≥ is a nondecreasing sequence. We define  
 

{ ( ) : 0 }x t t σ ∞≤ <  
 
and 
 

1 0( )= ( ), [ , ), 1, 0k k kx t x t t kσ σ σ−∈ ≥ =  
 
We can  have 
 

0

0

~

0

( ) ( ( ), ([ ]))d

( ( ), ([ ]))d ( )

( ( ), ([ ]))d ( )

k

k

k

t

k

t

t

x t f x s x s s

g x s x s W s

h x s x s N s

σ

σ

σ

σ
∧ − −

∧ − −

∧ − −

∧ =

+

+

∫

∫

∫

 

 
for any [0, ]t T∈  and 1k ≥  with probability 1. Moreover, if

Tσ ∞ <  , then 
 

lim sup | ( ) | lim sup | ( ) | lim sup | ( ) |k k kt k k
x t x x

σ
σ σ

∞→ →∞ →∞
≥ = = ∞  

 
Therefore { ( ) : 0 }x t t σ ∞≤ < is a maximal local solution to  

(1). To show the uniqueness of the solution to (1), let 
{ ( ) : 0 }x t t σ ∞≤ <  be another maximal local solution. As the 
same proof as [10], we infer that 

 
P( ( , )= ( , ), ( , ) [0, ) ) 1, 1k kx t x t t kω ω ω σ σ∈ ∧ × Ω = ≥  
 

Taking k → ∞ , we get 
 

P( ( , )= ( , ), ( , ) [0, ) ) 1, 1x t x t t kω ω ω σ σ∞ ∞∈ ∧ × Ω = ≥  
 
Hence ( )x t  is a unique local solution and then it is a unique 
maximal local solution to (1). 

 
Theorem 1 Under Assumption 1-4, there exists a unique 

global solution to (1).  

Proof: According to Lemma 1, there is a unique maximal 
local solution to (1) on [0, )∞ . Therefore, in order to prove that 
this local solution is a global one, it only needs to demonstrate 
σ ∞ = ∞  a.s.. Using Itô’s formula to ( ( ))V x t (see [2]), we have  

 

~

d ( ( )) ( ( ) , ([ ]))d
( ( )) ( ( ) , ([ ]))d ( )

+ ( ( ( ) ( ( ) , ([ ])) ( ( )))d ( )

x

V x t LV x t x t t
V x t g x t x t W t

V x t h x t x t V x t N t

− −

− − −

− − − −

=

+

+ −

  (8) 

 
for [0, )t σ ∞∈ .  

For any positive integer k and 0 1t≤ < , by taking integration 
and expectations and using Assumption 2 and Assumption  3 to 
(8), we  can have 

 

         1 0
E ( ( )) E ( (( ) ))dkt

k kV x t C V x s s
σ

σ µ σ
∧ −∧ ≤ + ∧∫          (9) 

 
where 1 ( 1)E ( (0))C V xµ µ= + + . Using the Gronwall inequality 
(see [9]) leads to  
 

                 1E ( ( )) , 0 1t
kV x t C e tµσ∧ ≤ ≤ <                    (10) 

 
which means 
 

11
E ( (1 )) lim E ( ( ))k kt

V x V x t C eµσ σ
→

∧ ≤ ∧ ≤            (11) 

 
by taking limit. Thus, from (10) and (11), we get 
 

1E ( ( )) , 0 1t
kV x t C e tµσ∧ ≤ ≤ ≤                   (12) 

 
Let 

| | ,0
: inf ( ), 1k x k t

V x kς
≥ ≤ <∞

= ≥ , and we obtain 

 

{ 1} 1P( 1) E( ( ( ))I ) E ( (1 ))
kk k k kV x V x C eµ

σς σ σ σ≤≤ ≤ ≤ ∧ ≤     (13) 

 
by taking k → ∞  to  (13), which gives P( 1)=0σ ∞ ≤ . Hence we 
have 
 

P( 1)=1σ ∞ >                                         (14) 
 

It thus follows from (12) and  (14) that 
 

1E ( ( )) , 0 1tV x t C e tµ≤ ≤ ≤ . 
 

So for any positive integer i , we repeat the similar analysis 
as above, then get 

 
E ( ( )) , 1k iV x t C e i t iµσ∧ ≤ − ≤ ≤  
 

P( )=1iσ ∞ >  
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and 
 

E ( ( )) , 1iV x t C e i t iµ≤ − ≤ ≤  
 

where 
 

( 1)E ( ( 1))iC V x iµ µ= + + − < ∞ . 
 

So we can get P( )=1.σ ∞ = ∞  Therefore, (1) has a unique 
global solution  ( )x t  on [0, )∞ . 

Lemma 2 Under Assumption 1-3, for any (0,1)ε ∈  and 
0T > , we can find a sufficiently large integer *k such that 

 
*P( ) , .k T k kσ ε≤ ≤ ∀ ≥  

 
Proof: For any 0T > , there exists a positive integer i  such 

that 1i T i− ≤ ≤ . Therefore, according to Theorem 1, we have 
 

E ( ( )) , 1k iV x T C e kµσ∧ ≤ < ∞ >  
 

which leads to 
 

{ }P( ) E( ( ( ))I ) E ( ( ))
kk k k T k iT V x V x T C eµ

σς σ σ σ≤≤ ≤ ≤ ∧ ≤  
 

Under Assumption 3, there exists a sufficiently large integer *k
such that 
 

*P( ) , .i
k

k

C e
T k k

µ

σ ε
ς

≤ ≤ ≤ ∀ ≥  

 

IV. EULER METHOD 
In this section, the Euler method is introduced to (1) under 

the generalized Khasminskii-type conditions. 

Given a step size 1 (0,1), Nt m
m +∆ = ∈ ∈ , the Euler method 

applied (1) computes the approximation 
 

1
~

( , ) ( , )

( , )

km l km l km l km km l km km l

km lkm l km

X X f X X t g X X W

h X X N

+ + + + + +

++

= + ∆ + ∆

+ ∆
 (15) 

 
where 0 (0)X x≈ , ( ), ( ) ,km l km l km lX x t t km l t+ + +≈ = + ∆ km lW +∆ =  

1( )km lW t + + ( )km lW t +− ,
~ ~ ~

1= ( ) ( )km l km l km lN N t N t+ + + +∆ − , 0,1,k =  
, 0,1, , 1.l m= −  

 
The continuous-time Euler method is given by 
 

0 1 2 1 20 0

~

1 20

: ( ( ), ( ))d ( ( ), ( ))d ( )

( ( ), ( ))d ( )

t t

t

X X f Z s Z s s g Z s Z s W s

h Z s Z s N s

= + +

+

∫ ∫

∫
(16) 

 
where 1 2 1, , [ , ).km l km km l km lZ X Z X t t t+ + + += = ∈  
 

In order to analyze the Euler method, two lemmas are given 
firstly. 

Lemma 3 Under Assumption 1, 2 and 4, for any 0T > and
(0,1)t∆ ∈ , we can find a positive constant 1K  such that the 

continuous-time Euler method (16) satisfies 
 

2
1 1E| ( )- ( )|X t Z t K t≤ ∆  

 
where 0 , : inf{ 0 :| ( ) | }, 1.k k kt T t X t k kσ ρ ρ≤ ≤ ∧ ∧ = ≥ ≥ ≥   
 

Proof: For 0 , 1k kt T kσ ρ≤ ≤ ∧ ∧ ≥ , there exists two 
positive integer ,k l  such that [( ) , ( 1) )t km l t km l t∈ + ∆ + + ∆ , 
(16) can  leads  to 

 

1 1 2

1 2

~

1 2

( ) ( ) ( ( ), ( ))d

( ( ), ( ))d ( )

( ( ), ( ))d ( )

km l

km l

km l

t

km l t

t

t

t

km lt

X t Z t X f Z t Z t s

g Z t Z t W s

h Z t Z t N s X

+

+

+

+

+

− = +

+

+ −

∫

∫

∫

            (17) 

 
By taking expectations, the martingale properties and the 
Cauchy-Schwarz inequality to (17), we get  
 

2
1

2
1 2

2
1 2

2
1 2

E| ( )- ( )|

3 E | ( ( ), ( )) | d

3E | ( ( ), ( )) | d

3E | ( ( ), ( ), ) | d

km l

km l

km l

t

t

t

t

t

t

X t Z t

t f Z t Z t s

g Z t Z t s

g Z t Z t v s

+

+

+

≤ ∆

+

+

∫

∫

∫

                  (18)  

 
It follows from Assumption 1 and 2 that 
 

2
1 2

2 2
1 2

2 2

E | ( ( ), ( )) | d

2E | ( ( ), ( )) (0,0) | d 2E | (0,0) | d

4 2 | (0,0) |

km l

km l km l

t

t

t t

t t

k

f Z t Z t s

f Z t Z t f s f s

k C t f t

+

+ +

≤ − +

≤ ∆ + ∆

∫

∫ ∫

 

       2 2 2
1 2E | ( ( ), ( )) | d 4 2 | (0,0) |

km l

t

kt
g Z t Z t s k C t g t

+

≤ ∆ + ∆∫  

 
and 
 

2 2 2
1 2E | ( ( ), ( ), ) | d 4 2 | (0,0) |

km l

t

kt
g Z t Z t v s k C t t g

+

≤ ∆ + ∆∫  
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From the above four inequalities, we have 
 

2
1 1E| ( )- ( )| ( ) , 0 , 1k kX t Z t K k t t T kσ ρ≤ ∆ ≤ ≤ ∧ ∧ ≥  

 
Where 
 

2 2 2
1

2 2

( ) 24 12 6 | (0,0) |

6 | (0,0) | 6 | (0,0) | .
kK k k C k C f

g h

= + +

+ +
 

 
Lemma 4 Under Assumption 1-4, for any (0,1)ε ∈ and 

0T > , we can find a sufficiently large integer *k and a 
sufficiently  small *

1t∆  such that 
 

*
*
1P( ) ,

k
T t tρ ε≤ ≤ ∀∆ ≤ ∆  

 
Proof: Applying Itô’s formula to ( ( ))V X t , we have 
 

1 2

1 2
~

1 2

d ( ( )) ( ( ), ([ ]))d

( ( ), ([ ]), ( ), ( ))d

( ( )) ( ( ), ( ))d ( )

( ( ( ) ( ( ), ( ))) ( ( )))d ( )

x

V X t LV X t X t t

a X t X t Z t Z t t

V X t g Z t Z t W t

V X t h Z t Z t V X t N t

=

+

+

+ + −

 (19) 

 
where the function 1 2( , , , ) : R R R R Rd d d da x y Z Z × × × → is 
defined  by 
 

1 2

1 2

1 2 1 2

1 2

1 2

( , , , )
( )( ( , ) ( , ))

1 trace( ( , ) ( ) ( , ) ( , ) ( ) ( , ))
2

+( ( ) ( , , ) ( ) ( , , )
( ( , , )) ( ( , , )))

x

T T
xx xx

x x

a x y Z Z
V x f Z Z f x y

g Z Z V x g Z Z g x y V x g x y

V x h x y v V x h Z Z v
V x h Z Z v V x h x y v

= −

+ −

−
+ + − +

 

 
From  Assumption 1-3, it is obvious that 
 

1 2 1 2( , , , ) (| | | |)ka x y Z Z L x Z y Z≤ − + −             (20) 
 

where 0.kL >  when 0 , 1t T k≤ ≤ ≥ , it follows from Lemma 
3 and (20) that 
 

1 20

1 20 0

12 2
10

1

E ( ( ), ([ ]), ( ), ( ))d

E | ( )- ( ) | d E | ([ ])- ( ) | d

(E | ( )- ( ) | ) d 0

( )

k

k k

t

t t

k k

t

k k k

k

a X s X s Z s Z s s

L X s Z s s L X s Z s s

L X s Z s s

L T K k t

ρ

ρ ρ

ρ ρ

∧

∧ ∧
≤ +

≤ ∧ ∧ +

≤ ∆

∫

∫ ∫

∫
 (21) 

 
Therefore, by means of taking expectations and integration to 
(19), we can have  

 

0 0

E ( ( ))

E ( ) E ( ( ), ([ ]))dk

k
t

V X t

V X LV X s X s s
ρ

ρ
∧

∧

= + ∫
 

1 20
E ( ( ), ([ ]), ( ), ( ))dkt

a X s X s Z s Z s s
ρ∧

+ ∫

0 1E ( ) ( )kV X L T K k t≤ + ∆
 

0
E (1 ( ( )) ( ([ ])))dkt

V X s V X s s
ρ

µ
∧

+ + +∫             (22) 

 
When 0 1, 1t k≤ < ≥ , it follows from (22) that 
 

1 1

0

E ( ( )) ( )

E ( ( ))d

k k

t

k

V X t L T K k t

V X s s

ρ α

µ ρ

∧ ≤ + ∆

+ ∧∫
           (23) 

 
where 1 0( 1)E ( ) .V Xα µ µ= + + < ∞  Using the Gronwall 
inequality to  (23) , we get  
 

1 1E ( ( )) ( ( ) ) , 0 1, 1t
k kV X t L T K k t e t kµρ α∧ ≤ + ∆ ≤ < ≥  (24) 

 
by  taking limit, which  leads to 
 

1 11
E ( (1 )) lim E ( ( )) ( ( ) )k k kt

V X V X t L T K k t eµρ ρ α
→

∧ = ∧ ≤ + ∆     (25) 

 
From (24) and (25), we obtain  
 

1 1E ( ( )) ( ( ) ) t
k kV X t L T K k t eµρ α∧ ≤ + ∆             (26) 

 
Let  

| |
: inf ( ), 1k X k

V X kυ
≥

= ≥ , : lim kk
ρ ρ∞ →∞

= . It follows from  that 

 

    { 1}

1 1

P( 1) E( ( ( ))I )

E ( (1 )) ( ( ) )
kk k k

k k

V X

V X L T K k t e
ρ

µ

υ ρ ρ

ρ α

≤≤ ≤

≤ ∧ ≤ + ∆
 

 
which gives that P( 1)=0ρ∞ ≤ , that is,  
 

P( 1)=1ρ∞ > .                                (27) 
 

In (26), by taking  k → ∞ and using (27), we have 
 

1 1E ( ( )) ( ( ) ) , 0 1, 1.kV X t L T K k t e t kµα≤ + ∆ < ∞ ≤ ≤ ≥  
 
For any positive integer i , we repeat the similar analysis as 

above, then  we have 
 

1E ( ( )) ( ( ) ) t
k i kV X t L T K k t eµρ α∧ ≤ + ∆          (28) 
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where  1 , 1i t i k− ≤ ≤ ≥ , ( 1)E ( ( 1)) .i V X iα µ µ= + + − < ∞  
 

For any 0T > , there exists a positive integer i  such that 
1i T i− ≤ ≤ . It follows from  (28) that 

 

{ }

1

P( ) E( ( ( ))I )

E ( ( )) ( ( ) ) , 1
kk k k T

k i k

T V X

V X T L T K k t e k
ρ

µ

υ ρ ρ

ρ α

≤≤ ≤

≤ ∧ ≤ + ∆ ≥
     (29) 

 
Moreover, for any (0,1)ε ∈ , there are a sufficiently large 

integer *k and   a sufficiently small *
1t∆  such that 

 

* 2
i

k

eµα ε
υ

≤                                        (30) 

 
and 
 

*

*

* *
1 1( )

2
k

k

e L T K k tµ ε
υ

∆
≤                           (31) 

 
So, from (29)-(31), we can obtain  that 
 

*
*
1P( ) , .

k
T t tρ ε≤ ≤ ∀∆ ≤ ∆  

 

V. CONVERGENCE IN PROBABILITY 
In this section, we firstly give the following lemma in order 

to prove the convergence in probability of the Euler method (15) 
under  the generalized Khasminskii-type conditions (2)-(7). 

Lemma 5 Under Assumption 1, 3 and 4, for any 0T >  and
(0,1)t∆ ∈ , we can find  a positive constant 2 ( )K k  such that (1) 

and (16) satisfy  
 

2
2

0
E( sup | ( ) ( )| ) ( ) , 1k k k k

t T
x t X t K k t kσ ρ σ ρ

≤ ≤
∧ ∧ − ∧ ∧ ≤ ∆ ≥  

 
Proof:  For 0 t T′≤ ≤  and 1k ≥ , it follows from  (1) and 
(16)  that 
 

2
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2
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∫

∫
~
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∫
 

By means of the Cauchy-Schwarz inequality, (2), (6) and   
Fubini’s Theorem, we can  have 
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   (32) 

 
Moreover, using the property of  martingale of d ( )W t and 
~

d ( )N t , we get 
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and 
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Therefore, from (32)-(34), we have the result 
 

2
2

0
E( sup | ( ) ( )| ) ( ) , 1k k k k
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x t X t K k t kσ ρ σ ρ

≤ ≤
∧ ∧ − ∧ ∧ ≤ ∆ ≥  

 
where 
 

2
2 1 1 1

2

( ) (6 ( ) 24 ( ) 24 ( ))

exp(12 48 48 ).
k k

k k

K k T C K k TC K k TCK k

T C TC TC

= + +

⋅ + +
 

 
In the following lemma and theorem, we demonstrate the 

convergence in probability of the Euler method (15) under  the 
generalized Khasminskii-type conditions (2)-(7). 

Lemma 6 Under Assumption 1-4, for any 0T > and 
sufficiently small , (0,1)ε ς ∈ , we can find *t∆  such  that  

 
2 *

0
P( sup | ( ) ( )| ) , .

t T
x t X t t tς ε

≤ ≤
− ≥ ≤ ∆ < ∆  
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Proof:  For sufficiently small , (0,1)ε ς ∈ , we give the 

definition  that 
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0
={ : sup | ( ) ( )| }

t T
x t X tω ς

≤ ≤
Ω − ≥  

According to Lemma 2 and Lemma 4, we can find *k and  
*
1t∆ such  that  
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and 
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where *

1t t∆ ≤ ∆ . Moreover, it follows from Lemma 5 that 
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where *

2t t∆ ≤ ∆ . Therefore, we get 
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From the inequalities above, we can obtain  
 

*P( ) , t tεΩ ≤ ∀∆ ≤ ∆  
 

where * * *
1 2min{ , }.t t t∆ = ∆ ∆  

 
Theorem 2 Under Assumption 1-4, for any 0T > and 

sufficiently small , (0,1)ε ς ∈ , we can find *t∆  such  that  
 

2 *P(| ( ) ( )| , 0 ) ,x t Z t t T t tς ε− ≥ ≤ ≤ ≤ ∆ < ∆  
 

Proof:  For sufficiently small , (0,1)ε ς ∈ , we define 
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we repeat the similar analysis as Lemma 6 and  then  have 
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Moreover, we get 
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According to Lemma 3 and Lemma 5, for sufficiently small t∆ , 
we obtain  
 

* *

~~
P( { > })

3k k
T εσ ρΩ ∧ ≤  

 
which  leads to  
 

~~
P( ) .εΩ ≤  

 

VI. NUMERICAL EXAMPLE 
In this section, we analyze  the following example  I 
 

~

d ( ) ( ( ) ([ ]))d (2 ( ) ([ ]))d ( )

([ ])d ( )

x t x t x t t x t x t W t

vx t N t

− − − −

−

= + + +

+
(35)   

 
where 1d m r= = = , 8λ = . 
 

     Let 2( ) | |V x x= , we have 
 

2 2

2 2

( , ) 2 ( ) (2 )
85(1 )

LV x y x x y x y v y
x y

λ= + + + +

≤ + +
 

 
It is obvious that (35) does not satisfy the classical conditions 

but  satisfies the generalized Khasminskii-type conditions (2)- 
 (7). 

On the basis of  Theorem 1 and 2,   (35)   has a unique global 
solution and  has  its Euler method  
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1 ( ) (2 )km l km l km l km km l km km l

km km l

X X X X t X X W
X N

+ + + + + +

+

= + + ∆ + + ∆
+ ∆ (36) 

 
which is convergent in probability.  

     Let 5

1, ,
2n km lZ X t+= ∆ = and  the sample number  is 410 .    

In Matlab, the Brownian motion ( )W t  and Poisson process 
( )N t  are simulated by the Matlab commands  

Winc = sum(dW(R*(j-1)+1:R*j)) 
and 

Ninc = sum(dN(R*(j-1)+1:R*j)) 
where 

BROW=randn(1,L) 
 dW = sqrt(dt)*BROW 
POISSON=poissrnd(lambda,1,L) 
 dN=dt*POISSON     
L=2^5,  j=1,2, …,L, R=2. 

In Fig.1, the trajectories of (35) and (36) are described in 
mean in Matlab. The observations show that the numerical 
example is consistent with the results of Theorem 2 in my 
paper. 
 

 
Fig. 1. Trajectories of (35) and (36) in mean 
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