

Abstract—The structure of feed forward neural networks strongly

influences their nonlinear function approximation results. This paper
proposes a self-organizing neural network that can automatically
adjust the number of hidden layers and alter the neurons of each
hidden layer in accordance with training data. To ascertain the optimal
neural network structure, the pseudo entropy of each hidden layer
determines the number of neurons it contains, and the reduced mean
square error of the entire neural network determines the number of
hidden layers. A tuning optimization algorithm tunes the parameter
weights and biases. Experimental results show that the proposed
neural network outperforms the state-of-the art feed forward neural
network and the proposed self-organizing algorithm is very effective
for nonlinear function approximation.

Keywords—self-organizing network; training optimization;
pseudo entropy; nonlinear system

I. INTRODUCTION
yperparameter optimization is a developing topic in neural
training research that has practical applications. In this

field, a focus of concern is network architecture, particularly
the optimal number of neurons and layers. The unwieldly
neuro-evolution algorithm, the earliest hyperparameter
optimization method [1] [2], carries obvious disadvantages in
that it is inefficient and lacks flexibility.

Some researchers have recently adopted bionics methods and
bioinformatics parameters for structure alteration. Although
their experiments show progress in architecture adjustment,
their application scenario is prohibitively simplistic [3]. In
addition, several papers have addressed neuronal connectivity.
Although such approaches accelerate training, the optimization
of their results is difficult [4]. Cross-entropy is typically
employed as a measure of error that influences the adjustment
of weights and biases during training [5]. However,
cross-entropy cannot represent information or ordered degree
as architecture references.

According to universal approximation theory [6], a
backpropagation(BP) neural network can approximate any
nonlinear function; however, the architecture of a neural
network greatly influences its model training process. Taken
together with the aforementioned concerns, the architecture of a
neural network growth and optimization algorithm must be
more flexible and efficient.

We propose a novel type of feed forward neural network,
termed the growth entropy-neural network (GEN), with an
efficient growth algorithm based on entropy (GAE). Both of
these methods are based on the BP neural network with forward
and backward processes. GEN is advantageous in several
aspects. First, information entropy is introduced to improve
neuronal development and the number of layers. Entropy is a
reflection of information quantity. From an abstract point of
view, the hidden layers of a BP neural network gradually
reduce the weight influence of useless features in input data by
mapping them into higher or lower dimensions via the number
of hidden neurons and emphasizing essential features that lead
to improved results.

Second, GAE addresses neural network architecture design,
including both optimal neurons and the number of layers. The
key adaptive growth process of GAE does not focus on pruning
or connectivity; rather, it observes the information entropy
change in each layer. Experimentally, entropy is very high if
certain hyperparameters such as neurons and layers are
unsuitable, leading to unsatisfactory results.

Third, the model convergence of a typical feed forward
neural network is generally associated with low speed during
training. Hence, optimization becomes mandatory. One reason
for this sluggish convergence process is that backpropagation is
prohibitively costly time-wise [7]. Thus, to retrieve the global
minimum in a gradient descent process and overcome the
weaknesses of BP neural networks, the tuning optimization
(TO) method is proposed for acceleration and accuracy in this
paper’s experiments.

The structure of this paper is as follows. In the 2nd section,
the main methodology of GEN is described. In the 3rd section,
several experiments are described using the GEN model using
different criteria to evaluate its performance. Additionally, the
performance of GEN is compared with similar models. The 4th
section gives the conclusion of the paper.

II. GROWTH ENTROPY-NEURAL NETWORK
In this paper, the GEN model based on FNN is proposed.

Compared with several recent models, the unique contributions
of GEN are as follows:

(1) Automatically adjusting both the architecture and
weights is key to the training process.

A pseudo entropy based self-organizing neural
network for nonlinear system

Xin Feng, Jiangming Kan*

H

 This work is supported by the National Natural Science Foundation of China
(Grant No. 31570713) and the Beijing municipal construction project special
fund.

Xin Feng, Jiangming Kan are with the Beijing Forestry University, Beijing
100083, China. (corresponding author phone: 010-62336137-706; e-mail:
kanjm@bjfu.edu.cn).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 266

(2) Using the information entropy of each layer to determine
the neurons of the hidden layer and the reduced mean square
error of the entire neural network to determine the number of
hidden layers via GAE.

(3) Training with the TO acceleration algorithm.

A. Growth Algorithm based on Entropy (GAE)
In this paper, we propose a novel FNN that uses GAE to train

both the parameters and architecture of a neural network. By
introducing information entropy as a growth criterion to
nonlinear function approximation, each layer is rendered
adaptive for making net changes in architecture and mapping
the input data into different dimensions.

During the training process, the input data are unordered
compared with the required output. The hidden layers and
neurons map the input into more ordered results layer by layer.
From its definition, information entropy is a reflection of the
ordered degree and quantity of information of each layer [4].

B. Neuronal growth phase
The architecture growth process includes the development of

neurons and layers starting from an initial or previously
experienced architecture. This growth process is designed for
online learning [8], and its macroscopic process is shown in
Fig. 1 above.

The definition of information entropy put forward by
Shannon is a measure of information and disorder:

1
() log (1,2,3...)

n

i i
i

H x k p p i n
=

= − =∑ (1)

Recently, researchers have proposed specific methods and
related standards that use entropy for neural network pruning
[9] [10] and made definite progress. In this paper, we use
pseudo-entropy to represent the order degree for optimization
as follows:

 First, to calculate the pseudo entropy of each node, we
require a method to calculate possibility. The output of each
node is shown as follows:

1
()

jn

i ki k
k

O Sigmoid W X
=

= ∑ (2)

where 𝑂𝑂𝑖𝑖 is the output value of the ith neuron in the jth
hidden layer, Wki is the weight between the kth input and the ith
hidden neuron and Xk is the kth input value. The sigmoid

function is: () 1
(x) 1 xsigmoid e

−−= + .

A pseudo possibility definition for each node is proposed as:

1
/

jn

i i k
k

p O O
=

= ∑ (3)

where 𝑛𝑛𝑗𝑗 is the number of neurons in the jth layer. Thus, by
regarding each layer as a system, each hidden layer’s pseudo
entropy is defined as:

1
() - log

jn

i i
i

H x p p
=

= ∑ (4)

If a layer’s value of pseudo entropy H(x) is smaller than the
threshold, 𝐸𝐸0, the number of layer neurons should be raised by
1 because the ordered degree should be limited to a descending
trend in hidden layer training.

C. Layer change phase
The training process of a BP neural network should be

dynamic; thus, layer changes require a proper criterion. The
layer increasing behavior of GEN is tied to the reduced mean
square error (RMSE) and its adjustment trend. RMSE is
defined as:

2

1

1 - ')
n

i i
i

RMSE y y
n =

= ∑（ (5)

0RMSE RMSE≤ (6)

() (1) (1) (2)
(1) (2)

RMSE t RMSE t RMSE t RMSE t
RMSE t RMSE t

− − − − −
≤

− −
 (7)

where n denotes the amount of training data, and 𝑦𝑦𝑖𝑖 and 𝑦𝑦′𝑖𝑖
represent the predicted and target values,
respectively. 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 is the threshold for RMSE, which
performs poorly with the initial architecture. Thus, this
represents a key step influencing the growth of layers at the
beginning by Eq.(6). In addition, Eq.(7) represents a trend of
RMSE decline; thus, when it is satisfied, the number of layers
should be decreased by 1.

Pseudo entropy can be useful for explaining detailed
significance during tuning. Each layer maps the last layer’s
input data into a higher or lower dimension to reduce the
entropy and, compared with the prerequisite data, makes the
input data more ordered until mapping helps the input become
more closely approximated to the results.

Fig. 1 Actual GEN
procedure

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 267

Fig. 2 Change of pseudo entropy under different situations

As a result, the entropy should decrease progressively. If not,
the layer’s mapping process is redundant, so it is imperative to
delete abnormal layers. By observing the changes in Fig. 2, the
correlation conditions of pseudo entropy, we see that the weight
training process causes a layer’s pseudo entropy to decrease
while neuronal growth causes it to increase. The key steps of
GEN are introduced in Table 1.
Table 1
The main sequence of GEN
%Initialize the architecture and weights as a normal distribution at the

start
For input x(t) do
% Read the input

For all hidden layers do
 % Neuronal growth

While entropy H(i)≤ 𝑬𝑬𝟎𝟎 do
Hidden layer i’s neurons plus 1, and the connecting weights
between the new neuron and neurons in the other layers are
all set to 0;

End
End
If RMSE≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0

 The layers of neural network plus 1;
Else if the entire layers’ pseudo entropy set decreases progressively

Delete the last layer, change the connectivity and set the new
weights according to the normal distribution;

Else if meets the Eq.(7)
The layers of neural network plus 1;

End
 Update the weights with the TO algorithm;
End

Remark 1: GAE is a strategy for neural network architecture
optimization during training. The key point of GAE is to use
pseudo entropy and RMSE as criteria to optimize network
architecture. From previous experience, the peak value of the
hidden layers is limited to 5 [11].

D. Tuning Optimization (TO)
The drawback of BP neural networks is that their calculation

and weight optimization processes are extremely costly.
Although the nets are fully-connected in this research field,
GEN applies a new method for weight tuning optimization that

simplifies this process. Recently, new methods have been
proposed to optimize the calculation process. Some
experiments use relative mutual information(RMI) [4] to
achieve connectivity [12]; however, their calculation and
weight tuning algorithms must be optimized.

Fig. 3 The main process of the TO algorithm

As shown in Fig. 3, each connection in GEN signifies a
feedforward and backward calculation, so it is important that
nodes with low influence get the target value. GEN’s tuning
optimization (TO) method consists of three components:
weight training, connectivity judging and node recovery, which
are all determined by the weights’ absolute values.

Table 2
Algorithm: Tuning Optimization Process
Weights Initialization: W(t) ~N(0,1)
Weights Training:
Normal backpropagation weight training for preset epochs
Get the weight set
Connectivity judging:
For all connectivity do
 If |W(t)|< W𝟎𝟎

Delete the connectivity
 Else if W𝟎𝟎≤|W(t)|<W𝟏𝟏

 Save and ignore the connectivity while weight training in this
phase

Else
 Normal BP weight training

End
End
Nodes Recovery:
Recover all ignored connectivity
Train the weights normally
By analyzing the distribution of weights, regarding weights

as important criteria for connectivity to adjust the neural
network architecture, we can accelerate the training process,
improve accuracy and avoid saddle points [13]. The TO
algorithm overcomes the drawbacks of the dropout method and
prevents the overfitting problem. W0=0.05 and W1=0.3 are the
presets for all the experiments in this paper.

III. EXPERIMENTS
To show the advantages of GEN, this section details three

experiments for checking the efficiency of the GAE and TO
algorithms. All the experiments are achieved in a MATLAB
R2014b environment with a 3.4 GHZ i5-7500 CPU and 8 G of
DDR4 RAM. Compared with similar algorithms for
self-organizing architecture, the performance of GEN displays
particular efficiency on certain complex problems. Examples
3.1-3.2 solve problems of classic nonlinear function
approximation with different dimensions. Example 3.3 focuses

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 268

on a nonlinear system modeling problem. The performance
measure uses mean squared error (MSE) and average
percentage error (APE), which are defined as:

2

1

1 (')
n

i i
i

MSE y y
n =

= −∑ (8)

1

'1 | | 100%
'

n
i i

i i

y yAPE
n y=

−
= ×∑ (9)

where n is the input size and 𝑦𝑦𝑖𝑖 and 𝑦𝑦′𝑖𝑖 represent the true and
prediction values, respectively.

A. 1-dimensional function input
To evaluate the efficiency of GEN, the following

approximated function is given:
2 20.2[1 0.1(7)]cos 2 0.5 sin(2 0.1)xy x x e x π−= + − + − (10)

where x is randomly defined by a uniform distribution
U[0,1]. This function is also used in [4] and [14] to demonstrate
and examine the FNN’s operational efficiency.

Table 3
Comparison of different self-organizing algorithms as

described in section 3.1
Algorithm Number of

hidden neurons
CPU run
time(s)

MSE APE

H1 H2 H3
GEN 6 5 - 1.29 0.0014 0.0156
AANN 6 - - 1.41 0.0113 0.0211
AGPNN 7 - - 17.25 0.0341 0.0620
AMGA 6 - - 30.12 0.0544 0.0989
CFNN 8 - - 10.45 0.0114 0.0207
CNNDA 6 4 - 22.12 0.0124 0.0225

-These results are either unlisted in the original paper or
non-significant.

The sizes of the training and test sets are both 200 in this
experiment. By Kolmogorov theory [15], we define the initial
architecture of GEN as follows: one input neuron, 1 output
neuron and H1 with 2 neurons. The experimental results are
compared with AANN (automatic axon-neural network) [4],
AMGA (adaptive merging and growing algorithm) [16], CFNN
(constructive feedforward neural network) [17], AGPNN
(adaptive growing and pruning neural network) [18] and
CNNDA (cascade neural network algorithm) [19]. The
evaluation criteria for the experimental measurements are CPU
run time, MSE and APE. A detailed comparison is shown in
Table 3. Prior to training, the preset parameters are
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0=0.005 and E0=1.5.

Fig. 4 Neuronal dynamic changes during training

Fig. 5 Absolute error

Fig. 6 Prediction results

In Fig. 4, the dynamic progression of GEN gradually
becomes steady with two hidden layers. The final stable
architecture of GEN is 1-6-5-1. Figs. 5-6 illustrate the error and
sound performance of GEN in this experiment. Moreover, these
results also show the superiority of the TO algorithm. In this
experiment, GEN uses an additional layer to achieve higher
accuracy, leading to an MSE ten times lower than the other
algorithms, which is a clear improvement. However, most of
the training time is saved via the cooperation of the two
algorithms. GEN runs more quickly and efficiently than the
majority of similar self-organizing neural network algorithms.

B. 2-dimensional function input
A more complicated example used to test the proposed FNN

is the complicated interaction function (CIF), a 2-D function
frequently used to test FNNs [16]:

1 22
1 21.9(1.35 e sin(13(x 0.6))e sin(7 x))x xy −= + − (11)

where x1 and x2 are randomly sampled by the normal
distribution x1, x2 ~N[0,1] and the sizes of both the training
and testing data are 400. The initial architecture of GEN is
2-3-1, which is identical to that of AANN, AMGA and
CNNDA. The dynamic training process of GEN and its
neuronal changes are shown in Fig. 7. In addition, its prediction
and error results are shown in Figs.8-9. This effective
demonstration shows outstanding performance on a 3-D model
with surface fitting, which requires distinct analysis.

Fig.7 Dynamic neuronal changes during training

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 269

Fig.8 GEN approximation with a 2-D function

Fig.9 Absolute error

A results comparison is shown in Table 4 using the main
standards of outcome measurements for FNNs. The final
architecture of GEN is 2-9-6-1. This helps the model achieve
relatively fast training and high accuracy. In Table 4, it is easily
noted that, although the architecture is more complicated, it
achieves lower error and run times, which is a reflection of
GEN’s improved efficiency. The preset parameters are
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0=0.005 and E0=1.5.

Table 4
Comparison of different self-organizing algorithms as described in

section 3.2
Algorithm Number of

hidden neurons
CPU run
time(s)

MSE APE

H1 H2 H3

GEN 9 6 - 2.93 0.0102 0.0249
AANN 9 6 - 3.14 0.0113 0.0379
AGPNN 14 - - 23.22 0.0210 0.0704
AMGA 10 - - 39.12 0.0456 0.1529
CFNN 16 - - 27.13 0.0156 0.0523
CNNDA 13 5 - 20.41 0.0121 0.0406

-These results are either unlisted in the original paper or
non-significant.

C. Nonlinear dynamic system modeling
Another experiment used to test the efficiency of a neural

network is classic nonlinear dynamic system modeling, which
is referenced in many studies in the literature [4] [20] [21] for
testing FNN performance. The function and model are
described below:

2 2

() (1)[() 2.5](1) ()
1 () (1)

y t y t y ty t u t
y t y t

− +
+ = +

+ + −
 (12)

The model is identified in series-parallel mode defined as
[22]:

(1) ((), (1), ())y t f y t y t u t+ = − (13)
where y(0)=0, y(1)=0 and u(t)=sun(2πt/25).
In this experiment, the training set size is 500, sampled by

the function above, and the domain of t is [1,500]. [501,700] is
regarded as the test data set. (y(t), y(t-1), u(t)) are the inputs,
including 3 elements, and the output is y(t+1). In addition,
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 =0.005 and E0 =1.5. In this experiment, the initial
architecture of GEN is 3-3-1. Fig.10 shows the neuronal
changes that occur while GAE is running. The neurons tend to
be steady with a final architecture of 3-10-6-1.

Fig.10 Neuronal changes during training

Fig.11 Absolute error

Fig.12 Prediction results

In Figs. 11-12, GEN exhibits solid performance and low
error. A comparison with AANN, SOFNNGA, AMGA,
CNNDA and SOFNN-ACA[21] is listed in Table 5, where the
advantages of GEN are readily evident. Not only the
architecture but also the training efficiency is improved with
GEN. It reduces much time and error than most these recent
similar methods. Particularly with this type of complex
nonlinear system, GEN signifies huge potential with respect to
the training processes of other neural network training methods,
markedly for the optimization of deep neural network training.
Table 5
Comparison of different self-organizing algorithms as described in

section 3.3
Algorithm Number of

hidden neurons
CPU
run
time(s)

MSE APE

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 270

H1 H2 H3
GEN 10 6 - 11.16 7.26e-04 3.13e-03

AANN 10 - - 13.31 1.08e-03 3.90e-03

SOFNNGA 8 - - 76.23 2.30e-03 5.10e-03

AMGA 12 - - 58.28 1.34e-02 6.07e-02

CNNDA 10 6 - 62.12 2.10e-03 -

SOFNN-AC
A

6 - - 16.24 1.05e-0
2

3.90e-03

-These results are either unlisted in the original paper or
non-significant.

To summarize the nonlinear regression function
approximation presented in sections 3.1-3.2, GEN’s
self-organizing strategy achieves relatively optimal
architecture and improved efficiency on weight training with
GAE, which avoids saddle points, leads to lower run time and
has a better convergence [23], MSE and APE. Namely, the
proposed GEN has upgraded performance in nonlinear function
approximation compared with analogous self-organizing FNN
models.

IV. CONCLUSION
This paper proposes a new self-organizing feed forward

neural network called GEN that is based on entropy as a
criterion for simultaneously adjusting both network
architecture and weights during training. To make GEN
function more efficiently, we also use a training algorithm
called TO, which considers the significance of each connection
to decide the training process and type. We demonstrate the
application of GEN in different scenarios and its advantages
and performance in comparison with several similar
self-organizing algorithms.

The GEN can play an import role in nonlinear system
modeling for its efficient and adaptive algorithm in accordance
with training, which leads it to a wide application scene. Such
as time series analysis and the deep learning model
compression in deep learning. The more important is that the
GAE algorithm can be transferred as the structure generation
algorithm for other artificial neural network models like
convolutional neural network(CNN) or deep belief
network(DBN).

In summary, GEN is comparable to state-of-the-art
self-organizing algorithms and the strategy’s merits and
novelties are summarized as follows:
(1) The adaptive structural algorithm is different from the
former online strategies for it introduces a pseudo entropy as a
measure of the order degree in each hidden layer to
dynamically decide the amount of hidden neurons.
(2) To develop the efficiency of dynamic learning process, this
paper uses GAE algorithm, which regards weights as the
connection importance, as an optimizing method which helps
the network costs less sources and higher accuracy.
(3) This efficient neural network model has great potential for
future research in more diverse or complex environments such

as fully-connected layer compressed computation in deep
neural networks and other synthetic models.

REFERENCES
[1] Wierstra D, Gomez F J. Modeling systems with internal state using

evolino[C]// Genetic and Evolutionary Computation Conference,
GECCO 2005, Proceedings, Washington Dc, Usa, June. DBLP,
2005:1795-1802.

[2] Han H G, Qiao J F. Adaptive computation algorithm for RBF neural
network[J]. IEEE Transactions on Neural Networks & Learning Systems,
2012, 23(2):342-347.

[3] Tsodyks M, Gilbert C. Neural networks and perceptual learning[J].
Nature, 2004, 431(7010):775-781.

[4] Han H G, Wang L D, Qiao J F. Efficient self-organizing multilayer neural
network for nonlinear system modeling[J]. Neural Networks, 2013,
43(7):22-32.

[5] Kline D M, Berardi V L. Revisiting squared-error and cross-entropy
functions for training neural network classifiers[J]. Neural Computing &
Applications, 2005, 14(4):310-318.

[6] Scarselli F, Tsoi A C. Universal Approximation Using Feedforward
Neural Networks: A Survey of Some Existing Methods, and Some New
Results[M]. Elsevier Science Ltd, 1998, 11(1):15.

[7] Ferrari S, Jensenius M. A Constrained Optimization Approach to
Preserving Prior Knowledge During Incremental Training[J]. IEEE
Transactions on Neural Networks, 2008, 19(6):996-1009.

[8] Chao J, Li X, Kang W, et al. Adaptive control of nonlinear system using
online error minimum neural networks☆[J]. Isa Transactions, 2016,
65:125.

[9] Geok, See Ng and Abdul Rahman, Abdul Wahab and Shi, Daming.
Entropy learning and relevance criteria for neural network pruning[J].
International Journal of Neural Systems, 2003, 13(5):291-305.

[10] Abid S, Chtourou M, Djemel M. Pseudo-Entropy Based Pruning
Algorithm for Feed forward Neural Networks[J]. Australian Journal of
Basic & Applied Sciences, 2013.

[11] Briggs F, Callaway E M. Laminar Patterns of Local Excitatory Input to
Layer 5 Neurons in Macaque Primary Visual Cortex[J]. Cerebral Cortex,
2005, 15(5):479.

[12] Wan L, Zeiler M, Zhang S, et al. Regularization of neural networks using
dropconnect[C]// International Conference on Machine Learning,
2013:1058-1066.

[13] Han S, Pool J, Narang S, et al. DSD: Dense-Sparse-Dense Training for
Deep Neural Networks[C]// International Conference on Learning
Representations, 2016.

[14] Narasimha P L, Delashmit W H, Manry M T, et al. An integrated
growing-pruning method for feedforward network training[J].
Neurocomputing, 2008, 71(13-15):2831-2847.

[15] Eswaran K, Singh V. Some Theorems for Feed Forward Neural
Networks[J]. International Journal of Computer Applications, 2015, 130.

[16] Islam M M, Sattar M A, Amin M F, et al. A new adaptive merging and
growing algorithm for designing artificial neural networks[J]. IEEE
Transactions on Systems Man & Cybernetics Part B, 2009,
39(3):705-722.

[17] Ma L, Khorasani K. Constructive feedforward neural networks using
Hermite polynomial activation functions[J]. IEEE Transactions on
Neural Networks, 2005, 16(4):821.

[18] Hsu C F. Adaptive growing-and-pruning neural network control for a
linear piezoelectric ceramic motor[J]. Engineering Applications of
Artificial Intelligence, 2008, 21(8):1153-1163.

[19] Islam M M, Murase K. A new algorithm to design compact
two-hidden-layer artificial neural networks[J]. Neural Networks, 2001,
14(9):1265-1278.

[20] Zhang C, Wu W, Chen X H, et al. Convergence of BP algorithm for
product unit neural networks with exponential weights[J].
Neurocomputing, 2008, 72(1–3):513-520.

[21] H Han, XL Wu, JF Qiao. Nonlinear systems modeling based on
self-organizing fuzzy-neural-network with adaptive computation
algorithm[J]. IEEE Trans Cybern, 2014, 44 (4):554-564

[22] H Han, L Zhang, X Wu, J Qiao. An Efficient Second-Order Algorithm
for Self-Organizing Fuzzy Neural Networks[J]. IEEE Transactions on
Cybernetics, 2017, PP (99) :1-13

[23] G Rajchakit, R Saravanakumar, CK Ahn, HR Karimi. Improved
exponential convergence result for generalized neural networks
including interval time-varying delayed signals[J]. Neural Networks,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 271

2017, 86 :10-17

Xin Feng born in 1993, got Bachelor’s degree in Zhengzhou University,
Zhengzhou, China, at 2013~2017. At present, he is a postgraduate at Beijing
Forestry University, Beijing, China. His research is concentrating on deep
learning and computer vision.

Jiangming Kan born in 1976, Ph.D. degree, professor at Beijing Forestry. His
research interests include computer vision and intelligent control.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 272

