
 

 

 
Abstract—The structure of feed forward neural networks strongly 

influences their nonlinear function approximation results. This paper 
proposes a self-organizing neural network that can automatically 
adjust the number of hidden layers and alter the neurons of each 
hidden layer in accordance with training data. To ascertain the optimal 
neural network structure, the pseudo entropy of each hidden layer 
determines the number of neurons it contains, and the reduced mean 
square error of the entire neural network determines the number of 
hidden layers. A tuning optimization algorithm tunes the parameter 
weights and biases. Experimental results show that the proposed 
neural network outperforms the state-of-the art feed forward neural 
network and the proposed self-organizing algorithm is very effective 
for nonlinear function approximation. 
 

Keywords—self-organizing network; training optimization; 
pseudo entropy; nonlinear system 

I. INTRODUCTION 
yperparameter optimization is a developing topic in neural 
training research that has practical applications. In this 

field, a focus of concern is network architecture, particularly 
the optimal number of neurons and layers. The unwieldly 
neuro-evolution algorithm, the earliest hyperparameter 
optimization method [1] [2], carries obvious disadvantages in 
that it is inefficient and lacks flexibility. 

Some researchers have recently adopted bionics methods and 
bioinformatics parameters for structure alteration. Although 
their experiments show progress in architecture adjustment, 
their application scenario is prohibitively simplistic [3]. In 
addition, several papers have addressed neuronal connectivity. 
Although such approaches accelerate training, the optimization 
of their results is difficult [4]. Cross-entropy is typically 
employed as a measure of error that influences the adjustment 
of weights and biases during training [5]. However, 
cross-entropy cannot represent information or ordered degree 
as architecture references. 

According to universal approximation theory [6], a 
backpropagation(BP) neural network can approximate any 
nonlinear function; however, the architecture of a neural 
network greatly influences its model training process. Taken 
together with the aforementioned concerns, the architecture of a 
neural network growth and optimization algorithm must be 
more flexible and efficient.  

We propose a novel type of feed forward neural network, 
termed the growth entropy-neural network (GEN), with an 
efficient growth algorithm based on entropy (GAE). Both of 
these methods are based on the BP neural network with forward 
and backward processes. GEN is advantageous in several 
aspects. First, information entropy is introduced to improve 
neuronal development and the number of layers. Entropy is a 
reflection of information quantity. From an abstract point of 
view, the hidden layers of a BP neural network gradually 
reduce the weight influence of useless features in input data by 
mapping them into higher or lower dimensions via the number 
of hidden neurons and emphasizing essential features that lead 
to improved results. 

Second, GAE addresses neural network architecture design, 
including both optimal neurons and the number of layers. The 
key adaptive growth process of GAE does not focus on pruning 
or connectivity; rather, it observes the information entropy 
change in each layer. Experimentally, entropy is very high if 
certain hyperparameters such as neurons and layers are 
unsuitable, leading to unsatisfactory results. 

Third, the model convergence of a typical feed forward 
neural network is generally associated with low speed during 
training. Hence, optimization becomes mandatory. One reason 
for this sluggish convergence process is that backpropagation is 
prohibitively costly time-wise [7]. Thus, to retrieve the global 
minimum in a gradient descent process and overcome the 
weaknesses of BP neural networks, the tuning optimization 
(TO) method is proposed for acceleration and accuracy in this 
paper’s experiments. 

The structure of this paper is as follows. In the 2nd section, 
the main methodology of GEN is described. In the 3rd section, 
several experiments are described using the GEN model using 
different criteria to evaluate its performance. Additionally, the 
performance of GEN is compared with similar models. The 4th 
section gives the conclusion of the paper. 

II. GROWTH ENTROPY-NEURAL NETWORK 
In this paper, the GEN model based on FNN is proposed. 

Compared with several recent models, the unique contributions 
of GEN are as follows: 

(1) Automatically adjusting both the architecture and 
weights is key to the training process. 
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(2) Using the information entropy of each layer to determine 
the neurons of the hidden layer and the reduced mean square 
error of the entire neural network to determine the number of 
hidden layers via GAE.  

(3) Training with the TO acceleration algorithm. 

A. Growth Algorithm based on Entropy (GAE) 
In this paper, we propose a novel FNN that uses GAE to train 

both the parameters and architecture of a neural network. By 
introducing information entropy as a growth criterion to 
nonlinear function approximation, each layer is rendered 
adaptive for making net changes in architecture and mapping 
the input data into different dimensions. 

During the training process, the input data are unordered 
compared with the required output. The hidden layers and 
neurons map the input into more ordered results layer by layer. 
From its definition, information entropy is a reflection of the 
ordered degree and quantity of information of each layer [4].  

B. Neuronal growth phase 
The architecture growth process includes the development of 

neurons and layers starting from an initial or previously 
experienced architecture. This growth process is designed for 
online learning [8], and its macroscopic process is shown in 
Fig. 1 above. 

The definition of information entropy put forward by 
Shannon is a measure of information and disorder: 
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Recently, researchers have proposed specific methods and 
related standards that use entropy for neural network pruning 
[9] [10] and made definite progress. In this paper, we use 
pseudo-entropy to represent the order degree for optimization 
as follows: 

 First, to calculate the pseudo entropy of each node, we 
require a method to calculate possibility. The output of each 
node is shown as follows: 
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where 𝑂𝑂𝑖𝑖  is the output value of the ith neuron in the jth 
hidden layer, Wki  is the weight between the kth input and the ith 
hidden neuron and Xk  is the kth input value. The sigmoid 

function is: ( ) 1
(x) 1 xsigmoid e

−−= + . 

A pseudo possibility definition for each node is proposed as: 
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where 𝑛𝑛𝑗𝑗  is the number of neurons in the jth layer. Thus, by 
regarding each layer as a system, each hidden layer’s pseudo 
entropy is defined as: 
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If a layer’s value of pseudo entropy H(x) is smaller than the 
threshold, 𝐸𝐸0, the number of layer neurons should be raised by 
1 because the ordered degree should be limited to a descending 
trend in hidden layer training.  

C. Layer change phase 
The training process of a BP neural network should be 

dynamic; thus, layer changes require a proper criterion. The 
layer increasing behavior of GEN is tied to the reduced mean 
square error (RMSE) and its adjustment trend. RMSE is 
defined as: 
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where n denotes the amount of training data, and 𝑦𝑦𝑖𝑖  and 𝑦𝑦′𝑖𝑖  
represent the predicted and target values, 
respectively.  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 is the threshold for RMSE, which 
performs poorly with the initial architecture. Thus, this 
represents a key step influencing the growth of layers at the 
beginning by Eq.(6). In addition, Eq.(7) represents a trend of 
RMSE decline; thus, when it is satisfied, the number of layers 
should be decreased by 1.  

Pseudo entropy can be useful for explaining detailed 
significance during tuning. Each layer maps the last layer’s 
input data into a higher or lower dimension to reduce the 
entropy and, compared with the prerequisite data, makes the 
input data more ordered until mapping helps the input become 
more closely approximated to the results. 

Fig. 1 Actual GEN 
procedure 
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Fig. 2 Change of pseudo entropy under different situations 

As a result, the entropy should decrease progressively. If not, 
the layer’s mapping process is redundant, so it is imperative to 
delete abnormal layers. By observing the changes in Fig. 2, the 
correlation conditions of pseudo entropy, we see that the weight 
training process causes a layer’s pseudo entropy to decrease 
while neuronal growth causes it to increase. The key steps of 
GEN are introduced in Table 1. 
Table 1 
The main sequence of GEN 
%Initialize the architecture and weights as a normal distribution at the 

start 
For input x(t) do 
% Read the input 

For all hidden layers do 
    % Neuronal growth 

While entropy H(i)≤ 𝑬𝑬𝟎𝟎 do 
Hidden layer i’s neurons plus 1, and the connecting weights 
between the new neuron and neurons in the other layers are 
all set to 0; 

End 
End  
If  RMSE≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 

     The layers of neural network plus 1;  
Else if the entire layers’ pseudo entropy set decreases progressively 

Delete the last layer, change the connectivity and set the new 
weights according to the normal distribution; 

Else if meets the Eq.(7) 
The layers of neural network plus 1; 

End 
    Update the weights with the TO algorithm; 
End  

Remark 1: GAE is a strategy for neural network architecture 
optimization during training. The key point of GAE is to use 
pseudo entropy and RMSE as criteria to optimize network 
architecture. From previous experience, the peak value of the 
hidden layers is limited to 5 [11]. 

D. Tuning Optimization (TO) 
The drawback of BP neural networks is that their calculation 

and weight optimization processes are extremely costly. 
Although the nets are fully-connected in this research field, 
GEN applies a new method for weight tuning optimization that 

simplifies this process. Recently, new methods have been 
proposed to optimize the calculation process. Some 
experiments use relative mutual information(RMI) [4] to 
achieve connectivity [12]; however, their calculation and 
weight tuning algorithms must be optimized. 

 
Fig. 3 The main process of the TO algorithm 

As shown in Fig. 3, each connection in GEN signifies a 
feedforward and backward calculation, so it is important that 
nodes with low influence get the target value. GEN’s tuning 
optimization (TO) method consists of three components: 
weight training, connectivity judging and node recovery, which 
are all determined by the weights’ absolute values. 

Table 2 
Algorithm: Tuning Optimization Process 
Weights Initialization: W(t) ~N(0,1) 
Weights Training: 
Normal backpropagation weight training for preset epochs 
Get the weight set 
Connectivity judging: 
For all connectivity do 
   If |W(t)|< W𝟎𝟎 

Delete the connectivity 
   Else if W𝟎𝟎≤|W(t)|<W𝟏𝟏 

        Save and ignore the connectivity while weight training in this 
phase 

Else 
     Normal BP weight training 

End 
End  
Nodes Recovery: 
Recover all ignored connectivity 
Train the weights normally 
By analyzing the distribution of weights, regarding weights 

as important criteria for connectivity to adjust the neural 
network architecture, we can accelerate the training process, 
improve accuracy and avoid saddle points [13]. The TO 
algorithm overcomes the drawbacks of the dropout method and 
prevents the overfitting problem. W0=0.05 and W1=0.3 are the 
presets for all the experiments in this paper. 

III. EXPERIMENTS 
To show the advantages of GEN, this section details three 

experiments for checking the efficiency of the GAE and TO 
algorithms. All the experiments are achieved in a MATLAB 
R2014b environment with a 3.4 GHZ i5-7500 CPU and 8 G of 
DDR4 RAM. Compared with similar algorithms for 
self-organizing architecture, the performance of GEN displays 
particular efficiency on certain complex problems. Examples 
3.1-3.2 solve problems of classic nonlinear function 
approximation with different dimensions. Example 3.3 focuses 
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on a nonlinear system modeling problem. The performance 
measure uses mean squared error (MSE) and average 
percentage error (APE), which are defined as: 
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where n is the input size and 𝑦𝑦𝑖𝑖  and 𝑦𝑦′𝑖𝑖  represent the true and 
prediction values, respectively. 

A. 1-dimensional function input  
To evaluate the efficiency of GEN, the following 

approximated function is given: 
2 20.2[1 0.1( 7) ]cos 2 0.5 sin(2 0.1 )xy x x e x π−= + − + −   (10) 

where x is randomly defined by a uniform distribution 
U[0,1]. This function is also used in [4] and [14] to demonstrate 
and examine the FNN’s operational efficiency. 

Table 3 
Comparison of different self-organizing algorithms as 

described in section 3.1 
Algorithm Number of 

hidden neurons 
CPU run 
time(s) 

MSE APE 

H1 H2 H3    
GEN 6 5 - 1.29 0.0014 0.0156 
AANN 6 - - 1.41 0.0113 0.0211 
AGPNN 7 - - 17.25 0.0341 0.0620 
AMGA 6 - - 30.12 0.0544 0.0989 
CFNN 8 - - 10.45 0.0114 0.0207 
CNNDA 6 4 - 22.12 0.0124 0.0225 

-These results are either unlisted in the original paper or 
non-significant. 

The sizes of the training and test sets are both 200 in this 
experiment. By Kolmogorov theory [15], we define the initial 
architecture of GEN as follows: one input neuron, 1 output 
neuron and H1 with 2 neurons. The experimental results are 
compared with AANN (automatic axon-neural network) [4], 
AMGA (adaptive merging and growing algorithm) [16], CFNN 
(constructive feedforward neural network) [17], AGPNN 
(adaptive growing and pruning neural network) [18] and 
CNNDA (cascade neural network algorithm) [19]. The 
evaluation criteria for the experimental measurements are CPU 
run time, MSE and APE. A detailed comparison is shown in 
Table 3. Prior to training, the preset parameters are 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0=0.005 and E0=1.5. 

 
Fig. 4 Neuronal dynamic changes during training 

 
Fig. 5 Absolute error 

 
Fig. 6 Prediction results 

In Fig. 4, the dynamic progression of GEN gradually 
becomes steady with two hidden layers. The final stable 
architecture of GEN is 1-6-5-1. Figs. 5-6 illustrate the error and 
sound performance of GEN in this experiment. Moreover, these 
results also show the superiority of the TO algorithm. In this 
experiment, GEN uses an additional layer to achieve higher 
accuracy, leading to an MSE ten times lower than the other 
algorithms, which is a clear improvement. However, most of 
the training time is saved via the cooperation of the two 
algorithms. GEN runs more quickly and efficiently than the 
majority of similar self-organizing neural network algorithms. 

B. 2-dimensional function input 
A more complicated example used to test the proposed FNN 

is the complicated interaction function (CIF), a 2-D function 
frequently used to test FNNs [16]: 

1 22
1 21.9(1.35 e sin(13(x 0.6) )e sin(7 x ))x xy −= + −   (11) 

where x1 and x2 are randomly sampled by the normal 
distribution x1, x2 ~N[0,1] and the sizes of both the training 
and testing data are 400. The initial architecture of GEN is 
2-3-1, which is identical to that of AANN, AMGA and 
CNNDA. The dynamic training process of GEN and its 
neuronal changes are shown in Fig. 7. In addition, its prediction 
and error results are shown in Figs.8-9. This effective 
demonstration shows outstanding performance on a 3-D model 
with surface fitting, which requires distinct analysis. 

 
Fig.7 Dynamic neuronal changes during training 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 269



 

 

 
Fig.8 GEN approximation with a 2-D function 

 
Fig.9 Absolute error 

A results comparison is shown in Table 4 using the main 
standards of outcome measurements for FNNs. The final 
architecture of GEN is 2-9-6-1. This helps the model achieve 
relatively fast training and high accuracy. In Table 4, it is easily 
noted that, although the architecture is more complicated, it 
achieves lower error and run times, which is a reflection of 
GEN’s improved efficiency. The preset parameters are 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0=0.005 and E0=1.5.  

Table 4 
Comparison of different self-organizing algorithms as described in 

section 3.2 
Algorithm Number of 

hidden neurons 
CPU run 
time(s) 

MSE APE 

H1 H2 H3    

GEN 9 6 - 2.93 0.0102 0.0249 
AANN 9 6 - 3.14 0.0113 0.0379 
AGPNN 14 - - 23.22 0.0210 0.0704 
AMGA 10 - - 39.12 0.0456 0.1529 
CFNN 16 - - 27.13 0.0156 0.0523 
CNNDA 13 5 - 20.41 0.0121 0.0406 

-These results are either unlisted in the original paper or 
non-significant. 
 

C. Nonlinear dynamic system modeling 
Another experiment used to test the efficiency of a neural 

network is classic nonlinear dynamic system modeling, which 
is referenced in many studies in the literature [4] [20] [21] for 
testing FNN performance. The function and model are 
described below: 

2 2

( ) ( 1)[ ( ) 2.5]( 1) ( )
1 ( ) ( 1)

y t y t y ty t u t
y t y t

− +
+ = +

+ + −
  (12) 

The model is identified in series-parallel mode defined as 
[22]: 

( 1) ( ( ), ( 1), ( ))y t f y t y t u t+ = −   (13) 
where y(0)=0, y(1)=0 and u(t)=sun(2πt/25). 
In this experiment, the training set size is 500, sampled by 

the function above, and the domain of t is [1,500]. [501,700] is 
regarded as the test data set. (y(t), y(t-1), u(t)) are the inputs, 
including 3 elements, and the output is y(t+1). In addition, 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 =0.005 and E0 =1.5. In this experiment, the initial 
architecture of GEN is 3-3-1. Fig.10 shows the neuronal 
changes that occur while GAE is running. The neurons tend to 
be steady with a final architecture of 3-10-6-1.  

 
Fig.10 Neuronal changes during training 

 
Fig.11 Absolute error 

 
Fig.12 Prediction results 

In Figs. 11-12, GEN exhibits solid performance and low 
error. A comparison with AANN, SOFNNGA, AMGA, 
CNNDA and SOFNN-ACA[21] is listed in Table 5, where the 
advantages of GEN are readily evident. Not only the 
architecture but also the training efficiency is improved with 
GEN. It reduces much time and error than most these recent 
similar methods. Particularly with this type of complex 
nonlinear system, GEN signifies huge potential with respect to 
the training processes of other neural network training methods, 
markedly for the optimization of deep neural network training.  
Table 5 
Comparison of different self-organizing algorithms as described in 

section 3.3 
Algorithm Number of 

hidden neurons 
CPU  
run 
time(s) 

MSE APE 
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H1 H2 H3    
GEN 10 6 - 11.16 7.26e-04 3.13e-03 

AANN 10 - - 13.31 1.08e-03 3.90e-03 

SOFNNGA 8 - - 76.23 2.30e-03 5.10e-03 

AMGA 12 - - 58.28 1.34e-02 6.07e-02 

CNNDA 10 6 - 62.12 2.10e-03 - 

SOFNN-AC
A 

6 - - 16.24 1.05e-0
2 

3.90e-03 

-These results are either unlisted in the original paper or 
non-significant. 

To summarize the nonlinear regression function 
approximation presented in sections 3.1-3.2, GEN’s 
self-organizing strategy achieves relatively optimal 
architecture and improved efficiency on weight training with 
GAE, which avoids saddle points, leads to lower run time and 
has a better convergence [23], MSE and APE. Namely, the 
proposed GEN has upgraded performance in nonlinear function 
approximation compared with analogous self-organizing FNN 
models. 

IV. CONCLUSION 
This paper proposes a new self-organizing feed forward 

neural network called GEN that is based on entropy as a 
criterion for simultaneously adjusting both network 
architecture and weights during training. To make GEN 
function more efficiently, we also use a training algorithm 
called TO, which considers the significance of each connection 
to decide the training process and type. We demonstrate the 
application of GEN in different scenarios and its advantages 
and performance in comparison with several similar 
self-organizing algorithms.  

The GEN can play an import role in nonlinear system 
modeling for its efficient and adaptive algorithm in accordance 
with training, which leads it to a wide application scene. Such 
as time series analysis and the deep learning model 
compression in deep learning. The more important is that the 
GAE algorithm can be transferred as the structure generation 
algorithm for other artificial neural network models like 
convolutional neural network(CNN) or deep belief 
network(DBN).  

In summary, GEN is comparable to state-of-the-art 
self-organizing algorithms and the strategy’s merits and 
novelties are summarized as follows: 
(1) The adaptive structural algorithm is different from the 
former online strategies for it introduces a pseudo entropy as a 
measure of the order degree in each hidden layer to 
dynamically decide the amount of hidden neurons. 
(2) To develop the efficiency of dynamic learning process, this 
paper uses GAE algorithm, which regards weights as the 
connection importance, as an optimizing method which helps 
the network costs less sources and higher accuracy.    
(3) This efficient neural network model has great potential for 
future research in more diverse or complex environments such 

as fully-connected layer compressed computation in deep 
neural networks and other synthetic models. 
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