
 

 

  
Abstract—For the issue of inconstant sprung mass caused by 

passengers and freight in practical application, a combination method 
of Kalman filter and recursive least square is adopted in this paper. 
With sprung mass acceleration, dynamic deflection and wheel vertical 
acceleration, the sprung mass velocity and wheel vertical velocity are 
estimated using forgetting factor based recursive least square method. 
Corresponding to different road grade, accuracy effected by the 
process noise covariance and measurement noise covariance is 
researched. As to the steering stability effected by sprung mass 
estimation, the yaw velocity using sprung mass estimation is compared 
to actual yaw velocity. The simulation results show that the sprung 
mass and the estimation can be identified precisely with process noise 
and measurement noise selected appropriately according to the road 
grade. The estimated sprung mass parameters are feasible for steering 
stability analysis. 
 

Keywords—Adaptive Kalman filter, recursive least square, 
steering stability analysis, sprung mass.  

I. INTRODUCTION 
T is well recognized that vehicle mass acts as an important 
role in vehicle handling stability and ride comfort research. 

Furthermore, as to the roll over prevention control system, the 
vehicle mass is assumed to be an indispensable and changing 
parameter to predict the road-tyre contact force. In particular, 
reliable estimation of the vehicle mass will enable to improve 
the actuator performance of active suspension, and then reduce 
the vehicle sprung mass acceleration. Nevertheless, it has been 
difficult issue to obtain direct measurements of all required 
states, such as sprung mass and Lateral Load Transfer(LLT) 
coefficient[1]. In order to analyze the vehicle stability, in this 
paper, a vehicle mass estimator is researched and employed to 
judge the steering stability further[2].  

As to the mass estimation issue, the estimators can be 
classified into estimator based on state observers, such as 
Kalman filters, and estimator without state observers such as 
polynomial chaos. [3] Considering the measurement method, 
this estimate algorithm could also be classified into two 
different ways. The sensor based direct method holds the merit 
that the parameters obtaining process is independent of 
controller design, while the model based indirect method 
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always seem the system physics model as precondition to build 
the observer or obtain the unknown parameter as a by-product 
of a control scheme.[4] It is noted that when using sensor 
measurement method, the arrangements of sensors always be 
treated as a difficult task due to the shape and the installation 
location of the transducer are considerably hard to be 
considered together , such as the force transducer.[5][6] 
According to the measurable data, model based method is able 
to calculate and estimate the unknown parameters such as 
vehicle speed. In [7], the engine torque and brake torque are 
available over CAN bus and a carrier-phase-based GPS are 
adopted to estimate the wheel tire-road friction coefficients. 
After building the longitudinal dynamical model, the friction 
coefficients are obtained using different signal configurations. 
In [8], through housing installation and wiring, single or 
multi-axis accelerometers and angle rate sensors are mounted 
on the vehicle chassis, such that Lateral Load Transfer 
coefficients(LLT) are able to be estimated using state 
observers. Hong et al.[9] introduce an additional mass to 
determine the sprung mass integrated to a nonlinear model. In 
[10], the authors use low-frequent suspension displacement 
signals and suspension stiffness characteristics to estimate the 
center of gravity position and the vehicle mass followed a test 
rig validation. [11] exploits almost all parameters and derives 
an explicit expression without the acceleration measurement. 
After using the sensor data or state observer, the estimate 
algorithms is then designed to calculate and obtain the 
parameter needed. It is required to estimate the state and 
unknown parameters simultaneously due to the fact that all the 
parameters are not time in-variant. For the fast convergence and 
easily implement, Recursive Least Squares and Kalman Filter 
have been widely used in modern estimators. Wan and Nelson 
using the rules that the states and parameters are considered as a 
separate state-space formulation such that once a favorable set 
of estimators is found, this parameter estimator is going to be 
switched off. In[12], aim to the nonlinear time-invariant active 
suspension system, an extended Kalman filter is proposed to 
estimate the changing state. Then, the vehicle sprung mass, tyre 
dynamic deflection and suspension deflection are precisely 
estimated through the measured acceleration of sprung mass 
and unsprung mass. By building a nonlinear slide mode state 
estimator, the necessary information concerning estimating 
algorithm concludes the sprung mass absolute displacement 
and velocity. Pence uses polynomial chaos theory in vehicle 
mass estimation with reduced-order state-space models[13]. 
This method owns the ability that treat unknown initial states as 
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estimation parameters and update their values recursively. It is 
researched that through experiment demonstration, all the 
system states are capable of being observed by measuring the 
accelerations in different place in automobile. Combining the 
signals originated from various sensors, more parameters can 
be estimated by intelligent method. In [14], the genetic 
algorithm is integrated with maximum likelihood estimation to 
figure out the nonlinear active suspension model and 
demonstrate the real suspension dynamic characteristics. [15] 
identifies the structure model parameters with neural-network 
weight matrix. In [16], LS method has been verified as a 
favorable tool to identify the semi-active suspension 
parameters based on a ADAMS 3 DoFs model. For the purpose 
of road grade estimation, the suspension dynamical response 
analysis has been regarded as an efficient manner to obtain a 
precision estimate results. By this method, it is necessary to 
modify the algorithm of sprung mass estimation and achieve 
significantly better performance on time various sprung mass 
problem dispose.  

This paper combine adaptive Kalman filter with recursive 
least square to identify the vehicle sprung mass according to 
different national grade standard road grade. The sprung mass 
and absolute vehicle speed are precisely estimated using only 
the accelerometer signal and displacement sensor signals. 
Then, the estimation accuracy effected by the process noise 
covariance and measurement noise covariance is analyzed 
under different road grades. Using forgetting factors based 
recursive least square method, the sprung mass values at 
different time are estimated literately. In the end, the 
automobile stability are researched via longitudinal 
acceleration, lateral acceleration and sideslip angle estimate 
values. The proposed techniques are demonstrated using 
simulation method and the promotion of vehicle stability are 
researched. 

II. 1/4 VEHICLE SUSPENSION MODEL 
 

 
Fig. 1.  1/4 vehicle suspension model  

As shown in Fig. 1, mb  and mw  denote the sprung mass and 
unsprung mass separately. The suspension stiffness is shown as 
ks and the road elevation is presented by xr . Then, the 
suspension model can be described as follows:  

 
( ) ( )b b s b w p b w 0m x k x x c x x+ − + − =    (1) 

 
( ) ( ) ( )w w t w r s b w p w b 0m x k x x k x x c x x+ − − − + − =    (2) 

 
The state variables can be selected as 
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Where xb-xw denotes the suspension dynamic deflection, 

xw-xr  denotes the tyre deformation, bx is the absolute velocity 
of sprung mass, wx is the absolute velocity of automobile 
wheel. As to the estimator, the process noise is the random road 
input ( ) rw t x=  , the measurement noise is v(t) . Particularity, the 
process and measurement noise are white Gaussian noise and 
irrelevant to each other. Then, the state equation and 
measurement can be concluded as 

 
( ) ( ) ( )x t Ax t Gw t= +  (4) 
 
( ) ( ) ( )y t Cx t v t= +  (5) 
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This state space represent an traditional model of 1/4 

vehicle suspension model, with which we can research the 
vehicle suspension property and state based observer. The next 
step following this part show this estimator design and 
performance modification.  

III. KALMAN FILTER BASED SPRUNG MASS ESTIMATION 

A. Adaptive Kalman Filter design 
With discretization method implement on this 1/4 vehicle 

suspension system model, the discretized state space can be 
concluded as 

 
( ) ( 1) ( 1) ( 1) ( 1)x k k x k k w k= − − + − −Φ Γ  (6) 
 
( ) ( ) ( ) ( )y k C k x k v k= +  (7) 

 
whereΦ(k),Г(k)andC(k)  are system matrix, the covariance of 
discretization process noise is  Q (k)  =E(w(k)wT(j)) , 
measurement noise is  R (k)  =E(v(k)vT(j)) ,  k and j are 
discretization time. 
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In practical application, the measurement noise covariance  R 
and process noise covariance  Q is independent of the system 
state. In vehicle systems, the measurement noise covariance is 
always obtained through the data probability statistics and 
seemed as a statistical parameter in some degree. The process 
covariance Q , varying according to the road, originates from 
the road grade on which the automobile is running at a constant 
speed. The suitable value of  Q  and R  are available on the basis 
of different road grade in the Kalman filter proposed in this 
paper by which the suspension state is able to be predicted 
exactly and the sprung mass estimation is feasible to be 
described this method explicitly. 

As a recursive guesstimating method, Kalman filter 
initializes the state variables and then estimate the next state on 
the basis of current state. Due to the noise mixed measurement 
feedback, the estimate process should be integrated to an 
amendment process as following, 

First step: Initialization 
 

ˆ ˆ(0 | 0) (0)x x=  (8) 
 
(0 | 0) (0)P P=  (9) 
 
Second step: Time update 
 

ˆ ˆ( | 1) ( 1) ( 1 | 1)x k k k x k k− = − − −Φ  (10) 
 
( | 1) ( 1) ( 1 | 1) ( 1)

( 1) ( 1 | 1) ( 1)

T

T

P k k k P k k k
k Q k k k

− = − − − −

+ − − − −

Φ Φ
Γ Γ

 (11) 

 
Third step: Kalman Gain Matrix 
 

1( ) ( | 1) ( )[ ( ) ( | 1) ( ) ( )]T TK k P k k C k C k P k k C k R k −= − − +  (12) 
 
Forth step: Measurement update 
 

ˆ ˆ ˆ( | ) ( | 1) ( )( ( ) ( ))x k k x k k K k y k y k= − + −  (13) 
 
( | ) [ ( ) ( )] ( | 1)P k k I K k C k P k k= − −  (14) 
 

B. Vehicle Sprung Mass Estimation 
The resonant peak value is prone to shifting due to the 

mutative sprung mass and deteriorate the ride comfort. 
Recursive least square(RLS) method view the sprung mass as 
research object to estimate the sprung mass using the 
suspension system input/output data. In order to improve the 
online identification functionality, the RLS is transferred into a 
parameter recursive estimation form. This kind of estimation 
refers to the identification process that updated dynamic 
deflection and sprung mass acceleration are adopted to ament 
the sprung mass estimated result at the last time integrated with 
absolute velocity of sprung mass and wheel. 

Here, make a transformation on equation (2), 

 
( ) ( )b b p b w s b wm x c x x k x x+ − = − −    (15) 

 
For arithmetic simplification, the estimated parameter vector 

and information vector can be identified as, 
 

b p[ ]Tm cθ =  (16) 
 

( ) [ ]b b wφ t x x x= −    (17) 
 
( ) ( )s b wy t k x x= − −  (18) 
 
Then, the equation(15) can be rewritten as, 
 
( ) ( )Ty t tφ θ=  (19) 
 
With the increase of collected data, the recursive gain matrix 

will be smaller and the ( )LS
ˆ tθ amend effect will be impaired. In 

order to overcome data saturation in recursive process and 
realize real-time tracking, a forgetting factor is introduced in 
this equation, 

 
2

1
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Where0.9<λ<1  is forgetting factors. Then, the estimation of 

parameter vector is 
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here θ can be obtained through revursive method, 
 
( ) ( 1)+L( )[y( ) ( ) ( 1)]T

LS LS LS
ˆ ˆ ˆt t t t t tθ θ φ θ= − − −  (22) 
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F t tt
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=
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1F( ) [1 L( ) ( )][F( -1)]Tt t t tφ
λ

= −  (24) 

 
Using recursive least square with forgetting factor, the 

different weighting coefficients arising from forgetting factors, 
are imposed on these data and used to improve the performance 
of Least Square method. 

IV. VEHICLE STEERING STABILITY ANALYSIS 
Considering the important role that sprung mass plays in 

vehicle steering stability analysis, the issue of steering 
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sensitivity analysis should be covered. Here, according to the 
2DoF of automobile steering model, the formulations regards to 
steering wheel input and yaw velocity output are derived as 

 

1 2 1 2 2

2 2
1 2 1 2 1

1( + ) + ( - ) ( )

1( - ) ( )

r r

r z r

k k ak bk w k m v uw
u

ak bk a k b k w ak I w
u

− = +

+ + − =





β δ

β δ
 (25) 

 
where k1 and k2 are sideslip angle stiffness of front and rear 

axle,  u is the velocity of automobile,  a and b are the position 
center of gravity between wheels, δdenotes the steering angle, 
v  denotes the lateral acceleration, u denotes the longitudinal 
velocity, wr denotes the yaw velocity,  Iz  denotes the 
momentum of inertia around vertical axis.  

According to the transient response of yaw velocity derived 
from automobile theory, the response time is of importance. 
Affected by the estimate value of sprung mass, there should be 
a different response result. In this research, the attention is 
focused on the transient response result due to different running 
velocity. It is well known that the parameter steering sensitivity 
assigns a position of special importance in vehicle engineering 
research. The stability factor represented by sideslip angle 
stiffness and the distance between front and rear axles and 
gravity center reflects the transient response characteristics. 
The positive stability factor stands for the steering radius prone 
to increase. While, the negative factor shows the decrease 
steering radius tendency, which means an instable running 
condition. In this research, the angular steady-state gain of the 
yaw is consist of the yaw velocity and steering angle input. For 
simplicity purpose, when the steering angle is seemed to be the 
same in a comparative group, the yaw velocity would be the 
single and convenient assessment criteria to figure out the 
difference between the comparative results. In this paper, 
considering the importance of the steering sensitivity and same 
steering angle input, we extract the yaw velocity under real 
vehicle sprung mass and estimated sprung mass to valid the 
estimated effect.  

 

V. DESIGN EXAMPLE 
In this section, the proposed adaptive Kalman filter is used to 

estimate the sprung mass. As mentioned earlier, following this 
estimator, the steering stability is shown by comparative study 
at different speeds. The structure parameter values are listed in 
Table 1. 

In the simulation process, the road simulation is assumed as 
the elevation of ISO road grade in time domain. Some 
researchers found that the tyre vibration and sprung mass 
vibration are collected by the accelerometer with 2% precision. 
In reasonable transducer range, the vibration amplitude of the 
tyre and sprung mass will be amplified along with increasing 
road grade, as well as the measurement noise covariance. For 
the reason that the velocity is selected as the input of suspension 
model, the Q and R values in Kalman filter algorithm are able to 
be obtained ahead under different road grade, according to the 

 
 

Table. 1.  Automobile Suspension Parameter 
Parameter Meaning Value 

 Sprung Mass 260kg 
 Unsprung Mass 40kg 

 

Suspension 
Stiffness 16000 N/m 

 Tyre Stiffness 183000 N/m 

zI  Momentum of 
Inertia 3885kgm2 

a Distance Value 1.463m 

b Distance Value 1.585m 

1k  Front Sideslip 
Stiffness -62618N/rad 

2k  Rear Sideslip 
Stiffness -110185N/rad 

u Velocity - 

 
ISO road grade. Thus, the Kalman filter measurment 
covariance R  and process covariance  Q and R  are shown in 
table 2. 
 

Table 2.  ISO Road Grade Based R  and Q  Value. 
Road grade  R  Q  

A 2.1×10-7 0.0035 

B 8.4×10-7 0.014 

C 3.4×10-6 0.056 

D 1.4×10-5 0.224 

E 5.6×10-5 0.896 

F 2.2×10-4 3.584 

G 8.8×10-4 14.34 

H 3.5×10-3 57.34 

 
Employing aforementioned Kalman filter method, we 

selected the value Q and R on grade C road condition with 
simulation, the estimated values are shown in Fig. 2. Besides, 
value Q and R  on the road of grade E and grade A are seemed as 
the comparative operation condition. The estimated errors of 
sprung mass and tyre velocity are shown in Fig. 3 
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(b) 
Fig. 2. Estimated Resaults on Road Grade C. a) Sprung mass velocity 

estimation. b) Wheel velocity estimation. 
 

 

(a) 
 

 

(b) 
Fig. 3. Estimated Parameter Error on Road Grade C. a) Sprung mass 

velocity estimation error. b) Wheel velocity estimation error. 
 
For the observation convenience, the data ranged from 4s to 

6s are captured in Fig. 2. The red curve denotes the real sprung 
mass and tyre velocity value in road grade C. The other curve 
denote  Q  and R  value in different road grade.  

The sprung mass and tyre velocity errors in these three 
different conditions are counted in table 3. 

Table 3. Estimated Sprung mass and wheel velocity error 
estimated 

error 

estimated 
parameter 

(m/s2) 

Road Grade 
C 

R & Q 

Road 
Grade E 
R & Q 

Road 
Grade A R 

& Q 

Maximum 
error 

Sprung mass 
velocity  0.003 0.006 0.026 

wheel velocity 0.013 0.014 0.032 

Average 
error 

Sprung mass 
velocity 1.03×10-3 3.2×10-3 0.012 

wheel velocity  8.7×10-3 9.1×10-3 0.011 

 
Stimulated on the road grade E, estimated sprung mass and 

wheel velocity can be calculated by the corresponding  Q  and R     
value in Fig 4. Here, the other two different road grade, C and A 
are seemed as control group. Fig. 5 shows the sprung mass and 
wheel velocity estimated variance. 

 

 

(a) 

 

(b) 
Fig. 4. Estimated Resaults on Road Grade E. a) Sprung mass velocity 

estimation. b) Wheel velocity estimation. 
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(a) 

 

(b) 

Fig. 5. Estimated Parameter Error on Road Grade C. a) Sprung mass 
velocity estimation error. b) Wheel velocity estimation error. 

 
For the observation convenience, the simulation data ranged 

from 4s to 6s are captured in Fig. 5. The red curve denotes the 
sprung mass and tyre mass velocity real value. The estimated 
sprung mass describes the estimated error apparently on road 
grade C and road grade A using value  Q  and R .  

The estimated error values of sprung mass and wheel 
velocity are counted shown in Table 4. Though the sprung mass 
and unsprung mass are selected as the estimation aim, the 
sprung mass and suspension dynamic deflection also can be 
conducted in the authors team former research. As described 
before, due to reason that different parameter R and Q are 
chosen, in different rows, the max error and average error are 
listed corresponding to sprung mass and unsprung mass.  

  

 
Table 4.  Estimated error values of sprung mass and wheel velocity 

estimated 
error 

estimated 
parameter 

(m/s2) 

Road Grade 
C 

R & Q 

Road Grade 
E 

R & Q 

Road 
Grade A R 

& Q 

maximum 
error  

Sprung mass 
velocity  0.003 0.018 0.41 

wheel velocity 0.08 0.19 0.42 

average 
error 

Sprung mass 
velocity 1.02×10-3 0.008 0.13 

wheel velocity  1.9×10-3 4.6×10-3 9.3×10-3 

 
 
According to the simulation analysis, it is shown that a high 

accuracy observation result is able to be obtained with Kalman 
filter algorithm applied on velocity of sprung mass and wheel 
estimation. Through selecting corresponding road grade value, 
the filter performance is reinforced and the blindness of process 
covariance and measurement covariance can be avoided.  

Forgetting based recursive least square sprung mass 
estimating simulation result is shown in Fig. 6. Due to the 
measurement noise, the estimated curve fluctuate around the 
real value. The initial sprung mass is 260kg added to 450kg 
after 1.5 seconds. The estimated curve matches the real sprung 
mass after 0.4s. Reducing the sprung mass to 350kg, the 
estimated curve match the real curve. Actually, in the former 
research of our group, the departure of real curve and estimated 
value especially in the period between 1.2s to 2s and 3s to 4s 
really have impact on the performance research in the other 
fields with regard to vehicle research. Fortunately, the 
deviation between real value and estimated value show similar 
output result corresponding to stability and brake research. On 
the other hand, the difference between estimation and real 
remind us that there still have room to grow.  

 

 

Fig. 6. Automobile Sprung Estimation 
 

Corresponding to the steering stability, the steering wheel 
input is set to be 10 degree. Using online sprung mass 
estimation, the identified mass is adopted in Simulink model to 
compare with real sprung mass simulation result. Here, the 
automobile yaw velocity is selected as the index to substitute 
for the steering sensitivity. In Fig. 7 and Fig. 8, with the yaw 
velocity at speed of 30km/h and 70km/h, the steering input 
ranges from -20 degree to 20 degree. It is shown explicitly that 
though the input changes sharply, the sprung mass estimation is 
able to precisely obtain and the steering stability is capable of 
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following the real curve. This property is of importance due to 
the control requirements that the online identified value should 
track the real value fast and accurate. From the estimation 
result, even the steering angle input changes from -20° to 20° 
suddenly, the yaw velocity using estimated mass is able to 
follow up the yaw velocity using real mass. It is shown that the 
estimated sprung mass is accurate and the employment of this 
term in steering stability analysis is feasible. 

 

Fig. 7. Steering Stability Analysis at Speed 30km/h  
 

 

Fig. 8. Steering Stability Analysis at Speed 70km/h  
 

VI. CONCLUSION 
Considering the easily changing characteristic of vehicle 

sprung mass which influence the suspension response 
seriously, the combination of Kalman filter and recursive least 
square method are proposed to estimate the sprung mass. 
Employing the sprung mass vibration acceleration, wheel 
acceleration, and suspension dynamic deflection signals, 
Kalman filter algorithm estimate the sprung mass and wheel 
absolute velocity. The precision reducing issue, due to the fact 
that measurement noise covariance and process noise 
covariance are not able to fit road grade the vehicle running on, 

is considered in the estimation process. Then, recursive least 
square method is adopted to sprung mass value prediction. 
Considering the steering stability effected by sprung mass 
estimation, the yaw velocity under different longitudinal 
velocity is compared using simulation method. It is shown that 
estimated mass influence the transient and steady response of 
yaw velocity apparently. With proposed estimation method, the 
yaw velocity of estimation is able to track the actual yaw 
velocity rapidly and the actual value of sprung mass is precisely 
estimated. It is also reflected that the maximum deviation exists 
at the input changed moment, while in the steady state, the error 
is prone to zero. The transient state owns considerable short 
settling time and peak time and fast response rate.  
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