
 

 

  
Abstract—The exchanged crossed cube ECQ(s,t) is a novel 

interconnection network which has better properties than other 
variations of hypercube, such as crossed cube and exchanged 
hypercube, in terms of diameter, number of links and cost factor. In 
order to clarify the fault-tolerant ability of exchanged crossed cube and 
lay a foundation for the further study, in this paper, we study the  
conditional connectivity and restricted connectivity of ECQ(s,t). By 
exploring the topological of ECQ(s,t), we show several topological 
properties of ECQ(s,t).  Based on these properties, we determine that 
the conditional connectivity and restricted connectivity of ECQ(s,t) 
are 2s, where t≥s>2. The research results of this paper will provide the 
key parameters for the reliability evaluation of ECQ(s,t)  in the future. 
So it has important theoretical significance and application value.  
 

Keywords—connectivity, conditional connectivity, exchanged 
crossed cube,  restricted connectivity 

I. INTRODUCTION 
ITH the continuous development of large-scale 
integration, multiprocessor systems can now consist of 

hundreds of processors, especially in high-performance parallel 
computing systems. However, the high complexity of these 
systems may threaten their reliability. As a result, the study of 
deterministic measures of reliability has become important. The 
notions of all kinds of connectivities have been employed to 
capture the reliability of a given multiprocessor system.  

The traditional connectivity of Menger[1], in which some 
processor subsets of multiprocessor systems can potentially fail 
at the same time, is not an accurate measure of reliability. 
Traditional connectivity is an important measure of the 
fault-tolerance of multiprocessor interconnection networks. 
However, such a measure underestimates the resilience of larger 
multiprocessor interconnection networks, it only correctly 
reflects the fault-tolerance of a network with few processors [2]. 
To compensate for this shortcoming, Harary introduced the 
concept of conditional connectivity by requiring some 
property for disconnected components of G-F[3]. If the 
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property is that each vertex has at least one neighbor not in F, 
the conditional connectivity under this property is referred to 
simply as conditional connectivity. Following this trend, 
restricted connectivity was proposed in [4,5], which assumes 
each processor has at least one neighbor not in F, even though 
processors in F. 

Conditional connectivity and restricted connectivity are 
usually used in measure the connectivity of a large scale 
multiprocessor interconnection network, at the expense of small 
probability events. So far, the conditional connectivity and 
restricted connectivity of many kinds of interconnection 
network has been successively solved, including hypercubes[2], 
folded hypercube[6], crossed cubes[7], möbius cubes[8], 
twisted cubes[9], locally twisted cubes[9]. There are, however, 
still some interconnection networks are not involved such as 
exchanged cube and exchanged crossed cube. 

It is well known, conditional connectivity and restricted 
connectivity represent fault tolerance of interconnection 
networks and are necessary prerequisites for diagnosability 
and conditional diagnosability studies. Therefore, The study 
of conditional connectivity and restricted connectivity is  
importance and necessary. 

In this paper, we determine that the conditional connectivity 
and restricted connectivity of ( , )ECQ s t  are both 2s  where 

2t s≥ > . In section 2, we recall some definitions and 
theorems of ( , )ECQ s t . The proofs of our results are in section 
3. A simulation experiments was performed in section 4. The 
simulation results illustrate that our conclusions are correct. 

II. DEFINITIONS AND THEOREMS 
Before defining the exchanged crossed cube,the notion of 

pair related must first be introduced. Let {(00,00),T =  

(10,10), (01,11), (11,01)} . Two binary strings 1 0X x x=  

and 1 0Y y y=  are pair related if ( , )X Y T∈ ,denoted by 

X Y [10]. 
Definition 1[11].The exchanged crossed cube ( , )ECQ s t  is 

defined as an undirected graph ( , )G V E , 

1 2 0 1 2 0{ ... ... | , , {0,1}, [ , ), [ , )}s s t t i jV a a a b b b c a b c i o s j o t− − − −= ∈ ∈ ∈
 where 1s ≥  and 1t ≥ , {( , ) | ( , ) }E u v u v V V= ∈ × ,which 
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consists of three types of edges,i.e., 1E , 2E  and 3E , as 
described below. 

1E ： [0] [0]u v≠ , 1u v⊕ = ,where [ ]u i  denotes the ith  

bit of vertex u  and ⊕  is the exclusive-OR operator.    

2E ： [0] [0] 0u v= = , [ :1] [ :1]u t v t= ,where [ : ]u x y  
denotes the bit pattern of u  between dimensions x  and y , 

inclusive. For all 1s ≥ , if and only if there exists a positive 
integer l , s t l t+ ≥ > , such that [ : ] [ : ]u s t l v s t l+ = + , 

[ 1] [ 1]u l v l− ≠ − , [ 2] [ 2]u l v l− = −  if l t−  is even,and 

[ 2 2 : 2 1] [ 2 2 : 2 1]u t i t i v t i t i+ + + + + + + +  for 

/ 2 0l t i( − −1)  > ≥ . 

3E ： [0] [0] 1u v= = , [ : 1] [ : 1]u s t t v s t t+ + = + + . 

For all 1t ≥ , if and only if there exists a positive integer l , 
1t l≥ ≥ , such that [ : ] [ : ]u t l v t l= , [ 1] [ 1]u l v l− ≠ − , 

[ 2] [ 2]u l v l− = −  if l  is even, and [2 2 : 2 1]u i i+ +   

[2 2 : 2 1]v i i+ +  for / 2 0l i( −1) > ≥   . 

Fig. 1 shows an illustration of ( , )ECQ s t  with 2s =  and 

2t = , where the dashed links,solid heavy links and solid thin 
links correspond to 1E , 2E  and 3E , respectively. 

        
  Fig. 1 (2, 2)ECQ  

 
Theorem 1[11] .The degree of ( ( , ))V ECQ s t  whose bit 

addresses end in 0 is 1s + , while the degree of ( ( , ))V ECQ s t  

whose bit addresses end in 1 is 1t + . 
By theorem 1, we can show the minimum degree of 

( , )ECQ s t , denoted by ( ( , ))ECQ s tδ , to be 1s + , where 

1t s≥ ≥ . 
Some basic properties and characteristics of 

( , )ECQ s t  were studied[11,12,13,14,15].  
Theorem 2[11].An ( , )ECQ s t  can be decomposed into two 

( 1, )ECQ s t−  subgraphs or two ( , 1)ECQ s t −  subgraphs. 
By theorem 2, an ( , )ECQ s t  can be partitioned into two 

subgraphs L  and R , where 

2 0 1 0( ) {0 ... ... | , , {0,1}, [0, 2], [0, 1]}s t i jV L a a b b c a b c i s j t− −= ∈ ∈ − ∈ − ,

2 0 1 0( ) {1 ... ... | , , {0,1}, [0, 2], [0, 1]}s t i jV R a a b b c a b c i s j t− −= ∈ ∈ − ∈ − ,

( 1, )L ECQ s t≅ −  and ( 1, )R ECQ s t≅ − . Then, ( )V L  

can be divided into A  and B ,and ( )V R  can be divided into 

C  and D , where 

2 0 1 0{0 ... ... 0 | , {0,1}, [0, 2], [0, 1]}s t i jA a a b b a b i s j t− −= ∈ ∈ − ∈ − ,

2 0 1 0{0 ... ... 1| , {0,1}, [0, 2], [0, 1]}s t i jB a a b b a b i s j t− −= ∈ ∈ − ∈ − ,

2 0 1 0{1 ... ... 0 | , {0,1}, [0, 2], [0, 1]}s t i jC a a b b a b i s j t− −= ∈ ∈ − ∈ − , 

2 0 1 0{1 ... ... 1| , {0,1}, [0, 2], [0, 1]}s t i jD a a b b a b i s j t− −= ∈ ∈ − ∈ − [12]. 

A shown in Fig. 2, the edges between A  and B  and the 

edges between C  and D  lie in 1E . The edges between A  

and C  lie in 2E . By the definition of A , B , C  and D , there 

consists three perfect matchings of subgraphs induced by 
A B∪ , A C∪  and C D∪ [10]. Any edge between two 

distinct vertices of B (or D ) lies in 3E . Similarly, any edge 

between two distinct vertices of A (or C ) lies in 2E . 

       
Fig. 2 A , B , C and D  in ( , )ECQ s t  

 
Theorem 3[11]. ( , ) ( , )ECQ s t ECQ t s≅ . 

Theorem 4[12]. ( ( , )) 1k ECQ s t s= + , where 1t s≥ ≥ . 

According to the definition of exchanged crossed cube, it is 
easy to determine that ( , )ECQ s t  is triangle-free [12]. 

Theorem 5. Let a , b , c  and d  be four arbitrary vertices of 
( , )ECQ s t  where a A∈ , b B∈ , c B∈  and d A∈ . 

Then, a - b - c - d - a  is not a cycle of length four. 
Proof. We prove this theorem by contradiction. As shown in 

Fig.3, we assume a - b - c - d - a  is a cycle of length four. Let 

2 0 1 0{0 ... ... 0}s ta a a b b− −= . By the definition of 1E  we have 

2 0 1 0{0 ... ... 1}s tb a a b b− −= . By the definition of 3E , we have 
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2 0 1 0{0 ... ... 1}s tc a a d d− −=  and 1 0...td d−  exists at least one 

bit different from 1 0...tb b− . By the definition of 1E , we have 

2 0 1 0{0 ... ... 0}s td a a d d− −= . Thus, a  and d  cannot be 

connected by a edge because 1 0...td d−  exists at least one bit 

different from 1 0...tb b− , which contradicts the assumption. □ 

a

d

b

c

AB

1E

3E
1E 2E

 
Fig.3 A cycle of length four where ,a d A∈  and ,b c B∈  

Theorem 6. For any two distinct vertices u  and v  of 
( , )ECQ s t , they share at most 2 common neighbors,denoted 

by | ( ) ( ) | 2N u N v∩ ≤ . 
Proof. By induction. Clearly, the theorem holds for 

(1,1)ECQ . Assume true for ( 1, )ECQ s t− (or 

( , 1)ECQ s t − ). According to theorem 2,we partition 
( , )ECQ s t  into L  and R , L  and R  are both isomorphic 

to ( 1, )ECQ s t−  (or ( , 1)ECQ s t − ). Without loss of 

generality, we assume ( 1, )L ECQ s t≅ −  and 

( 1, )R ECQ s t≅ − . When , ( )u v V L∈ (or , ( )u v V R∈ ) we 

have ( ) ( ) ( )N u N v V L∩ ⊂ (or ( ) ( ) ( )N u N v V R∩ ⊂ ) (see 
fig.2). By the induction hypothesis, we have 
| ( ) ( ) | 2N u N v∩ ≤ . When u L∈  and v R∈ (or u R∈  and 

v L∈ ), by the fact that A C∪  contains a perfect matching, 
we have | ( ) ( ) | 2N u N v∩ ≤ .  

Thus,we complete the proof.□ 
Theorem 7. For any edge ( , )u v of ( , )ECQ s t ,where 

2( , )u v E∈ , u A∈  and v C∈ , | ( ) ( , ) | 3N w N u v∩ ≤  for 

any vertex w  of ( , )ECQ s t . 
Proof. There are four cases to be considered. 
Case 1. w A∈ . 
As can be seen in Fig. 2, ( ) ( , )N w N u v A C∩ ⊂ ∪ . By 

theorem 6, we have | ( ) ( ) | 2N w N u∩ ≤  and 

| ( ) ( ) | 2N w N v∩ ≤ . When | ( ) ( ) | 2N w N v∩ = , we 

have ( ) ( )u N w N v∈ ∩ (see Fig.2). Then we also have 

| ( ) ( ) | | ( ) { , } | 1N w N u N w u v∩ − ∩ ≤ . Hence, 

| ( ) ( , ) | | ( ) ( ) | | ( ) ( ) | | ( ) { , } |N w N u v N w N u N w N v N w u v∩ = ∩ + ∩ − ∩
2 1 3≤ + = . 
Case 2. w B∈ . 
w  and v  have one common neighbor if and only if u , v  

and w  are in a horizontal straight-line of Fig. 2. In this 
case,because ( , )ECQ s t  is triangle-free, we have 

| ( ) ( ) | 0N w N u∩ = . When u , v  and w  are not in a 
horizontal straight-line of Fig. 2, we have 
| ( ) ( ) | 0N w N v∩ = . In this case,by theorem 6,we have 

| ( ) ( ) | 2N w N u∩ ≤ . Thus, | ( ) ( , ) | 2N w N u v∩ ≤ . 

Case 3. w C∈ . 
The proof procedure is similar to that of case 1. 
Case 4. w D∈ . 
The proof procedure is similar to that of case 2. 
The proof is complete.  

III. THE CONDITIONAL CONNECTIVITY AND THE RESTRICTED 
CONNECTIVITY OF ( , )ECQ s t  

We now use the above theorems to determine the conditional 
connectivity and the restricted connectivity of ( , )ECQ s t , 

denoted by ( ( , ))Ck ECQ s t and ( ( , ))Rk ECQ s t , as follows. 

Theorem 8. ( ( , )) 2ck ECQ s t s≤ , 2t s≥ > . 

Proof. Consider an arbitrary edge ( , )u v  of 2E  with u A∈  

and v C∈ . Since ( , )ECQ s t  is triangle-free, we have 

| ( ) ( ) | 0N u N v∩ = . Let vertex subset ( , )F N u v= =  

( ) ( ) { , }N u N v u v∪ − . As we can see in Fig.4, we have 

| | | ( ) | | ( ) | |{ , } | 1 1 2 2F N u N v u v s s s= + − = + + + − = . It is 

easy to see that F  is a vertex cut of ( , )ECQ s t . Next, we will 

prove F  is a conditional vertex cut of ( , )ECQ s t  (i.e.,every 

vertex of ( ( , ))V ECQ s t F−  has at least one neighbor which 

is not in F ). 
 

 
Fig. 4 Illustration for theorem 9 

 
Let w  be an arbitrary vertex of ( ( , ))V ECQ s t F− . 

( , )ECQ s t F−  has two connected components,one is { , }u v  

and the other is ( ( , )) { , }V ECQ s t F u v− − . Therefore, there 
are two cases to be considered. 

Case1. { , }w u v∈ . 
It is easy to see u  is a neighbor of v  and v  is a neighbor of 

u  with ,u v F∉ . Hence, w  has at least one neighbor which is 

not in F .  
Case2. ( ( , )) { , }w V ECQ s t F u v∈ − − . 
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By theorem 7, we have | ( ) ( , ) | 3N w N u v∩ ≤ ,which can 

be restated as | ( ) | 3N w F∩ ≤ . Since | ( ) | 1N w s≥ +  and 

2t s≥ > , we can derive | ( ) | 3N w > . Therefore, w  has at 

least one neighbor which is not in F . 
Hence,each vertex of ( ( , ))V ECQ s t F−  has at least one 

neighbor which is not in F . F  is a conditional vertex cuts of 
( , )ECQ s t  and | | 2F s= . 

Thus, ( ( , )) | | 2Ck ECQ s t F s≤ =  for  2t s≥ > . □ 

Theorem 9. ( ( , )) 2Ck ECQ s t s≥ , 2t s≥ > . 
Proof. By contradiction,we assume an arbitrary vertex subset 

F with | | 2 1F s≤ −  is a conditional vertex cut of 

( , )ECQ s t . By theorem 2, we partition ( , )ECQ s t  into two 

( 1, )ECQ s t−  subgraphs, denoted by L  and R , where  

2 0 1 0( ) {0 ... ... }s tV L a a b b c− −=  and 2 0 1 0( ) {1 ... ... }s tV R a a b b c− −= . 

Let 0F F L= ∩  and 1F F R= ∩ . Because 0 1F F∩ = ∅  

and | | 2 1F s≤ − , either 0| |F s<  or 1| |F s< . Without loss 

of generality, we assume that 1| |F s< . By theorem 4, we have 

( )k R s= . Thus, 1R F−  is connected. 

Next, we will prove each vertex of 0L F−  is connected to 

1R F− . Let u  be an arbitrary vertex of 0L F− . There are two 
cases to be considered. 

Case1. u A∈ . 
By the definition of conditional connectivity, each vertex of 

0)( FLV −  has at least one neighbor not in F . As shown in 
Fig.2, there are three subcases to be considered. 

Subcase1.1. ( )N u B F∩ ∉ . 

Let ( )v N u B= ∩ , we have v F∉ . As shown in Fig.5, 

by the definition of ),( tsECQ , u  has 1s −  neighbors in A  
and v has t neighbors in B . By theorem 5, we have 
( ( ) ) ( ( ( ) ) )N u A N N v B A∩ ∩ ∩ ∩ = ∅ . If u  cannot 

connect to 1FR − , then each horizontal straight-line in 
subgraphs P and Q has at least one vertex in F (see Fig.5). 
Thus, we have | | 1 1 2F s t s≥ − + + ≥  which contradicts the 

assumption that | | 2 1F s≤ − .  

 
Fig. 5. Illustration for subcase1.1 

 
Subcase1.2. ( )N u B F∩ ∈  and ( )N u A F∩ ⊄ . 

Let v  be an arbitrary vertex of ( )N u A∩  with v F∉ . 
As shown in Fig.6, u  has 2s −  neighbors in A  besides v , 
and v  has 2s −  neighbors in A  besides u . We have 
| ( ) ( ) | 0N u N v∩ =  because ),( tsECQ  is triangle-free. 

If u  cannot connect to 1FR − , then each horizontal 
straight-line in subgraph P has at least one vertex in F (see 
Fig.6). If ( )N v B F∩ ∈ , we have 

| | 2 1 2 1F s s≥ − + + − + +  

| ( ) | | ( ) | 2N u B N v B s∩ + ∩ = which contradicts the 

assumption that | | 2 1F s≤ − . Therefore, u  is connected to 

1FR − . Otherwise ( )N v B F∩ ∉ , the proof procedure is 
similar to that of Subcase1.1. 

 
Fig. 6. Illustration for subcase1.2 

 
Subcase1.3. ( )N u A F∩ ∈  and ( )N u B F∩ ⊂   
By the definition of conditional connectivity,we have 
( )N u C F∩ ∉ . Let ( )v N u C= ∩ , we have v F∉ . 

Therefore, u  is connected to 1FR −  by ( , )u v . 
Case2. u B∈ . 
Subcase2.1. ( )N u A F∩ ∉ . 
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The proof procedure is similar to that of Subcase1.1. 
Subcase2.2. ( )N u A F∩ ∈ .  
According to the definition of conditional connectivity,we 

have ( )N u B F∩ ⊄ . Let v  be an arbitrary vertex of 

( )N u B∩  with v F∉ . As shown in Fig.7, u  has 1t −  
neighbors in B  besides v  and v  has 1t −  neighbors in B  
besides u . Because ),( tsECQ  is triangle-free, we have 

| ( ) ( ) | 0N u N v∩ = . If u  cannot connect to 1FR − , then each 
horizontal straight-line in subgraph P has at least one vertex in 
F . We have | | 1 1 1 1 2 2F t t t s≥ − + + − + = ≥ which contradicts 

the assumption that | | 2 1F s≤ − .  

 
Fig.7. Illustration for subcase2.2 

Therefore,each vertex in 0L F−  is connected to 1R F− . It 

follows that ( , )ECQ s t F−  is connected and F  is not a 

conditional vertex cut of ( , )ECQ s t  which contradicts the 

assumption. Hence, ( ( , )) | |Ck ECQ s t F>  and  

( ( , )) 2Ck ECQ s t s≥ , for 2t s≥ > . □ 

Theorem 10. ( ( , )) 2Ck ECQ s t s= , 2t s≥ > . 
Proof. By theorem 8 and theorem 9,we can derive theorem 

10.□ 
Thus, the conditional connectivity of ( , )ECQ s t is almost the 

same as that of ( , )EH s t [16], but much smaller than that of 

1s tCQ + + [17].  
We now use the above theorems to prove the upper and lower 

bound of ( ( , ))Rk ECQ s t . 

Theorem 11. ( ( , )) 2Rk ECQ s t s≤ , 2t s≥ > . 

Proof. The proof procedure is similar to that of Theorem 8. 
But we needs to be consider whether any vertex w F∈  has at 
least one neighbor not in F . Due to ( ) ( ) { , }F N u N v u v= ∪ − ,  

as shown in Fig.4, either u  or v  is a neighbor of w , u F∈  
and v F∈ . Therefore, w  has at least one neighbor not in F , 
F is a restricted vertex cut of ( , )ECQ s t  with | | 2F s= . As 

a result, ( ( , )) | | 2Rk ECQ s t F s≤ = , 2t s≥ > . 

Theorem 12. ( ( , )) 2Rk ECQ s t s≥ , 2t s≥ > . 

Proof. The proof procedure is similar to that of Theorem 9. 
The difference is we should assume F  is a restricted vertex cut 
of ( , )ECQ s t .  

Theorem 13. ( ( , )) 2Rk ECQ s t s= , 2t s≥ > . 

Proof. By Theorem 11 and Theorem 12, we can derive 
Theorem 13. 

IV. EXPERIMENT SIMULATION 
The conditional connectivity and restricted connectivity 

simulation algorithm of ( , )ECQ s t  consists of the following 
3 steps. 
   Step 1: Vertex-coding 
   Each vertex is represented by a s+t+1-bit binary string.  
   Step 2: Establish all the 2-tuple sets of the connected edge 
   Obtain the set of F , | |F t≤ and each vertex of 

( ( , ))V ECQ s t F− (or ( ( , ))V ECQ s t )has at least one 
neighbor not in F . Then, establish all the 2-tuple sets of the 
connected edge after removing all vertices in F . 
   Step 3: Computing the connected components 
Computing the connected components based on 2-tuple set 
of the connected edge. ( ( , ))Ck ECQ s t t≥  (or 

( ( , ))Rk ECQ s t t> ) If there exists no 2-tuple set of the 

connected edge that has more than one connected 
component.  
   ( ( , ))Ck ECQ s t (or ( ( , ))Rk ECQ s t t> ) is the 

maximum integer. Table 1 shows the results of 
( ( , ))Ck ECQ s t  and ( ( , ))Rk ECQ s t t> , with 

2 5s t≤ ≤ ≤ .  
 

Table 1. The conditional connectivity and restricted connectivity 
simulation results of ( , )ECQ s t (2 5)s t≤ ≤ ≤  

ID 
( , )ECQ s t  

( ( , ))Ck ECQ s t  ( ( , ))Rk ECQ s t  
s  t

 
1 2 2 4 4 
2 2 3 4 4 
3 2 4 4 4 
4 2 5 4 4 
5 3 3 6 6 6 3 4 6 6 7 3 5 6 6 8 4 4 8 8 
9 4 5 8 8 

10 5 5 10 10 

 

V. CONCLUSION 
 

All kinds of connectivity of a interconnection network  are 
 the minimum number of  vertex cut  whose removal disconnects 
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the network under different conditions,  are directly related to its 
reliability and fault tolerability.  Hence they are  important 
indicators  of interconnection networks’ reliability evaluation.  

In this paper, we determine the conditional connectivity and 
restricted connectivity of ( , )ECQ s t , which is an important 

measure of the fault-tolerance of ( , )ECQ s t . After analyzing 

the topology of ( , )ECQ s t , we have proved the conditional 

connectivity and the restricted connectivity of ( , )ECQ s t  are 

2s  by theoretical deduction and simulation experiments, for 
2t s≥ > . 

In the future, we may consider the diagnosability[18], 
conditional diagnosability[19], and g-good-neighbor 
conditional diagnosability[20]  under the PMC and 
comparison model.  
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