

Abstract— As a result of the expansive information set size of high-
resolution image data, most desktop workstations do not have
sufficient configurable scheduling to perform image processing
assignments in a convenient manner due to which the image
processing tasks are meant to be divided into straight forward
assignments. The processing power of any regular computing
machine in this way becomes a severe bottleneck with respect to high
execution time and low throughput. Many image processing tasks
exhibit a high level of information region and parallelism and map
quite readily to a parallel computing system. This paper shows an
alternative to sequential image processing by introducing Map-
Reduce technique to segment multiple images with the help of
Hadoop framework. The evaluation of the proposed scheduling
algorithm is done by implementing parallel image segmentation
algorithm to detect lung tumor for up to 1 GB size of CT image
dataset. The results have shown improved performance with parallel
image segmentation when compared to sequential image
segmentation method particularly when data capacity reaches a
particular threshold. This is because the process of parallel image
processing has been able to exploit the multi-cores thread level
parallelism which ultimately gave the CPU usage with octacores up
to 96%, hence reducing the task execution time up to approximately
1.6 times compared with the sequential style of image segmentation
using Map-Reduce algorithm implemented with FIFO scheduler. The
proposed parallel image segmentation design has shown to be useful
for researchers at performing bulk image segmentation in parallel,
which can save tremendous execution time.

Keywords— Hadoop, Execution Time, Task parallelism,

Parallel Image Segmentation, Map, Reduce.

I. INTRODUCTION

 High end computing machines have not been savvied enough
(as far as the necessary equipment and programming
speculation) to increase across the broad usage. Maybe, it
appears that in near future, parallel computing will be

Mohammad Nishat Akhtar is with School of Aerospace Engineering,

Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia (email:
nishat.akhtar2000@gmail.com)
*Junita Mohamad Saleh is affiliated with School of Electrical and Electronics
Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang,
Malaysia (e-mail: jms@usm.my; Tel: +60194732732)
Elmi Abu Bakar is affiliated with School of Aerospace Engineering,
Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia (email:
meelmi@usm.my)
Ayub Ahmed Janvekar is affiliated with School of Mechanical Engineering,
Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia (email:
ayubjanvekar@gmail.com)

dominated by medium-grain distributed memory machines in
which every processing node will have the capabilities of a
desktop workstation [1]. In reality, as network innovations
keep on maturing, bunches of workstations are themselves
being progressively seen as a parallel computing asset. The
upsides of medium-grain standard computing are low cost and
high quality. The disadvantage comprises irregular load
designs on the processing nodes [2]. The proposed research
depicts the outline and implementation of parallel image
segmentation using Hadoop framework. It is also worth to be
noted that Hadoop framework is not based on the model of
Message Passing Interface (MPI) standard and is specifically
designed to support parallel execution on heterogeneous
workstation nodes [3, 4]. Many image processing algorithms
exhibit natural parallelism in a sense that the input image data
required to compute a given portion of the output is spatially
localized and is compatible to be implemented on a cloud
framework [5, 6]. In the simplest case, the output image could
be computed simply by independently processing single pixels
of the input image.

 Image Processing with parallel computing is a viable
approach to take care of image processing issues that require
extensive processing time [6, 7]. It is evident that restorative
imaging requires heaps of memory space and time to process,
so by parallelizing, it would be helpful to discover productive
and quick outcome. In parallel processing, a program can
make numerous assignments that cooperate to take care of the
issue of multi-tasking [8]. Parallel image processing cannot be
connected to all issues, or in other words it can be stated that
not every one of the issues can be coded in a parallel shape. A
parallel program ought to must have a few elements for a right
and proficient operation; else, it is conceivable that run-time
may not have the normal execution. These components
incorporate the processing parameters such as granularity,
coarse grained and fine-grained parallelism [9]. The remaining
parts of this manuscript are arranged as follows. Section II
highlights the background for parallel image segmentation.
Section III describes the model for multiple image
segmentation simultaneously. Section IV describes and
demonstrates the proposed parallel image segmentation
algorithm along with illustration of mapper and reducer for
parallel image segmentation. Section V shows the results and
discussion followed by a conclusion in Section VI.

Parallel Image Segmentation Using Map-
Reduce Framework

Mohammad Nishat Akhtar, Junita Mohamad Saleh*, Elmi Abu Bakar and Ayub Ahmed Janvekar

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 408

mailto:nishat.akhtar2000@gmail.com
mailto:jms@usm.my

II. BACKGROUND
Over the years, multiple image segmentation algorithms have
been used to analyze the images. Nowadays, wide range of
algorithm is being used to carry out the process of image
segmentation such as texture which is an essential feature that
reflects important information about the image surface. The
aim of image segmentation is to cluster the entire pixels into
specified salient image regions, i.e., regions corresponding to
individual objects, surfaces or natural part of objects.
Segmentation is an essential process of object recognition,
image compression, image database look-up and occlusion
boundary estimation within stereo or motion system. The
researchers these days are dealing with the problem of over
segmentation of images which ultimately leads to inaccurate
results and therefore, leaves a room for enhancing this problem
with the help of principal component analysis techniques [10,
11]. The basic image properties dealt with image segmentation
are its dissimilarity and similarity. Sharp changes in the
intensity of image causes dissimilarity whereas similarity
corresponds to the process of combining and matching the
pixels with the neighboring one based on its gray level pixel
value match and scale invariant feature transform [12, 13].
Some of the widely recognized techniques to implement image
segmentation are; Otsu's threshold method for automated
image segmentation, region growing and region merging
technique, edge detection method, watershed transformation
and histogram thresholding-based algorithms [14].
 Amongst all the techniques, Otsu's method is widely
renowned method to carry out the process of image
segmentation. Since it is an automated process, therefore, it is
easier to be applied on the bulk image data simultaneously.
Since the proposed research is dealing with image data,
therefore, it is appropriate to use OpenCV library and it is also
to be noted that Otsu's threshold technique has high degree
compatibility with OpenCV [15]. Furthermore, OpenCV has
capability to exploit high degree of parallelism due to its
available rich set of libraries [16]. This scenario makes the
condition more favorable for parallel image processing in an
efficient manner. There is also an API called Hadoop Interface
for Image Processing (HIPI) which is an extensive set image
processing framework and is only compatible with Hadoop
Map-Reduce parallel programming model [17]. HIPI has full
potential to accommodate high throughput image processing
using Map-Reduce algorithm which can be implemented on a
cluster of nodes. In order to perform segmentation process for
multiple images in parallel, the following Section III will
describe the segmentation model for multiple images.

III. SEGMENTATION MODEL FOR N IMAGES
Thresholding is considered to be an important technique for
image segmentation which has got potential to identify and
extract the target portion of an image from its actual
background on the principal of distribution of gray levels in an
image object. According to Otsu’s method, an image is
considered to be a two-dimensional grayscale intensity
function which contains N pixels including gray levels ranging
from 1 to L [18]. As per Otsu’s analysis, the number of pixels
having gray level ‘i’ is denoted by ‘fi’. Therefore, the

probability function (Pi) of gray level ‘i’ in an image with N
pixels could be written as (1) [19]:

Pi = fi / N

 (1)

For the analysis of bi-level thresholding of an image, the pixels
could be divided into two classes C1 and C2 respectively. C1
consists of first tier of gray level (1........,t) and C2 consists of
second tier of gray level (t+1............,L). Therefore, the gray
level probability distribution for the two classes could be
written as (2) and (3) [20]:

C1= P1/ω1(t)...................Pt/ω1(t)

 (2)

C2 = Pt+1/ω2(t),Pt+2 / ω2(t),.......PL/ω2(t)

 (3)

Where ω1(t) = ∑t

i=1 Pi and ω2(t) = ∑L
i=t+1 Pi

Above grey level probability distribution method could also be
applied for M number of classes assuming that there are M-1
thresholds, {t1,t2............,tM-1} which divide the original image
into M classes: C1 for [1......,t1], C2 for [t1+1........,t2].......,Ci for
[ti-1+1.........,ti] and Cm for [tM-1+1..........,L] [20].

Equation (4) represents a column vector:

 (4)

If the entered values in (4) are random pixel variables with a
precise mean, then the segmented matrix [seg] value ∑
is given by (5):

� = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 � = 𝑣𝑣𝑣𝑣𝑣𝑣�(𝑋𝑋𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝑋𝑋𝑗𝑗 − 𝜎𝜎𝑗𝑗 ��
𝑖𝑖𝑗𝑗

 (5)

Where and are the assumed value
of the ith and the jth entry in the vector X.

 Now let us assume there are n such images to be segmented
and if a single image is denoted by vector x, then the sample
computed segmentation could be given by the formula in (6):

𝑆𝑆𝑠𝑠𝑠𝑠 =

1
𝑛𝑛
�(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑇𝑇 =

1
𝑛𝑛
𝑋𝑋�𝑋𝑋�𝑇𝑇

𝑛𝑛

𝑖𝑖

 (6)

Where i = index for the set of n images, = average of n
image pixels

Equation (6) could also be rewritten in matrix form using to
denote the mean centred images in (7)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 409

 �
 ⋮ ⋮
𝑥𝑥�𝑖𝑖 … 𝑥𝑥�𝑛𝑛
⋮ ⋮

� ∗ �
⋯ 𝑥𝑥�1 ⋯
⋯ ⋮ …
… 𝑥𝑥�𝑛𝑛 ⋯

� (7)

 Let us divide the image patches into v number of pixels based
on their similarity. On similarity basis, let us categorize the set
of pixels into different clusters i.e., C1, C2,.....,Cv .

 Now let us define the set group of every unsigned pixel
which at least borders one of the clusters as defined in (8)
[20]:

 (8)

 Here, x is the pixel to be assigned, where N(x) denotes the
current neighboring pixel of point x which is a part of cluster
Ck. As per (8), x does not lie the cluster Ci and k belongs to
pixel x such that N(x) is a part of cluster Ck (Cluster with k
pixels).

 Now let us denote as the difference of measure between
the pixels as defined in (9) [20]:

 (9)

 Where l(x) denotes the pixel value of point x and i denotes
the index of the cluster such that N(x) intersect Ci. l(y) denotes
the pixel value of point y.
Now to select whether q S and cluster Cj where j [1,n]
such that:

 𝛿𝛿�𝑞𝑞,𝐶𝐶𝑗𝑗 � = min
𝑥𝑥∈𝑠𝑠,𝑘𝑘∈(1,𝑛𝑛)

{(𝑥𝑥,𝐶𝐶𝑘𝑘)}
 (10)

Where S is defined in (8)

 Now if is lesser than the predefined threshold point
tp set by the programmer, the pixel is assigned to cluster Cj,
else it must be assigned to another most considerable cluster C
such that:

 𝐶𝐶 = 𝑣𝑣𝑎𝑎𝑠𝑠min
𝐶𝐶𝑘𝑘

{𝛿𝛿(𝑍𝑍,𝐶𝐶𝑘𝑘)}

 (11)

 Now if <tp, then the pixel is allocated to Cn . If
neither of the condition is satisfied, then the formation of new
cluster Cn+1 takes place.
After the pixel has been allocated to the cluster, the mean pixel
value of the cluster must be updated.

 According to Gedraite and Hadad [21], the function which
is used to generate the kernel is a Gaussian function
comprising of 2 dimensions and could be defined using (12):

 (12)

 Where q and r are the vectors, a is the amplitude, (q0, r0) is
the centre, and is the standard deviation in q and r
direction.

 Filter is defined using the variance of the Gaussian
distribution. This parameter drastically affects the filtering
results. The quality factor (Q) function defined for segmented
image using Gaussian blur is given by the (13) [21]:

𝑄𝑄(𝑠𝑠, 𝑡𝑡) =
𝜎𝜎𝑠𝑠.𝑡𝑡

𝜎𝜎𝑠𝑠2.𝜎𝜎𝑡𝑡2 . 2 .
�̅�𝑠. 𝑡𝑡̅

𝑠𝑠2 + 𝑡𝑡2 .
2 .𝜎𝜎𝑠𝑠2. 𝜎𝜎𝑡𝑡2

𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑡𝑡2
 (13)

Where, t is the image without noise and s is the filtered image.

 is the covariance between two images, is the variance
of filtered image and is the variance of source image
without noise. Here, and are the mean of images s and t.
This quality factor determines the covariance between two
images, the distribution in the contrast and distortion in
luminance.

 Now Section IV will illustrate the proposed parallel image
segmentation algorithm along with the implementation of the
Hadoop mapper and reducer to execute parallel image
segmentation.

IV. PROPOSED IMAGE SEGMENTATION FRAMEWORK
Hadoop Interface for Image Processing (HIPI) is an extensive
set image processing API which is only compatible with
Hadoop Map-Reduce parallel programming framework [22,
17].

 The input images have been taken from Lung Image
Database Consortium image collection (LIDC-IDRI) [23]. In
order to implement the proposed parallel image segmentation
algorithm, the input image files comprising of CT image
samples is converted into HIPI format with HIB extension
before it is passed to the main configuration files for mapping
and reducing. Once the image file is successfully converted to
the OpenCV compatible format (Mat), then the image file is
passed to the mapper so as to enable the task distribution to the
java threads. It is worth to be noted that prior to image data
processing, the mapper ensures that the input images are in
grayscale format.

 Post channel check, numerous image processing functions
are applied to segment the input images in parallel during the
mapping phase. Post segmentation of bundled input images,
the segmented data for each image is stored in a variable. The

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 410

segmented data is in the form of Region of Interest (ROI)
pixels. The stored ROI pixels data for each image is then
passed to the reducer. Pseudocode in Fig. 1 represents the
illustration of the mapper function.

 In the Reduce phase, ROI pixels variable is received and is
stored in an array list. The reducer then computes the average
segmented pixels of all the input images before giving the final
average pixel value. Once the reducer is done with final
output, then the output image data gets stored in the HDFS. In
Fig. 2, the illustration of the reducer is shown using the
pseudocode.
For the pre-processing of image samples, we have converted
the acquired input image from its original form to bilateral blur
form in order to remove the noise from the image. Post noise
removal, we try to apply image thresholding in order to get the
estimated diseased portion area of the entire image. Post
diseased portion estimation, the contour is drawn in order to
get the clarity of the diseased portion detection. Fig. 3 shows
the sample input CT image marked with tumor region. Let's
say for n number of patients if there is a need to detect average
number of tumor area in lungs for stage 2 cancer. Fig. 4 shows
an illustration to segment n number of lung cancer images.
In order to segment multiple images parallelly using the
proposed Map-Reduce algorithm, firstly all the input images
are converted into HIB format and then, at stage1 a channel
check is applied to ensure all images are in grayscale. At stage
2, the thresholding is applied on the lung images. For the
proposed parallel image segmentation framework, optimal
threshold is applied. At stage 3, segmentation of the lung
images is done in parallel to highlight the ROI area which can
also be called as tumor segmentation. At stage 4, in order to
enhance the segmented image contour correction is applied to
the ROI pixels and is passed to the reducer for feature
extraction and analysis.

Fig. 1 Illustration of mapper

Fig. 2 Illustration of Reducer

Fig. 3 Sample CT image marked with tumour region

Fig. 4 Image segmentation process of lung tumour

V. RESULTS AND DISCUSSION
 Our experiment setup consists of single node with a
configuration of 8 GB RAM, 500 GB ROM, Intel i7, 3.4 GHz
processor. For the proposed experiment, Hadoop has been

1. Input image .JPG format
2. Image conversion to HIB.Dat
3. Pass image to Mapper<HipiImageHeader, FloatImage,

IntWritable, IntWritable> //IntWritable is a Hadoop
variant of integer

4. Get image resolution
5. Check image channel: IF = 3

THEN covert to grayscale
6. Set kernel size (width * height pixels)
7. Apply Blur Filters to remove noise
8. Image conversion to HSV(SourceImage, TargetImage, size,

(0,0)); //(0,0 is the anchor point)
9. Apply Otsu's Threshold (TargetImage)
10. Obtain ROI pixels; // (0[Black], 255[White]

 Pixels
 9. Store ROI pixels //White/Black pixel
 10. Emit ROI pixels variable to reducer
 context.write(new IntWritable(1),new
 IntWritable (ROI pixels));

1. Reducer receives image Reducer<IntWritable, IntWritable,

IntWritable,
Text>

2. Initialize a counter and iterate over IntWritable/int records
from mapper

3. Compute average segmented ROI pixel value
 // Emit output of job which will be written to HDFS context.
write(key, new Text(result));

4. Output the resultant pixel value

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 411

implemented using Pseudo-Distributed mode where master
node and slave node is encapsulated within a single machine.
The master node is responsible for running the Job Tracker
and Name Node while slave node is responsible to run Task
Tracker and Data Node. The nodes were installed with Ubuntu
14.1 and Open JDK 1.6.0.24, and the execution environment
was Hadoop 2.6.1.

Configuration of machine:

• Operating system: Ubuntu 14.1
• RAM: 8 GB
• Internal HDD (Dedicated to Ubuntu): 50 GB
• Processor: Intel i7 3.4 GHz- Sandy Bridge
• Level 2 Cache: 2048 KB

The configuration of Hadoop parameters are set as follows:

• HDFS Block Size: 128 MB
• No. of task mapping per node: 2
• No. of task reducing per node: 1
• Replication factor: 2
• Scheduler: FIFO

 Experiments have been carried out using Lung Image
Database Consortium image collection (LIDC-IDRI) [23].

A. Performance Metrics
 It is worth to be noted that a series of performance
indicators i.e., task execution time, CPU cores usage,
throughput, impact of task mapping, impact of task reducing
and accuracy are usually required to evaluate a Map-Reduce
task. However, for the proposed experiment, our focus is on
task execution time and CPU cores utilization. For the
proposed experiment, all the 8 cores of the system is at the
disposal of the Map-Reduce job by considering it a NP hard
problem. Thus, an experiment was conducted to analyze the
performance of Map-Reduce job by implementing parallel
image segmentation for different image data sets taken from
LIDC-IDRI ranging between 100 MB to 1 GB.

B. Execution Time Analysis for Parallel Image
Segmentation Using Hadoop

 For this study, an experiment is performed to run the task
of image segmentation comprising of 100 MB, 200 MB, 400
MB, 600 MB, 800 MB and 1 GB image dataset using HIPI
API ported in Hadoop framework. This should provide a clear
understanding on the execution time of parallel programming
mode for implementing image segmentation by using varying
size of image dataset. The input split size divides the input
bulk image dataset into multiple blocks. A Hadoop block is a
file on the underlying file system. Each Hadoop block has one
dedicated thread worker. For the proposed experiment,
Hadoop version 2.6.1 has been used for which each block size
is 128 MB. If a data block is filled completely to its capacity,

then its associated thread worker is utilized 100%. The number
of map tasks spawned depends on the number of blocks
generated by the input split size. For the analysis purpose, the
resolution of all the images has been kept intact for accurate
results. Fig. 5 show the task execution time for various size of
image datasets implemented using Hadoop framework.

Fig. 5 Task execution time for various size of image dataset on
Hadoop framework

C. Image Datasets of 100 MB and 200 MB
 Firstly, the performance result using 100MB image data
benchmark to evaluate the task execution time of Map-Reduce
job is presented. This test was performed using BytesWritable
data type and a constant key-value pair size of 1 KB with
varying range of map and reduce task. For the implementation
of 100 MB image dataset, it took 33 seconds to complete the
job of image segmentation as observed in Fig. 5. The reason
for the faster execution of 100 MB image data is due to the
input split size. Parallel image segmentation implemented
using Hadoop executes any job by dividing it into several
blocks and each block has a fixed size [24]. For the version of
Hadoop framework used in the proposed research, the block
size value is set to 128 MB which is the fixed value in Hadoop
version 2.6.1. Moreover, it has been verified by several
benchmarks testing that 128 MB is the optimum block size
value to execute the high-end data size jobs faster [7]. It is also
worth to be noted that for all the previous version of Hadoop
framework, the maximum value of block size was either 32
MB or 64 MB.

 Therefore, let’s say for executing 50 MB image dataset
which not even the half of 128 MB Hadoop block size, the
number of input split(s) and the number of spawned map task
is only 1 and minimum number of worker thread of the block
i.e., 39.62% is allotted to execute the job whereas to
implement the 100 MB image dataset, majority of the worker
thread of the block i.e., 78.25% is allotted to execute the job as
a result of which 100 MB image dataset takes less time to be
executed. Now coming to the image dataset of 200 MB, which

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 412

is divided into 2 Hadoop blocks as it is more than the single
block size of 128 MB, the number of input splits and the
number of spawned map task is 2 due to which worker threads
of almost one and half blocks are allotted to execute the job as
a result of which the completion time of the job for 200 MB
image dataset is only 36 seconds as shown in Fig. 5.

D. Image Datasets of 400 MB and 600 MB
 Now let us have a look at the 400 MB image dataset.
From the graph in the Fig. 5, it could be observed that the total
task execution time for 400 MB image dataset is 21 seconds. It
is worth to be noted that Hadoop adjusts the division of 400
MB image dataset also into 3 blocks, therefore, the number of
input splits and the number of spawned map task is equal to 3
as a result of which complete 100% threads of all the three
blocks are used to execute the job. In addition to this, it could
also be observed that there is a difference of 12 seconds in the
total task execution time between 400 MB and 100 MB image
dataset due to the fact that 100% threads of all the three
Hadoop block are used to implement the 400 MB image
dataset which is not the case with 100 MB image dataset.

 Now let us analyze the 600 MB image dataset. From the
graph in Fig. 5, it could be observed that the total task
execution time for 600 MB image dataset is 72 seconds. The
600 MB image dataset gets divided into 5 Hadoop blocks,
therefore, the number of split size and the number of spawned
map task is again 5. The difference in the task execution time
between 600 MB image dataset and 400 image datasets is
again 39 seconds which is due to the fact that for 600 MB
image dataset, apart from the 100% utilization of the threads
of the first four Hadoop blocks, 70% threads of the fifth
Hadoop block is utilized to execute the job of image
segmentation in parallel.

E. Image Datasets of 800 MB and 1 GB
 Now let us come to the 800 MB image dataset. From the
graph in Fig. 5, it could be observed that the total time
required to execute the task is 87 seconds. The 800 MB image
dataset gets divided into 7 Hadoop blocks, therefore, the
number of splits and the number of spawned map task is equal
to 7 as a result of which 100% threads of the first six blocks
and approximately 25% threads of the seventh Hadoop block
is utilized to execute the job. Similarly for 1 GB image dataset,
the total time required to execute the task was 96 seconds as
observed from the graph in Fig. 5. The 1 GB image dataset
was also divided into 7 Hadoop blocks, therefore, the number
of splits and the number of spawned map task is equal to 7 as a
result of which 100% threads of all the six Hadoop blocks is
utilized to execute the job. For 1 GB image dataset and 800
MB image dataset, there is only a difference of 5% in the task
execution time as observed in Hadoop log files due to the fact
that 1 GB image dataset utilized complete thread usage of all
the seven Hadoop blocks which in turn increases the degree of
task parallelization.

F. CPU Cores Usage Analysis for Parallel Image
Segmentation Using Hadoop

 In this section, analysis of the CPU cores usage for the
proposed parallel image segmentation on Hadoop framework
along with different segment of task execution time is done. It
is worth to be noted that in order to maximize the CPU cores
usage up to its maximum, the data to be processed needs to be
divided into several blocks so that the task parallelization
could be increased. The more the data blocks, the more is the
CPU cores usage. In addition to this, higher number of data
blocks also increases the number of splits and the number of
spawned map tasks. The following sub-sections discuss the
distribution of CPU cores usage over various time segments
for the implementation of parallel image segmentation for
various sizes of image datasets using parallel image
segmentation on Hadoop framework. Fig. 6 shows the
maximum CPU cores usage attained for implementing the
parallel image segmentation using Hadoop framework for
various sizes of image datasets and Fig. 7 shows the
distribution of overall CPU cores usage.

Fig. 6 Maximum CPU cores usage using parallel image segmentation

on Hadoop framework

G. Image Datasets of 100 MB and 200 MB
 Now from Fig. 6, it could be observed that, the maximum
CPU cores usage value attained for 100 MB image dataset is
33.23%. As per Fig. 7, for 100 MB image dataset, it could be
observed that the maximum CPU cores usage is attained at
15th second which is again almost the middle value of the total
task execution time. It is worth to be noted that for 100 MB
image data, majority of the threads of the 128 MB block is put
into action to execute the job. However, since the size of the
image dataset does not cross 128 MB, therefore, the number of
input split and number of spawned map task is only 1.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 413

Fig. 7 Distribution of CPU cores usage using parallel image
segmentation for 100 MB-1 GB image dataset on Hadoop distributed

mode

 Now let us focus on the 200 MB image dataset, from Fig. 6,
it could be observed that the maximum CPU cores usage
attained for 200 MB image dataset is 59.90%. Moreover, from
the graph in Fig. 7 it could be observed that there is a wide gap
between the maximum CPU cores usage between 100 MB
image data and 200 MB image data. Since the 200 MB image
dataset is greater than the single block size of 128 MB.
Therefore, 200 MB image dataset is divided into 2 Hadoop
blocks, as a result of which 75 % of the Hadoop threads in
total of two blocks together are allotted to complete the task
execution of 200 MB image dataset. For 200 MB image
dataset, the number of split and the spawned map task is 2
since it is allotted 2 blocks. It is worth to be noted that
maximum CPU cores utilization is achieved at 20th second
which again lies at the middle of the total task execution time.
It is worth to be noted that for all the two image datasets, i.e.,
100 MB and 200 MB the maximum CPU cores utilization is
achieved at the middle of the task execution time.

H. Image Datasets of 400 MB and 600 MB
 Coming to the 400 MB image dataset, it could be
observed from Fig. 6 that the maximum CPU cores usage
attained for 400 MB image dataset is 83.58%. Moreover, for
400 MB image dataset, it could be observed from the graph in
Fig. 7 that the maximum CPU cores usage is attained at the
12th second which lies again near the mid-point of the total
task execution time and then after a stable CPU cores usage of
more than 80% is observed till the finish time. For 400 MB
image dataset, the number of split size and the number of
spawned map task is equal to 4 which clearly specifies that the
400 MB image dataset is divided into 4 blocks. Therefore,
100% threads of the first three blocks and less than 20%
threads of the fourth block are utilized to execute the job.

 The maximum CPU cores usage attained for 600 MB image
dataset is 90.17% as observed from Fig. 6. For 600 MB image
dataset, again it could be observed from the graph in Fig. 7
that the maximum CPU cores usage is attained at 35th second
which lies almost at the middle of the total task execution time

and then it could be seen that there is a stable CPU cores usage
of around 89-90%. The number of splits and number of
spawned map tasks for the 600 MB image dataset is 5 which
show that it is divided into 5 Hadoop blocks as result of which
100% threads of the first five blocks and more than 70% of the
threads of the fifth block is utilized to execute the job.

I. Image Datasets of 800 MB and 1 GB
 Now let us shift our focus to 800 MB image dataset. It
could be observed from the graph in Fig. 6 that the maximum
CPU cores usage attained for this dataset is 96.70%. The 800
MB image dataset gets divided into 7 Hadoop blocks,
therefore, the number of input splits and the number of
spawned map task is 7 as a result of which 100% threads of the
first six Hadoop blocks and less than 25% threads of the
seventh Hadoop block is utilized to execute the job. It could be
observed from the graph in Fig. 7 that the maximum CPU
cores usage for 800 MB image dataset is attained at the 50th
second and soon after attaining this value there is a stable CPU
cores usage of around 95-96%.

 Now let us highlight at the 1 GB image dataset. It could be
observed from the graph in Fig. 6 that the maximum CPU
cores usage attained for this image dataset is 98.49%. It is
worth to be noted that 1 GB image dataset gets divided into 8
Hadoop blocks, therefore, the number of input splits and the
number of spawned map task is 8 as a result of which 100%
threads of all 8 Hadoop are utilized to execute the job. It could
be observed from the graph in Fig. 7 that the maximum CPU
cores usage is attained at the 60th second. Moreover, for 1 GB
image dataset, throughout the execution time a stable CPU
cores usage of more than 90% could be observed at majority
of the time segments. A difference of 2.21% could be observed
in the maximum CPU cores usage value between 1 GB image
dataset and 800 MB image dataset due to the fact that the
seventh block thread is almost utilized up to 100% for 1 GB
image dataset.

 From the graph in Fig. 7, it could be observed that there is a
sudden rise in the CPU cores usage after initial 5 seconds
second which forms a spike like trend for all the size of image
dataset. The reason for this trend is due to the fact that during
initial 5 seconds to 10 seconds, Hadoop initializes the input
data from the job tracker to the task tracker and during these
initial seconds Hadoop daemons, i.e., name node, data node,
job tracker and task tracker initiates.

J. Execution Time Analysis for Image Segmentation
Using Sequential Programming

 For this study, implementation for the task of image
segmentation comprising of 100 MB, 200 MB, 400 MB, 600
MB, 800 MB and 1 GB image dataset using sequential style of
programming on visual studio 2010 integrated development
environment platform is done. This should provide a clear
contrast between the difference in task execution time between
sequential style of programming and parallel programming.
This comparison will also enable us to analyze the threshold of

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 414

the data size at which the task execution associated with
various image datasets for parallel programming overcomes
the task execution time associated with sequential style of
programming. Fig. 8 shows the task execution time for various
sizes of image datasets implemented using sequential style of
programming to carry out the process of image segmentation.

K. Image Datasets of 100 MB and 200 MB
 It could be observed from the graph in Fig. 8 that it takes
15.17 seconds to implement the image segmentation for 100
MB image dataset. It could be observed that the execution
time has almost doubled for the 100 MB image dataset. If
compared with the execution time of parallel image
segmentation, the 100 MB image dataset took 33 seconds to
complete the job. Let us now analyze the 200 MB image
dataset.

 It could be observed from the graph in Fig. 8 that in order
to implement the 200 MB image dataset, it takes 32.5 seconds.
Again, it is worth to be noted that the execution time almost
got doubled if compared with the execution time of 100 MB
image dataset. If compared with the execution time of parallel
image segmentation, the 200 MB image dataset took 36
seconds to complete the job. It could be observed that for 200
MB image dataset, the execution time difference between
sequential programming and parallel programming has
narrowed down a lot if compared with previous image datasets
due to the fact that with respect to parallel image
segmentation, multiple threads provide a method of splitting
the work between numerous cores.

Fig. 8 Task execution time (sec) to implement image segmentation
for various image dataset in sequential programming mode

For instance, if suppose a program that executes with a
maximum efficiency with two threads on single core will most
likely run at its peak with about four threads on dual cores.
Now let us discuss about the analysis of the CPU execution
time for the datasets whose size is more than 200 MB.

L. Image Datasets of 400 MB and 600 MB
 As per Fig. 8, the total execution time to segment the 400
MB image dataset using sequential programming mode was 60
seconds whereas if compared with the execution time of
parallel image segmentation, the 400 MB image dataset took
only 21 seconds to complete the segmentation process in
parallel manner. From the graph in Fig. 8, it could be
observed that it took 90 seconds to complete the image
segmentation for 600 MB image data size, whereas, if
compared with the execution time of parallel image
segmentation, the 600 MB image dataset just took 72 seconds
to complete the job in parallel manner. From this comparison
it could be clearly inferred that due to the rise in hyper-
threading there is a wide gap generated between the sequential
execution and the parallel execution.

 The rise of hyper-threading within a single core ensures that
the CPU time does not get wasted for other processes running
on the node. It is worth to be noted that for sequential
programming as the size of the image dataset starts getting
higher, then there arises an impact on the Input-Output bound
process too since the implementation of sequential image
segmentation process is Input-Output bound. It is considered
that hyper-threading on a single core can increase efficiency
on heavy Input-Output bound processes. The following section
will analyze the execution time for the higher category of
image datasets and will also highlight the impact of heavy
Input-Output bound process on these types of image datasets.

M. Image Datasets of 800 MB and 1 GB
 Before coming up with a conclusive remark, let us have a
look for the execution time of 800 MB and 1 GB image
dataset. From the graph in Fig. 8, it could be observed that the
execution time for 800 MB and 1 GB are 120 seconds and 136
seconds. A difference of 16 seconds could be clearly observed
between these values. However, for parallel image
segmentation the 800 MB and 1 GB image dataset took 87
seconds and 93 seconds to get implemented in parallel manner.
Now from the sequential point of execution, it could be clearly
inferred that threads do not make the computing machine run
at a rapid rate. All they do is enhance the efficiency of the
computing machine by utilizing the complete cores which
would have been wasted otherwise on other processes. It is to
be clearly noted that, with respect to hyper-threading when the
number of threads increases within a single core then the
degree of Input-Output bound also increases. For heavy Input-
Output bound processes, the threads generated using hyper-
threading must perform switching at several points. Therefore,
if too many threads are to be run simultaneously, then the CPU
spends most of its time in performing thread switching and not
on the problem task. This process of overloaded thread context
switching is called thrashing. Therefore, it could be concluded
that for sequential processing the higher the size of image
dataset, the more is the degree of thrashing.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 415

N. CPU Cores Usage Analysis for Image Segmentation
Using Sequential Programming

 In this section, the analysis of the CPU cores usage for the
implementation of image segmentation using sequential
programming mode along with different segment of task
execution time is done. The graph in Fig. 9 shows the
maximum CPU cores usage attained for various size of image
datasets executed using sequential programming mode.

 From Fig. 9 it could be observed that, image segmentation
implemented using sequential programming has a relatively
stable CPU cores usage which averages around 14.3% over the
entire execution. However, a theoretical CPU cores usage
should be of 15.3%. The 1% difference is due to the Input-
Output disk usage operation. It is also to be noted that the
image segmentation implemented sequentially is totally cache
bound. However, if the application wants to access the
memory that is not in the cache then it might have to compete
with the other memory access of numerous cores and in the
mean time, if the application wants to write to the memory
location, then there might arise a cache eviction(s) for other
cores.

Fig. 9 Maximum CPU cores usage in sequential programming mode

The graph from Fig. 10 shows the distribution of CPU cores
usage for the execution of various sizes of image datasets
using sequential programming. It is worth to be noted that this
process of implementing image segmentation sequentially is
totally an Input-Output bound operation. Therefore, the graph
in Fig. 10 also shows a spike like trend similarly to parallel
image segmentation. The spike like trend arises in sequential
implementation only when the degree of Input-Output bound
process increases. It is also worth to be noted that if the users
want to leverage on a lower end machines to carry out image
processing tasks with lower size of image dataset, then the
sequential computing is preferable over parallel computing.

Fig. 10 Distribution of CPU cores usage for 100 MB-1 GB image
dataset using sequential programming

O. Performance analysis based on CPU execution time on
a single node

 Fig. 11 shows the effect of data size on performance of job
scheduling algorithms i.e., FIFO, Fair and Capacity schedulers
and sequential execution of image segmentation on 1 GB of
image data over a single node. The FIFO, Fair and Capacity
schedulers are also compared with the sequential execution of
image segmentation for the same 1 GB image data. From the
graph it could be inferred that FIFO scheduler takes the lowest
CPU execution time i.e., 96 seconds to complete the parallel
image segmentation job while Capacity Scheduler takes the
highest time i.e., 140 seconds to process the same amount of
data in the parallel framework category. However, if we
compare the parallel framework category with the sequential
execution, then a high difference could be observed in the
CPU execution time as the sequential execution takes 140 (136
sec + 4 sec) seconds to implement the image segmentation
algorithm. It is to be noted that, the overhead of 4 second is
due to the generation of log files.

Now from the sequential point of execution, it could be clearly
inferred that threads do not make the computing machine run
at a rapid rate. They only enhance the efficiency of the
computing machine by utilizing the complete cores which
would have been wasted otherwise on other processes.
It is to be clearly noted that, with respect to hyper-threading
when the number of threads increases within a single core then
the degree of Input-Output bound also increases. For heavy
Input-Output bound processes, the threads generated using
hyper-threading must perform switching at several points.
Therefore, if too many threads are to be run simultaneously,
then the CPU spends most of its time in performing thread
switching and not on the problem task. This process of
overloaded thread context switching is called thrashing.
Therefore, it could be concluded that for sequential
processing, higher the size of image dataset, the more is the
degree of thrashing.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 416

Fig. 11 Comparison of performance measure in terms of CPU time
between parallel and sequential framework

P. Performance analysis based on data processing per
second on a single node

The performance analysis based on data processing per second
was conducted for 1 GB image dataset in the parallel frame
category comprising of FIFO, Fair, and Capacity scheduler
and sequential framework category. As shown in Fig. 12, the
Fair scheduler and Capacity scheduler processed less bytes per
second compared to FIFO scheduler. Moreover, if the parallel
framework category is compared with the sequential
execution, then it could be clearly inferred that FIFO scheduler
in Hadoop processes data 1.45 times more than the sequential
execution using OpenCV on visual studio platform and
subsequently Fair scheduler processes data 1.42 times more
than the sequential execution whereas Capacity scheduler
process data 1.41 times more than sequential execution.

VI. CONCLUSION
 In this research work, Hadoop framework has been used to
implement the bulk image processing task in parallel. It is
worth to be noted that there has been no other framework
which has the potential to implement the task of bulk image
processing in parallel. To assess the performance of Hadoop
framework, the speedup in task execution time along with
CPU cores usage at different segment of task execution time
on the segmentation process of various sizes of image dataset
ranging from 100 MB to 1 GB have been analyzed
successfully. Post experimental analysis, it could be inferred
that, with respect to task execution time, parallel image
segmentation using Hadoop took 86 seconds to process 1 GB
image data whereas with respect to sequential process of
image segmentation, it took 136 seconds to process the same 1
GB image data.

Fig. 12 Comparison of performance measure in terms of data
processed per second between parallel and sequential framework

In terms of performance of scheduling the proposed parallel
image segmentation gives best results with Map-Reduce based
FIFO scheduler in terms of throughput and execution time if
compared with Fair and Capacity scheduler. Therefore, it is
evident from this analysis that parallel image segmentation
could reduce the task execution time to process image data up
to 1.6 times compared to sequential process of image
segmentation. Nonetheless, the proposed parallel image
segmentation algorithm could also be attempted to get
implemented using parallel adaptive arbitration algorithm
[25,26]. Overall this experiment ensures lower task execution
time and utilization of maximum CPU cores up to 96% using
task parallelism by keeping a balance between preemptive and
non-preemptive process. The resulting speedups in task
execution time along with maximum CPU cores usage
demonstrate the potential of parallel computing for numerous
images processing algorithm according to different stream of
image data.

ACKNOWLEDGMENT
This research is supported by the School of Aerospace and the
School of Electrical and Electronic Engineering of Universiti
Sains Malaysia. The authors would like to acknowledge the
Institute of Postgraduate Studies (IPS), Universiti Sains
Malaysia for the Global Fellowship
[USM.IPS/USMGF(06/14)] financial support to carry out this
research.

REFERENCES

[1] Cappello, F. and Etiemble, D., "MPI versus OpenMP on the IBM SP for
 the NAS Benchmarks", in Supercomputing, ACM/IEEE 2000
 Conference, 2000, pp. 80-92.

[2] Jost, G., Jin, H.-Q., Mey, D. and Hatay, F. F., "Comparing the OpenMP,
 MPI, and hybrid programming paradigm on an SMP cluster", Research
 Article, Computer Sciences Corp.; Moffett Field,CA, United States
 NASA Ames Research Center; Moffett Field, CA, United States. 2003,
 pp. 121-131.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 417

[3] Slabaugh, G.; Boyes, R. and Yang, X.," Multicores image processing
 with OpenMP applications Corner", IEEE Signal Processing Magazine
 27(2), 2010, pp. 134-138.

[4] Yang, C.-T. Huang, C.-L. and Lin, C.-F., "Hybrid CUDA, OpenMP, and
 MPI parallel programming on multicores GPU clusters", Computer
 Physics Communications, 182(1), 2011, pp. 266-269.

[5] Costantini, L. and Nicolussi, R., "Performances evaluation of a novel
 Hadoop and Spark based system of image retrieval for huge
 collections". Advances in Multimedia, 20(1), 2015, pp.11-16.

[6] Shuzhi Nie., “An improved parallel scalable K-means++ massive data
 clustering algorithm based on cloud computing”, International Journal
 of Circuits, Systems and Signal Processing, Vol. 11, 2017, pp. 420-424.

[7] Wang, Y., Cao, S., Wang, G., Feng, Z., Zhang, C. and Guo, H., "Fairness
 scheduling with dynamic priority for multi workflow on heterogeneous
 systems", in Cloud Computing and Big Data Analysis (ICCCBDA),
 IEEE, 2017, pp. 404-409.

[8] Saxena, S., Sharma, S. and Sharma, N., "Parallel image processing
 techniques, benefits and limitations". Research Journal of Applied
 Sciences, Engineering and Technology, 12(2), 2016, pp.223-238.

[9] Ladkat, A.S., Date, A.A. and Inamdar, S.S., "Development and
 comparison of serial and parallel image processing algorithms",
 in ‘Inventive Computation Technologies (ICICT), IEEE International
 Conference’, 2016, pp. 1-4.

[10] Jolliffe, I.T. and Cadima, J., "Principal component analysis: A review
 and recent developments", Philosophical Transactions of the
 Royal Society A, 374(2065), 2016, pp.201-502.

[11] Ieosanurak, W., Sakha, S., Klongdee, W., “Face classification based on
 PCA by using the center and foci of an ellipse”, International Journal
 of Circuits, Systems and Signal Processing, Vol. 12, 2018, pp. 653-660.

[12] Demsar, U.," Principal component analysis on spatial data: An
 overview", Annals of the Association of American Geographers,
 103(1), 2013, pp. 106-128.

[13] Jing Li., “Image feature matching based on improved SIFT algorithm”,
 International Journal of Circuits, Systems and Signal Processing,
 Vol. 12, 2018, pp. 500-504.

[14] Firdousi, R. and Parveen, S., "Local Thresholding Techniques in Image
 Binarization". International Journal Of Engineering And Computer
 Science, 3(3), 2014, pp.4062-4065.

[15] Ali, M., Siarry, P. and Pant, M., "Multi-level Image Thresholding
 Based on Hybrid Differential Evolution Algorithm. Application on
 Medical Images", Metaheuristics for Medicine and Biology,
 8(1), 2017, pp. 23-36.

[16] Otsu, N.," A threshold selection method from gray-level histograms",
 Journal of Automatica, 11(2), 1975, pp. 285-296.

[17] Sweeney, C., Liu, L., Arietta, S. and Lawrence, J.,, "HIPI: A Hadoop
 image processing interface for image-based map-reduce tasks",
 Research Article, Chris. University of Virginia. 2011, pp. 12-16.

[18] Hancock P.J.B., Baddeley R.J., Smith L.S., "The principal components
 of natural images Network", Vol. 3, 1992, pp. 61-72.

[19] Tremeau, A. and Borel, N. , "A region growing and merging algorithm
 to color segmentation", Pattern recognition, 30(7),1997, pp. 1191
 -1203.

[20] Yin, P.Y. and Wu, T.H., "Multi-objective and multi-level image
 thresholding based on dominance and diversity criteria", Applied Soft

 Computing, 54(2), 2017, pp.62-73.

[21] Gedraite, E.S. and Hadad, M., "Investigation on the effect of a Gaussian
 Blur in image filtering and segmentation", in IEEE ELMAR,
 Proceeding, 2011, pp. 393-396.

[22] Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X. and Zhang, L.,
 "Convolutional sparse coding for image super-resolution",
 in Proceedings of the IEEE International Conference on Computer
 Vision, 2015, pp. 1823-1831.

[23] Armato III, Samuel G., McLennan, Geoffrey, Bidaut, Luc, McNitt-
 Gray, Michael F., Meyer, Charles R., Reeves, Anthony P., Clarke,
 Laurence P. (2015). Data From LIDC-IDRI. The Cancer Imaging
 Archive. http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

[24] M. Nishat Akhtar, Junita Mohamad Saleh, C. Grelck, “Parallel
 Processing of Image Segmentation Data Using Hadoop”, International
 Journal of Integrated Engineering, 10(1), 2018, pp. 74-84.

[25] M. Nishat Akhtar, Junita Mohamad Saleh, O. Sidek, “Design and
 simulation of a parallel adaptive arbiter for maximum CPU utilization
 using multicore processors”, Journal of Computer and Electrical
 Engineering, Vol. 47, 2015, pp. 51-68.

[26] M. Nishat Akhtar, Sidek O. “An Intelligent Adaptive Arbiter for
 Maximum CPU Utilization, Fair Bandwidth Allocation and Low
 Latency”, IETE Journal of Research, 59(2), 2013, pp. 48-52.

Mohammad Nishat Akhtar received his B.E in Computer Science from
VTU, Karnataka during the year 2010 , MS in Electrical and Electronics
from Universiti Sains Malaysia during the year 2013 and PhD in Electrical
and Electronics from Universiti Sains Malaysia during the year 2017.
Currently He is a faculty member in School of Aerospace Engineering at
Universiti Sains Malaysia and is teaching Advanced Engineering Calculus
and Statics to first year engineering students. Prior to this, He has also taught
Object Oriented Programming and Computer Organization to first year and
third year engineering students. His research interests include High
Performance Computation, Parallel Computing using OpenMP and MPI,
Remote Sensing techniques, Image Processing, Multi-core Computing,
Scheduling Algorithms, Embedded Systems and System-on-Chip.

Junita Mohamad-Saleh received her B.Sc (in Computer Engineering) degree
from the Case Western Reserve University, USA in 1994, the M.Sc. degree
from the University of Sheffield, UK in 1996 and the Ph.D. degree from the
University of Leeds, UK in 2002. She is currently an Associate Professor in
the School of Electrical & Electronic Engineering, Universiti Sains Malaysia.
Her research interests include computational intelligence, tomographic
imaging and parallel processing.

Elmi Abu Bakar received his Dip. Eng Mechanical, from Kisarazu, Japan,
B. Eng Mechanical from Iwate, Japan, M. Eng Production System from
Toyohashi, Japan and PhD. Eng Electronics and Information from Toyohashi,
Japan. He is an Associate Professor in School of Aerospace Engineering at
Universiti Sains Malaysia and is teaching Control Systems and Robotics to
3rd year students. He has several industrial collaborations and is actively
working in the area of remote sensing for river monitoring. His research
interests includes remote sensing, machine vision (image based
measurement), control systems and robotics, abnormal detection using signal
processing method, shape classification and analysis and tool and die quality
inspection.

Ayub Ahmed Janvekar recieved hi B.E and M. Tech in Mechanical
Engineering from VTU, Karnataka. Currently He is a PhD Scholar in
School of Mechanical Engineering, Universiti Sains Malaysia. Prior to
joining PhD, He was working as a Lecturer in Mechanical Engineering
Department, at PESIT, Bangalore, India. His research interest include
assessment of porous media burner, distress evaluation in thermal imaging
and flame analysis.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 418

http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

	II. background
	III. segmentation model for n images
	IV. proposed image segmentation framework
	V. results and discussion
	A. Performance Metrics
	C. Image Datasets of 100 MB and 200 MB
	D. Image Datasets of 400 MB and 600 MB
	E. Image Datasets of 800 MB and 1 GB
	F. CPU Cores Usage Analysis for Parallel Image Segmentation Using Hadoop
	G. Image Datasets of 100 MB and 200 MB
	H. Image Datasets of 400 MB and 600 MB
	I. Image Datasets of 800 MB and 1 GB
	J. Execution Time Analysis for Image Segmentation Using Sequential Programming
	K. Image Datasets of 100 MB and 200 MB
	L. Image Datasets of 400 MB and 600 MB
	M. Image Datasets of 800 MB and 1 GB
	N. CPU Cores Usage Analysis for Image Segmentation Using Sequential Programming
	O. Performance analysis based on CPU execution time on a single node
	P. Performance analysis based on data processing per second on a single node

	VI. conclusion

