

Abstract—Error Correction Code (ECC) is an effective method to

ensure the correctness of data stored in Solid State Disk (SSD). At
present, Bose, Chaudhuri, Hocquenghem (BCH) code is the most
widely used in ECC. However, how to improve performance of
encoding and decoding has always been a problem. A new pipeline
operation is proposed by this paper to improve the performance of
ECC module based on BCH code in SSD. Pipeline operation is used in
I/O transmission, and the ECC process submerges in pipeline. The
64-bit parallel architecture is adopted to complete the encoding. The
3-stage pipeline structure is adopted in decoding. Therefore, the
efficiency of encoding and decoding is improved and the latency is
reduced. ECC module is able to support multiple error correction
capabilities. The capability is configurable to 24-bit, 40-bit, and 56-bit
for 512Bytes. The data throughput of the ECC module can reach
7.68Gbps.

Keywords—BCH code, Decoding, ECC, Encoding, SSD.

I. INTRODUCTION
S the data processing speed of the Central Processing Unit
(CPU) is getting more and more fast, the performance gap

between the traditional Hard Disk Drive (HDD) and CPU is also
increasing [1]. SSD based on NAND Flash has characteristics of
fast reading and writing speed as well as low power
consumption compared with HDD, which replaces HDD
gradually [2]. Flash bit in SSD may flip due to program/erase
(P/E) cycles, read disturb, program disturb, data retention, etc.,
so that the data stored in flash will be incorrect [3]. Similar to
magnetic storage and optical storage, flash also requires error
control technology to ensure the integrity and reliability of data
[4]. To further increase storage density, MLC (Multi-Level
Cell) and TLC (Triple-Level Cell) are becoming mainstream
[5].

The earliest ECC code used in NAND Flash is Hamming
code. Its principle and implementation are simple, but only
single bit error can be corrected. As the Hamming code is not

Yifei Niu is with School of Electronic Engineering, Heilongjiang

University, Harbin 150000, Heilongjiang, China (e-mail:
2171304@s.hlju.edu.cn).

Songyan Liu is with School of Electronic Engineering, Heilongjiang
University, Harbin 150000, Heilongjiang, China (corresponding author;
e-mail: liusongyan@ hlju.edu.cn).

Yanlin Chen is with School of Electronic Engineering, Heilongjiang
University, Harbin 150000, Heilongjiang, China.

Xiaowen Wang is with School of Electronic Engineering, Heilongjiang
University, Harbin 150000, Heilongjiang, China.

Huan Liu is with School of Electronic Engineering, Heilongjiang
University, Harbin 150000, Heilongjiang, China.

enough to process a higher bit error rate, the industry began to
introduce RS (Reed-Solomn) code as ECC code. The RS code
has strong ability to correct burst errors, whereas NAND Flash
is more likely to occur random independent errors. However,
the errors within NAND flash are properly solved with the BCH
code [6]. BCH code is the most common and wide ECC code for
NAND Flash [7].

BCH code is an important type of cyclic code. Previous
papers accomplished plentiful research on NAND Flash. Arul
K. Subbiah [8] presents a novel method to reduce the area of the
BCH multimode encoder based on a re-encoding scheme. Ping
Chen [9] implements a high performance low complexity ECC
module circuit for SSD controllers by BCH code. Sheyang Ning
[10] proposes an advanced bit flip scheme to correct major
program errors. Byeonggil Park [11] presents a novel folding
technique for BCH decoders, the regularly structured GF
multiplier which is efficiently folded to reduce the complexity
and the critical delay. In previous papers, almost all of the
authors implement by verilog language or other applications,
and the parallel bits are 8, 16 or 32 bit. This article implements
ECC module based on FPGA (Field Programmable Gata Array)
and tests in practical SSD. The parallel bits are 64. The reading
and writing pipeline are adopted in I/O transmission, and ECC
is completed in I/O transmission, so as to further improve the
performance of the system.

The paper is organized as follows. Section Ⅱ presents BCH
encoding and decoding design within ECC module. Section III
explains the hardware implementation. Section Ⅳ depict the test
results. Finally, section V is the conclusion.

II. BCH ENCODING AND DECODING

A. BCH Encoding
For a BCH (n, k, t) code, where the code length, message

length and maximum error correction number are denoted by n,
k, and t, the BCH code is calculated by equation (1) and (2) in
Galois Filed(GF):

() () ()n kc x x m x r x−= + (1)

() () mod ()n kr x x m x g x−= (2)

Where 01
2

2
1

1 ...)(mxmxmxmxm k
k

k
k ++++= −

−
−

−

stand message polynomial, ()c x is code polynomial, ()g x
means generator polynomial and ()r x is the remainder
polynomial of BCH code.

Design and Implementation of ECC Module
Based on BCH Code in SSD

 Yifei Niu, Songyan Liu, Yanlin Chen, Xiaowen Wang and Huan Liu

A

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 488

Since the BCH code is cycle code, the Linear Feedback Shift
Register (LFSR) can be used to implement the BCH encoder.
The circuit of serial LFSR is as Fig. 1, where

10 =g , 1=−kng ;)11(1 −−≤≤= knigi presents the

line is connect, 0=ig means the line is disconnected. Initially,
the switch K1 is closed, K2 is off, and when the LFSR outputs the
check bit, K1 is switched off and K2 is closed. The information
bits are input from the right edge, which is equivalent to the
dividend multiplied by knx − and then divided by)(xg . The
hardware implementation of traditional serial encoder is
relatively simple, but the clock cycle of encoding is long, which
cannot meet the application requirements of NAND Flash, so
that we designed the encoder with parallel structure.

...

0g
1g 2g

1n kg
− −

D0 D1 D kn 1−−D kn 2−−

K 2

g kn−

K 1

input

output
)(xm

)(xC

Fig. 1. Circuit of serial LFSR

In this paper, the unit of checking data is sector, the system
provides several different ECC abilities, including 24bit,40bit
and 56 bit. The length of checksum for different ECC ability is
shown in Table 1.

Table 1 Length of checksum corresponding to different ECC ability
Error

Correction
(bits)

Galois field
GF(2m)

Length of
checksum

(Byte)

Coding
efficiency

24 GF(213) 39 0.93
40 GF(213) 65 0.89
56 GF(213) 91 0.85

B. BCH Decoding
For the transmission code)(xc , it is defined that the

received code is)(xR . If the original code is interfered during
transmission, an error pattern of the following equation (3) will
be generated:

1
0 1 1() ... n

ne x e e x e x −
−= + + + (3)

Therefore, the receiving polynomial)(xR as equation(4)
can be represented by the transmission code and error pattern.

 () () ()R x e x c x= + (4)
The decoding of BCH code is as follows:
(1) Calculating syndrome polynomial 1 2 2, ,..., tS S S by

)(xR , then judging whether the received code has an error
according to the value of syndrome. The circuit of calculating
syndrome is as Fig. 2;

...

1g

S 0 S1 Sr 1−Sr 2−

gr 1−

1
0

=g

R(X)

1=gr
gr 2−

OR

...





=∆
correct:1

error0 :

 Fig. 2. The circuit of calculating syndromes

(2) Calculating the coefficient of error location polynomial
()xσ according to syndrome;
(3) Calculating the roots of error location polynomial ()xσ

and then getting the error locations and correct errors.
Syndrome polynomial is calculated by equation (5):

T
t HRSSSS ×==),...,,(221 (5)

It is provided that)(xe has v errors at positions 1j , 2j ,

…, vj , where 1 20 ... v nj j j≤ < < < < , and then we can get

)(xe as equation (6):
1 2() ...+ vjj je x x x x= + + (6)

For calculating the syndrome, it is to substitute t2 roots

(1, 2,..., 2)i i tα = of)(xg into)(xR , and then getting
equation (7):

1
110)(...)(−

−+++== ni
n

ii
i RRRRS ααα (7)

Since () () ()i i iR e cα α α= + , () 0ic α = ,we can get
equation (8):

1 2() () () ... ()vjj ji i i i
iS e α α α α= = + + + (8)

For 1 l v≤ ≤ ,we define jl
lβ α= , and equation (8) can be

abbreviated as equation(9):

1 2 ...i i i
i vS β β β= + + + (9)

Define a polynomial ()xσ of degree v on)2(mGF :

1 2

0 1

() (1)(1)....(1)

...
v

v

x x x x

x x

σ β β β

σ σ σ

= + + +

= + + +
 (10)

Where iσ is the coefficient of error location polynomial, if

we know the value of lβ , we can get the error location in

polynomial)(xR , and 1β − , 2β − ,…, vβ − are the roots of
()xσ .

Since the coefficient of syndrome polynomial 1S , 2S , …,

tS2 and the error position polynomial ()xσ are linked by the

number of error positions 1β , 2β ,…, vβ − , the following
equation (11) can be obtained by associating the polynomial

()xσ and ()R x .

1 1

2 1 1 2

1 1 12 12

0
2 0

...
... 0

...
v v vv v

S
S S

S vS S S

σ
σ σ

σσ σσ− −−

+ =
+ + =

+ + + + =+

 (11)

Equation (11) is also named Newton identity. We can find the
identity that matches Newton identity and the time of numbers
are less, that is ()xσ . The ()xσ can be calculated by iσ ,
and we can determine the error location by calculating the root

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 489

of ()xσ .
It can be implemented by iteratively through an efficient

algebraic hard decision decoding algorithm, which is usually
called Berlekamp-Massey (BM) algorithm [12]. The process of
BM algorithm is as follows:

Firstly, determining the appropriate)()1(xσ to satisfy the

first equation of Newton identity. Then, provided that 2σ is

equal to 1σ ,we need to judge if this matches the second
equation of Newton identity. If it is satisfied, we can get

(2) (1)() ()x xσ σ= . Otherwise, a correction value is added in
(1)()xσ to make the second equation be established. (2)()t xσ

is obtained after 2t iterations, and then (2)()() t xxσ σ= can
be determined. The reciprocal of roots for error location
polynomial are error locations. From the mathematical
perspective, the problem of finding the error location has been
solved, but seeking root is not so easy to achieve in engineering.

Qian Wentian proposed a method of calculating roots in
1964, which was called Chien search, so that lots of problems in
engineering were solved. The idea of Chien algorithm is: There
is a primitive element a in)2(mGF , and the reciprocal of

2 11, , ,..., na a a − are substituted into ()xσ , we can get
equation (12):

2
0 1 2() () ... ()i i i ti

ta a a aσ σ σ σ σ− − − −= + + + + (12)

Where ia− is the root of ()xσ if () 0iaσ − = , and then
whether the i -th bit in the received code has an error will be
known. If there is a bit error in the i -th bit, and the code of this
position is corrected, the result of the decoding is

() ()R x e x+ . If it is not zero, it indicates that there is no error
in the corresponding position.

III. HARDWARE IMPLEMENTATION
The ECC module of this paper is based on SSD. The SSD is

mainly composed of a flash array and a controller. The flash
array is divided into 3 logical channels, each of which contains a
flash array of 8 NAND Flash chips, a cortex-M1 processor and
an NFI (NAND Flash Interface) unit. The structure of hardware
is shown in Fig. 3, where NAC is NAND Array Controller,
DMAC is Directly Memory Address Controller.

NFI

NFI

NFI

ECC

ECC

ECC NAC

NAC

NACDMAC

NAND
×8

NAND
×8

NAND
×8

Fig. 3. Structure of hardware
The flash memory chip uses MTL NAND Flash of Micron's

MT29F256G08CEEAB, which has a capacity of 32G per chip
and contains 2 wafers. Each wafer contains 2 planes. Each plane

contains 1024 blocks, and each block contains 512 pages. The
page has a data space of 16KB and a reserved space of 1216
bytes. Each NAND Flash is 8-bit width, and ECC operates 8
NAND Flash in parallel, each is called a physical channel.

In this paper, the ECC module includes encoding and
decoding. Encoding and decoding are completed in a byte
stream. When writing data, original data will be written to NFI
and LFSR respectively. LFSR will calculate check code, then
add binary to the behind of original data, and finally write it to
NAND Flash. When reading data from NAND Flash, it will be
read to page buffer and LFSR respectively, then it will be
detected whether an error has occurred by ECC error detection
register. If an error occurs, the syndromes are popped from
LFSR, and the error locations and numbers are calculated by
ECC core in the end. Next, ECC correction reads and corrects
the errors from page buffer and returns the status to the ECC
correction FIFO. There are 8 page buffers, and one of the page
buffers is for a physical channel. The structure of ECC for one
logical channel is shown as Fig. 4.

NFI

LFSR
×8

Syndrome
FIFO

×8

...

A
rbiter

ECC Core
×2 ...

ECC
Correction

Pa
ge

 B
uf

fe
r

×8

Write data
Read
data

NAND
×8

ECC
Correction

FIFO

Page
Buffer

×8

NACDMA

 Fig. 4. The structure of ECC for one logical channel

A. Write Pipeline
The unit of writing data is page, and 8 physical channels can

be written in parallel at the same time. Therefore, the MC
(Master Controller) waits for message in data buffer to reach the
size of 8 pages, and then performs the write operation.

I/O P 01D

D I/O

D I/O P

P

D I/O P

I/O P

I/O P

D

D I/O P

D

D I/O P

Logic
Channel 0

1

0

1

0

1

0

1

Logic
Channel 0

Logic
Channel 1

Logic
Channel 1

Logic Unit Command Order

03

02

04

0

05

07

06

08

I/O P

I/O P

D

D I/O P

D

D I/O

0

1

0

1

Logic
Channel 0

Logic
Channel 1

09

11

10

12

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

E
C
C

P
Fig. 5. Write Pipeline

Internal programming operation can be performed
simultaneously between different logic cells, but I/O buses of

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 490

chip data transmission are shared. Therefore, after executing the
I/O transmission of a command and starting the programming
operation, NAC does not wait for the end of programming.
However, it starts preparing to receive the next command, and
ECC is completed in I/O transmission. When the same logical
unit receives the second write command, it waits for the
completion of previous operation and checks whether the
previous operation was successful. To further optimize
performance, we used a write operation with a cache. Fig. 5
shows the results of the pipeline of the write operation, it takes
two channels for example. Where D represents the process of
DMA transmission from the message processing unit to page
buffer, and I/O represents the process of data transmission in the
ONFI bus, ECC presents the ECC process, P represent the
programming process of internal flash unit.

From Fig. 5, we can see if we use internal cache buffer of
flash chip, the I/O transmission and ECC would be hidden in the
programming. In the main stage of writing, the internal
programming of chip takes the longest time and becomes a
performance bottleneck. The time of DMA, I/O and ECC is
short, which can be hidden in the pipeline. Finally, the overall
performance of writing will depend on the bandwidth of internal
programming, which can be expressed as equation (13)：

log (/)page physchns
write icchns LUNs

program

C N
P N N MB s

T
×

= × × (13)

Where
chnsicN log

 represents the number of logical channels,

LUNsN represents the number of logical units in each chip,

pageC presents the size of valid value in a page, chnsphysN

represents the number of physical channels in each logical
channel, programT represents the time spent in internal page

programming in milliseconds.

B. Read Pipeline
Unlike the internal programming process of writing

operation, which is the most time-consuming and becomes a
performance bottleneck. The internal read and DMA process in
the read operation are fast, and the I/O transfer process of chip
becomes a performance bottleneck. In other words, the overall
read performance will depend on the chip's I/O bandwidth. Fig.
6 illustrates the pipeline process of reading operation in two
logical channels.

Logic Channel 0

Logic Channel 0

Logic Channel 0

Logic Channel 1

Logic Channel 1

Logic Channel 1

Legend

Read Operation I/O Transfer GTX Bus

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

ECC

Fig. 6 Read Pipeline

Since two logic units can perform internal read operation
simultaneously, this process is hidden during the I/O
transmission. For DMA and ECC, the time they cost is less than
I/O transfer, so they are hidden in I/O transfer.

However, there is still a factor to be considered for the
reading operation. Each sector in the flash chip also stores
redundancy check information such as ECC and CRC, and the
actual amount of data obtained is less than the amount of data
passing through the I/O of the flash chip. Ultimately, the overall
read performance will be expressed as equation (14):

)/(

/log

sMB
LLLL

L

BNNP

ECCCRCOOBdata

data

OIchnsphyschnsicread

+++

×××=

 (14)

Where
chnsicN log

 represents the number of logical channels

and
chnsphysN denotes the number of physical channels in each

logical channel. OIB / represents the bandwidth of chip bus, the
length of data, out-of-band information, CRC and ECC check
code in each sector are OOBL , CRCL , and ECCL , respectively.

C. LFSR and Syndrome FIFOs
There are 8 LFSR modules, ECC code and pre-syndromes are

generated in them, each module is responsible for one physical
channel. The width of a LFSR is 8 bits, and 8 physical channel is
parallel. The principle of LFSR has been introduced in previous
section.

When programming data, NFI will wait for LFSRs to be idle
after all payload data are shifted into LFSRs, and then it will
shift out the ECC code from LFSRs and store them to NAND
Flash. Similarly, while reading data, NFI will shift all data into
LFSRs, including ECC code. After that, when the ECC Core
module needs the pre-syndromes to calculate the error numbers
and the error locations, NFI will wait for LFSRs to be idle and
then shift out the pre-syndromes from LFSRs.

There are 8 syndrome FIFOs, the generated pre-syndromes
by LFSR are pushed into them when the ECC correction ability
is open and some LFSR finds errors in the receiving data and the
read-back page is valid. Each of syndrome FIFOs is 28-bit width
and 32-level depth. One FIFO only for a particular LFSR, and a

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 491

FIFO is not available for any other LFSRs even it’s empty. It
will take at least 32 clock cycles to push all pre-syndromes into
FIFO, or more clock cycles if any FIFO is not empty at the
moment. Then LFSR can process next sector data.

D. Arbiter and ECC Core
In this article, there are 2 ECC cores, however, we have 8

Syndrome FIFOs, so that an arbiter is needed to determine
which data will be pushed into ECC core. When arbiter allows
ECC core to read data from any of syndrome FIFOs, it also
records the request sequence of 2 ECC cores. There are two
levels as arbitration mechanism in order to hold the order of
incoming operations: If requests arrive at different time, the
policy is to determine according to which request comes first; If
requests arrive at the same time, it adopts the policy of fixed
priority.

The ECC Core will pop pre-syndromes from syndrome
FIFOs, and then pre-syndromes will be expanded to syndromes.
In an ECC core, there’re 3 stages of pipeline, precisely,
syndrome expand, Berlekemp and Chien search. The structure
of ECC core is depicted in Fig. 7. Finally, calculating error
numbers and error locations can be done by any of ECC cores,
and error status will be returned to the next module.

Syndrome
expend

Berlekamp-
Massey

algorithm

Chien
Search

ECC core

Pre-syndromeSyndrome
Error

polynomial
Error

location

 Fig. 7. The structure of ECC core

E. ECC Correction and ECC Correction FIFO
The error information from 2 ECC cores will be pushed into

ECC correction. Then ECC correction reads error data from
page buffer and corrects them. The error correction sequence is
consistent with the order allowed by arbiter. After processing all
error data of one sector, ECC correction module will push an
entry to the ECC correction FIFO.

The ECC Correction FIFO is 16-level depth, and each FIFO
entry reports correction status of one sector for one physical
channel after it finishes ECC process of a sector. And the
messages of ECC Correction FIFO can be read by software. The
FIFO contains command pool index, lane number and sector
number, ECC warning flag, error bit quantity, as well as finish
flag.

F. ECC data pipeline
There’re several stages of pipeline for the total process of

ECC module. Firstly, when the 8 syndrome FIFOs are all empty,
syndromes from 8 LFSR modules will be pushed into 8
syndrome FIFOs. If the syndromes of previous sector in 8
channels have been entered into ECC cores, next syndrome data
will be shift to syndrome FIFOs. This rule reduces the
complexity of design at the cost of efficiency.

Secondly, the arbiter will grant an ECC core to read the data
from one of 8 syndrome FIFOs, when any of ECC cores is
available and some of 8 syndrome FIFOs are not empty. When
other data of channels have flowed into ECC cores, some
syndromes in some channels will remain in the FIFOs. Because

we have 8 syndrome FIFOs, among which there are only 2 ECC
cores.

Thirdly, the ECC core will calculate error numbers and error
locations. An ECC core may receive syndrome data of a few
channels in a short time. However, they may not be able to
receive syndromes from syndrome FIFOs when they are all busy
in correcting.

IV. TEST
For the design proposed in this paper, it has calculated in

theory and tested on the SSD in practice. The theoretical and
test value of reading and writing performance in different error
correction capabilities are shown in Fig. 8 and Fig. 9.

Fig. 8. Theoretical value for reading and writing performance in

different error correction capabilities

Fig. 9. Test value for reading and writing performance in different

error correction capabilities
As shown in Fig. 8 and Fig. 9, reading and writing speed will

decrease along with the increase of error correction bits, and the
test value is lower than the theoretical one due to system power
consumption, etc. From the result analysis, the performance
bottleneck of writing operation is the bandwidth of
programming operation. The performance bottleneck of reading
data is the bandwidth of data transmission of the chip bus, and
the ECC operation is submerged in pipeline, which is not the
performance bottleneck of the system. Here is a 40-bit error
correction capability used for test in SSD, the test results are
compared with other papers as shown in Table 2.

Table 2 Performance Comparison

Performance This Paper Paper[9] Paper[12]

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 492

Correctable
Errors

40bit/512
B

72bit/1KB
245bit/4K

B
Parallelism 64 32 32

Data Throughput 7.68Gbps 3.2Gbps 6.37Gbps
I/O Write

Bandwidth(MB/s)
407.4 N.A N.A

I/O Read
Bandwidth(MB/s)

565.7 N.A N.A

Decoding
Latency(us)

1.05 2.92 8.19

Paper [9] applys a 32-bit parallel architecture in encoding and
2-stage pipeline to accomplish the decoder with strong error
correction capability and long decoding latency. For paper [12],
it proposes a parity-check block as an additional decoding step,
and a novel memory based syndrome updating method
effectively improves the energy efficiency as well as the
decoding latency. Despite the decoding latency is short, the
error correction capability is not strong in such a method. As
shown in Table 2, by increasing the degree of parallelism and
using pipeline scheduling adequately, we can effectively
increase data throughput and reduce decoding latency.

V. CONCLUSION
This paper improves the reading and writing performance of

the system by designing the pipeline of the ECC module and
increasing the degree of parallelism. The ECC module can
support different error correction bits, having been tested on the
physical SSD, whose test results have reached the anticipated
effect. It supports 7.68Gbps with 64-bit parallel encoding and
3-stage pipeline decoding structure. Planar-level parallelism is
not used in this design because of the more demanding
constraints, which will result in the increasement about the
complexity of system, overhead of pipeline scheduling and the
power consumption of system. For writing operation, if the chip
is shared by I/O bus and DMA between the planes, the time of
I/O, ECC and DMA will not be submerged adequately by the
programming operation. Therefore, we will improve the
pipeline scheduling mode to achieve the plane level in order to
further improve system performance in the further work.
Considering there are only two ECC cores, the decoding
efficiency may be impacted, we will also perfect this part to
further improve the performance of the system.

REFERENCES
[1] M. Lin, R. Chen, J. Xiong, “Efficient Sequential Data Migration Scheme

Considering Dying Data for HDD/SSD Hybrid Storage Systems,” IEEE
Access, vol. 5, pp. 23366–23368, Nov. 2017.

[2] Jung. Kyu. Park, Yunjung. Seo, Jaeho. Kim, “Solid State Cache
Management Scheme for Improving I/O Performance of Hard Disk
Drive,” 2018 IEEE Int. Conf. on Consumer Electronics, Las Vegas, NV,
USA, pp. 1-4.

[3] Yougoo. Lee, “Hardware optimizations of hard-decision ECC decoders
for MLC NAND flash memories,” 2015 Int. SoC Design Conf., Gyungju,
South Korea, pp. 133-134.

[4] J. Hsieh, K. Hung, H. Li, “A Hardware.Efficient BCH Encoder Design,”
2016 Int. Conf. on Consumer Electronics-Taiwan, pp. 1-2.

[5] Bo Mao, Suzhen Wu, and Lide Duan, “Improving the SSD Performance
by Exploiting Request Characteristics and Internal Parallelism,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, Feb. 2018.

[6] Chien-Chung Ho, Yu-Ping Liu, Yuan-Hao Chang, and Tei-Wei Kuo,
“Antiwear Leveling Design for SSDs With Hybrid ECC Capability,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
25, pp. 488-501, Feb. 2017.

[7] Sheyang Ning, Tomoko Ogura Iwasaki, and Shuhei Tanakamaru,
“Reset-Check-Reverse-Flag Scheme on NRAM With 50% Bit Error Rate
or 35% Parity Overhead and 16% Decoding Latency Reductions for
Read-Intensive Storage Class Memory,” IEEE Journal of Solid-State
Circuits, vol. 51, pp. 1938-1951, Aug. 2016.

[8] Arul K. Subbiah, Prof. Tokunbo Ogunfunmi, “Area-effcient re-encoding
scheme for NAND Flash Memory with multimode BCH Error
correction” 2018 IEEE Int. Symposium on Circuits and Systems,
Florence, Italy, pp. 1-5.

[9] Ping Chen, Chun Zhang, Hanjun Jiang, and Zhihua Wang, “High
Performance Low Complexity BCH Error Correction Circuit For SSD
Controllers,” 2015 IEEE Int. Conf. on Electron Devices and Solid-State
Circuits, Singapore, pp. 217–220.

[10] Sheyang Ning, “Advanced Bit Flip Concatenates BCH Code
Demonstrates 0.93% Correctable BER and Faster Decoding on (36 864,
32 768) Emerging Memories,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, pp. 4404-4412, Dec. 2018.

[11] Byeonggil Park, Seungyong An, Jongsun Park, and Youngjoo Lee.
“Novel Folded-KES Architecture for High-Speed and Area-Efficient
BCH Decoders,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 64, pp. 535-539, May, 2017.

[12] Jaehwan Jung, In-Cheol Park, and Youngjoo Lee, “ A 2.4pJ/bit, 6.37Gb/s
SPC-enhanced BC-BCH Decoder in 65nm CMOS for NAND Flash
Storage Systems,” 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jeju, South Korea, pp. 329-330.

Yifei Niu was born in January, 1995. She received the bachelor degree in
Electronic Information Science and Technology from Heilongjiang University
of China. Currently, she is a graduate student at School of Electronic
Engineering, Heilongjiang University, China. Her major research interest in
embedded system.
Songyan Liu was born in February, 1969. He received the PhD degree in
Microelectronic Science and Technology from Harbin Institute of Technology,
China. He has worked as an engineer in well-known companies at home and
abroad. Currently, he is a professor at School of Electronic Engineering,
Heilongjiang University, China. He has published many papers in related
journals.
Yanlin Chen was born in April, 1994. Currently, she is a graduate student at
School of Electronic Engineering, Heilongjiang University, China. Her major
research interest in embedded system.
Xiaowen Wang was born in September, 1995. Currently, she is a graduate
student at School of Electronic Engineering, Heilongjiang University, China.
His major research interest in embedded system.
Huan Liu was born in June, 1991. Currently, she is a graduate student at
School of Electronic Engineering, Heilongjiang University, China. His major
research interest in embedded system.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 493

	I. INTRODUCTION
	II. BCH Encoding and Decoding
	A. BCH Encoding
	B. BCH Decoding

	III. Hardware Implementation
	A. Write Pipeline
	B. Read Pipeline
	C. LFSR and Syndrome FIFOs
	D. Arbiter and ECC Core
	E. ECC Correction and ECC Correction FIFO
	F. ECC data pipeline

	IV. Test
	V. Conclusion

