
 

 

  
Abstract—Error Correction Code (ECC) is an effective method to 

ensure the correctness of data stored in Solid State Disk (SSD). At 
present, Bose, Chaudhuri, Hocquenghem (BCH) code is the most 
widely used in ECC. However, how to improve performance of 
encoding and decoding has always been a problem. A new pipeline 
operation is proposed by this paper to improve the performance of 
ECC module based on BCH code in SSD. Pipeline operation is used in 
I/O transmission, and the ECC process submerges in pipeline. The 
64-bit parallel architecture is adopted to complete the encoding. The 
3-stage pipeline structure is adopted in decoding. Therefore, the 
efficiency of encoding and decoding is improved and the latency is 
reduced. ECC module is able to support multiple error correction 
capabilities. The capability is configurable to 24-bit, 40-bit, and 56-bit 
for 512Bytes. The data throughput of the ECC module can reach 
7.68Gbps. 
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I. INTRODUCTION 
S the data processing speed of the Central Processing Unit 
(CPU) is getting more and more fast, the performance gap 

between the traditional Hard Disk Drive (HDD) and CPU is also 
increasing [1]. SSD based on NAND Flash has characteristics of 
fast reading and writing speed as well as low power 
consumption compared with HDD, which replaces HDD 
gradually [2]. Flash bit in SSD may flip due to program/erase 
(P/E) cycles, read disturb, program disturb, data retention, etc., 
so that the data stored in flash will be incorrect [3]. Similar to 
magnetic storage and optical storage, flash also requires error 
control technology to ensure the integrity and reliability of data 
[4]. To further increase storage density, MLC (Multi-Level 
Cell) and TLC (Triple-Level Cell) are becoming mainstream 
[5].  

The earliest ECC code used in NAND Flash is Hamming 
code. Its principle and implementation are simple, but only 
single bit error can be corrected. As the Hamming code is not 
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enough to process a higher bit error rate, the industry began to 
introduce RS (Reed-Solomn) code as ECC code. The RS code 
has strong ability to correct burst errors, whereas NAND Flash 
is more likely to occur random independent errors. However, 
the errors within NAND flash are properly solved with the BCH 
code [6]. BCH code is the most common and wide ECC code for 
NAND Flash [7].  

BCH code is an important type of cyclic code. Previous 
papers accomplished plentiful research on NAND Flash. Arul 
K. Subbiah [8] presents a novel method to reduce the area of the 
BCH multimode encoder based on a re-encoding scheme. Ping 
Chen [9] implements a high performance low complexity ECC 
module circuit for SSD controllers by BCH code. Sheyang Ning 
[10] proposes an advanced bit flip scheme to correct major 
program errors. Byeonggil Park [11] presents a novel folding 
technique for BCH decoders, the regularly structured GF 
multiplier which is efficiently folded to reduce the complexity 
and the critical delay. In previous papers, almost all of the 
authors implement by verilog language or other applications, 
and the parallel bits are 8, 16 or 32 bit. This article implements 
ECC module based on FPGA (Field Programmable Gata Array) 
and tests in practical SSD. The parallel bits are 64. The reading 
and writing pipeline are adopted in I/O transmission, and ECC 
is completed in I/O transmission, so as to further improve the 
performance of the system.  

The paper is organized as follows. Section Ⅱ presents BCH 
encoding and decoding design within ECC module. Section III 
explains the hardware implementation. Section Ⅳ depict the test 
results. Finally, section V is the conclusion.  

II. BCH ENCODING AND DECODING 

A. BCH Encoding 
For a BCH (n, k, t) code, where the code length, message 

length and maximum error correction number are denoted by n, 
k, and t, the BCH code is calculated by equation (1) and (2) in 
Galois Filed(GF): 

( ) ( ) ( )n kc x x m x r x−= +                      (1) 

( ) ( ) mod ( )n kr x x m x g x−=                  (2) 

Where 01
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stand message polynomial, ( )c x  is code polynomial, ( )g x  
means generator polynomial and ( )r x  is the remainder 
polynomial of BCH code. 
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Since the BCH code is cycle code, the Linear Feedback Shift 
Register (LFSR) can be used to implement the BCH encoder. 
The circuit of serial LFSR is as Fig. 1, where 

10 =g , 1=−kng ; )11(1 −−≤≤= knigi  presents the 

line is connect, 0=ig  means the line is disconnected. Initially, 
the switch K1 is closed, K2 is off, and when the LFSR outputs the 
check bit, K1 is switched off and K2 is closed. The information 
bits are input from the right edge, which is equivalent to the 
dividend multiplied by knx −   and then divided by )(xg . The 
hardware implementation of traditional serial encoder is 
relatively simple, but the clock cycle of encoding is long, which 
cannot meet the application requirements of NAND Flash, so 
that we designed the encoder with parallel structure. 
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Fig. 1. Circuit of serial LFSR 

In this paper, the unit of checking data is sector, the system 
provides several different ECC abilities, including 24bit,40bit 
and 56 bit. The length of checksum for different ECC ability is 
shown in Table 1. 

Table 1 Length of checksum corresponding to different ECC ability 
Error 

Correction 
(bits) 

Galois field 
GF(2m) 

Length of 
checksum 

(Byte) 

Coding 
efficiency 

24 GF(213) 39 0.93 
40 GF(213) 65 0.89 
56 GF(213) 91 0.85 

B. BCH Decoding 
For the transmission code )(xc , it is defined that the 

received code is )(xR . If the original code is interfered during 
transmission, an error pattern of the following equation (3) will 
be generated:  

1
0 1 1( ) ... n

ne x e e x e x −
−= + + +                     (3) 

Therefore, the receiving polynomial )(xR  as equation(4) 
can be represented by the transmission code and error pattern. 

  ( ) ( ) ( )R x e x c x= +                              (4)                        
The decoding of BCH code is as follows: 
(1) Calculating syndrome polynomial 1 2 2, ,..., tS S S  by 

)(xR , then judging whether the received code has an error 
according to the value of syndrome. The circuit of calculating 
syndrome is as Fig. 2; 
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 Fig. 2. The circuit of calculating syndromes 

(2) Calculating the coefficient of error location polynomial 
( )xσ  according to syndrome; 
(3) Calculating the roots of error location polynomial ( )xσ  

and then getting the error locations and correct errors. 
Syndrome polynomial is calculated by equation (5): 

T
t HRSSSS ×== ),...,,( 221                         (5) 

It is provided that )(xe has v  errors at positions 1j , 2j  , 

…, vj , where 1 20 ... v nj j j≤ < < < < , and then we can get 

)(xe  as equation (6): 
1 2( ) ...+ vjj je x x x x= + +                               (6) 

For calculating the syndrome, it is to substitute t2  roots 

( 1, 2,..., 2 )i i tα =  of )(xg  into )(xR , and then getting 
equation (7): 

1
110 )(...)( −

−+++== ni
n

ii
i RRRRS ααα         (7) 

Since ( ) ( ) ( )i i iR e cα α α= + , ( ) 0ic α = ,we can get 
equation (8): 

1 2( ) ( ) ( ) ... ( )vjj ji i i i
iS e α α α α= = + + +             (8) 

For 1 l v≤ ≤ ,we define jl
lβ α= , and equation (8) can be 

abbreviated as equation(9): 

1 2 ...i i i
i vS β β β= + + +                               (9) 

Define a polynomial ( )xσ  of degree v  on )2( mGF : 

1 2

0 1

( ) (1 )(1 )....(1 )

...
v

v

x x x x

x x

σ β β β

σ σ σ

= + + +

= + + +
          (10) 

Where iσ  is the coefficient of error location polynomial, if 

we know the value of lβ , we can get the error location in 

polynomial )(xR , and 1β − , 2β − ,…, vβ −  are the roots of 
( )xσ . 

Since the coefficient of syndrome polynomial 1S , 2S , …, 

tS2  and the error position polynomial ( )xσ  are linked by the 

number of error positions 1β , 2β ,…, vβ − , the following 
equation (11) can be obtained by associating the polynomial 

( )xσ  and ( )R x . 

1 1

2 1 1 2

1 1 12 12

0
2 0

...
... 0

...
v v vv v

S
S S

S vS S S

σ
σ σ

σσ σσ− −−

+ =
+ + =

+ + + + =+

  (11) 

Equation (11) is also named Newton identity. We can find the 
identity that matches Newton identity and the time of numbers 
are less, that is ( )xσ . The ( )xσ  can be calculated by iσ , 
and we can determine the error location by calculating the root 
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of ( )xσ . 
It can be implemented by iteratively through an efficient 

algebraic hard decision decoding algorithm, which is usually 
called Berlekamp-Massey (BM) algorithm [12]. The process of 
BM algorithm is as follows: 

Firstly, determining the appropriate )()1( xσ to satisfy the 

first equation of Newton identity. Then, provided that 2σ is 

equal to 1σ ,we need to judge if this matches the second 
equation of Newton identity. If it is satisfied, we can get 

(2) (1)( ) ( )x xσ σ= . Otherwise, a correction value is added in 
(1)( )xσ  to make the second equation be established. (2 )( )t xσ  

is obtained after 2t  iterations, and then (2 )( )( ) t xxσ σ=  can 
be determined. The reciprocal of roots for error location 
polynomial are error locations. From the mathematical 
perspective, the problem of finding the error location has been 
solved, but seeking root is not so easy to achieve in engineering. 

Qian Wentian proposed a method of calculating roots in 
1964, which was called Chien search, so that lots of problems in 
engineering were solved. The idea of Chien algorithm is: There 
is a primitive element a  in )2( mGF , and the reciprocal of  

2 11, , ,..., na a a −  are substituted into ( )xσ , we can get 
equation (12): 

2
0 1 2( ) ( ) ... ( )i i i ti

ta a a aσ σ σ σ σ− − − −= + + + +     (12) 

Where ia−  is the root of ( )xσ  if ( ) 0iaσ − = , and then 
whether the i -th bit in the received code has an error will be 
known. If there is a bit error in the i -th bit, and the code of this 
position is corrected, the result of the decoding is 

( ) ( )R x e x+ . If it is not zero, it indicates that there is no error 
in the corresponding position. 

III. HARDWARE IMPLEMENTATION 
The ECC module of this paper is based on SSD. The SSD is 

mainly composed of a flash array and a controller. The flash 
array is divided into 3 logical channels, each of which contains a 
flash array of 8 NAND Flash chips, a cortex-M1 processor and 
an NFI (NAND Flash Interface) unit. The structure of hardware 
is shown in Fig. 3, where NAC is NAND Array Controller, 
DMAC is Directly Memory Address Controller.  

NFI

NFI

NFI

ECC

ECC

ECC NAC

NAC

NACDMAC

NAND
×8

NAND
×8

NAND
×8  

Fig. 3. Structure of hardware 
The flash memory chip uses MTL NAND Flash of Micron's 

MT29F256G08CEEAB, which has a capacity of 32G per chip 
and contains 2 wafers. Each wafer contains 2 planes. Each plane 

contains 1024 blocks, and each block contains 512 pages. The 
page has a data space of 16KB and a reserved space of 1216 
bytes. Each NAND Flash is 8-bit width, and ECC operates 8 
NAND Flash in parallel, each is called a physical channel. 

In this paper, the ECC module includes encoding and 
decoding. Encoding and decoding are completed in a byte 
stream. When writing data, original data will be written to NFI 
and LFSR respectively. LFSR will calculate check code, then 
add binary to the behind of original data, and finally write it to 
NAND Flash. When reading data from NAND Flash, it will be 
read to page buffer and LFSR respectively, then it will be 
detected whether an error has occurred by ECC error detection 
register. If an error occurs, the syndromes are popped from 
LFSR, and the error locations and numbers are calculated by 
ECC core in the end. Next, ECC correction reads and corrects 
the errors from page buffer and returns the status to the ECC 
correction FIFO. There are 8 page buffers, and one of the page 
buffers is for a physical channel. The structure of ECC for one 
logical channel is shown as Fig. 4. 
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 Fig. 4. The structure of ECC for one logical channel 

A. Write Pipeline 
The unit of writing data is page, and 8 physical channels can 

be written in parallel at the same time. Therefore, the MC 
(Master Controller) waits for message in data buffer to reach the 
size of 8 pages, and then performs the write operation. 
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Fig. 5. Write Pipeline 

Internal programming operation can be performed 
simultaneously between different logic cells, but I/O buses of 
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chip data transmission are shared. Therefore, after executing the 
I/O transmission of a command and starting the programming 
operation, NAC does not wait for the end of programming. 
However, it starts preparing to receive the next command, and 
ECC is completed in I/O transmission. When the same logical 
unit receives the second write command, it waits for the 
completion of previous operation and checks whether the 
previous operation was successful. To further optimize 
performance, we used a write operation with a cache. Fig. 5 
shows the results of the pipeline of the write operation, it takes 
two channels for example. Where D represents the process of 
DMA transmission from the message processing unit to page 
buffer, and I/O represents the process of data transmission in the 
ONFI bus, ECC presents the ECC process, P represent the 
programming process of internal flash unit. 

From Fig. 5, we can see if we use internal cache buffer of 
flash chip, the I/O transmission and ECC would be hidden in the 
programming. In the main stage of writing, the internal 
programming of chip takes the longest time and becomes a 
performance bottleneck. The time of DMA, I/O and ECC is 
short, which can be hidden in the pipeline. Finally, the overall 
performance of writing will depend on the bandwidth of internal 
programming, which can be expressed as equation (13)： 

log ( / )page physchns
write icchns LUNs

program

C N
P N N MB s

T
×

= × ×  (13) 

Where 
chnsicN log

 represents the number of logical channels, 

LUNsN  represents the number of logical units in each chip, 

pageC  presents the size of valid value in a page, chnsphysN  

represents the number of physical channels in each logical 
channel, programT  represents the time spent in internal page 

programming in milliseconds. 

B. Read Pipeline 
Unlike the internal programming process of writing 

operation, which is the most time-consuming and becomes a 
performance bottleneck. The internal read and DMA process in 
the read operation are fast, and the I/O transfer process of chip 
becomes a performance bottleneck. In other words, the overall 
read performance will depend on the chip's I/O bandwidth. Fig. 
6 illustrates the pipeline process of reading operation in two 
logical channels. 

Logic Channel 0

Logic Channel  0

Logic Channel  0

Logic Channel  1

Logic Channel  1

Logic Channel  1

Legend

Read Operation I/O Transfer GTX Bus

Logic Unit 0
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Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

Logic Unit 0

Logic Unit 1

ECC

 
Fig. 6 Read Pipeline 

Since two logic units can perform internal read operation 
simultaneously, this process is hidden during the I/O 
transmission. For DMA and ECC, the time they cost is less than 
I/O transfer, so they are hidden in I/O transfer. 

However, there is still a factor to be considered for the 
reading operation. Each sector in the flash chip also stores 
redundancy check information such as ECC and CRC, and the 
actual amount of data obtained is less than the amount of data 
passing through the I/O of the flash chip. Ultimately, the overall 
read performance will be expressed as equation (14): 

)/(

/log

sMB
LLLL

L

BNNP

ECCCRCOOBdata

data

OIchnsphyschnsicread

+++

×××=

               (14) 

Where 
chnsicN log

 represents the number of logical channels 

and 
chnsphysN  denotes the number of physical channels in each 

logical channel. OIB / represents the bandwidth of chip bus, the 
length of data, out-of-band information, CRC and ECC check 
code in each sector are OOBL , CRCL , and ECCL , respectively. 

C. LFSR and Syndrome FIFOs 
There are 8 LFSR modules, ECC code and pre-syndromes are 

generated in them, each module is responsible for one physical 
channel. The width of a LFSR is 8 bits, and 8 physical channel is 
parallel. The principle of LFSR has been introduced in previous 
section.  

When programming data, NFI will wait for LFSRs to be idle 
after all payload data are shifted into LFSRs, and then it will 
shift out the ECC code from LFSRs and store them to NAND 
Flash. Similarly, while reading data, NFI will shift all data into 
LFSRs, including ECC code. After that, when the ECC Core 
module needs the pre-syndromes to calculate the error numbers 
and the error locations, NFI will wait for LFSRs to be idle and 
then shift out the pre-syndromes from LFSRs. 

There are 8 syndrome FIFOs, the generated pre-syndromes 
by LFSR are pushed into them when the ECC correction ability 
is open and some LFSR finds errors in the receiving data and the 
read-back page is valid. Each of syndrome FIFOs is 28-bit width 
and 32-level depth. One FIFO only for a particular LFSR, and a 
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FIFO is not available for any other LFSRs even it’s empty. It 
will take at least 32 clock cycles to push all pre-syndromes into 
FIFO, or more clock cycles if any FIFO is not empty at the 
moment. Then LFSR can process next sector data. 

D. Arbiter and ECC Core 
In this article, there are 2 ECC cores, however, we have 8 

Syndrome FIFOs, so that an arbiter is needed to determine 
which data will be pushed into ECC core. When arbiter allows 
ECC core to read data from any of syndrome FIFOs, it also 
records the request sequence of 2 ECC cores. There are two 
levels as arbitration mechanism in order to hold the order of 
incoming operations: If requests arrive at different time, the 
policy is to determine according to which request comes first; If 
requests arrive at the same time, it adopts the policy of fixed 
priority. 

The ECC Core will pop pre-syndromes from syndrome 
FIFOs, and then pre-syndromes will be expanded to syndromes. 
In an ECC core, there’re 3 stages of pipeline, precisely, 
syndrome expand, Berlekemp and Chien search. The structure 
of ECC core is depicted in Fig. 7. Finally, calculating error 
numbers and error locations can be done by any of ECC cores, 
and error status will be returned to the next module. 

Syndrome 
expend

Berlekamp-
Massey 

algorithm

Chien 
Search

ECC core

Pre-syndromeSyndrome
Error

polynomial
Error 

location

 Fig. 7. The structure of ECC core 

E. ECC Correction and ECC Correction FIFO 
The error information from 2 ECC cores will be pushed into 

ECC correction. Then ECC correction reads error data from 
page buffer and corrects them. The error correction sequence is 
consistent with the order allowed by arbiter. After processing all 
error data of one sector, ECC correction module will push an 
entry to the ECC correction FIFO. 

The ECC Correction FIFO is 16-level depth, and each FIFO 
entry reports correction status of one sector for one physical 
channel after it finishes ECC process of a sector. And the 
messages of ECC Correction FIFO can be read by software. The 
FIFO contains command pool index, lane number and sector 
number, ECC warning flag, error bit quantity, as well as finish 
flag. 

F. ECC data pipeline 
There’re several stages of pipeline for the total process of 

ECC module. Firstly, when the 8 syndrome FIFOs are all empty, 
syndromes from 8 LFSR modules will be pushed into 8 
syndrome FIFOs. If the syndromes of previous sector in 8 
channels have been entered into ECC cores, next syndrome data 
will be shift to syndrome FIFOs. This rule reduces the 
complexity of design at the cost of efficiency. 

Secondly, the arbiter will grant an ECC core to read the data 
from one of 8 syndrome FIFOs, when any of ECC cores is 
available and some of 8 syndrome FIFOs are not empty. When 
other data of channels have flowed into ECC cores, some 
syndromes in some channels will remain in the FIFOs. Because 

we have 8 syndrome FIFOs, among which there are only 2 ECC 
cores. 

Thirdly, the ECC core will calculate error numbers and error 
locations. An ECC core may receive syndrome data of a few 
channels in a short time. However, they may not be able to 
receive syndromes from syndrome FIFOs when they are all busy 
in correcting. 

IV. TEST  
For the design proposed in this paper, it has calculated in 

theory and tested on the SSD in practice. The theoretical and 
test value of reading and writing performance in different error 
correction capabilities are shown in Fig. 8 and Fig. 9.  

 
Fig. 8. Theoretical value for reading and writing performance in 

different error correction capabilities 

 
Fig. 9. Test value for reading and writing performance in different 

error correction capabilities 
As shown in Fig. 8 and Fig. 9, reading and writing speed will 

decrease along with the increase of error correction bits, and the 
test value is lower than the theoretical one due to system power 
consumption, etc. From the result analysis, the performance 
bottleneck of writing operation is the bandwidth of 
programming operation. The performance bottleneck of reading 
data is the bandwidth of data transmission of the chip bus, and 
the ECC operation is submerged in pipeline, which is not the 
performance bottleneck of the system. Here is a 40-bit error 
correction capability used for test in SSD, the test results are 
compared with other papers as shown in Table 2. 

Table 2 Performance Comparison 

Performance This Paper Paper[9] Paper[12] 
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Correctable 
Errors 

40bit/512
B 

72bit/1KB 
245bit/4K

B 
Parallelism 64 32 32 

Data Throughput 7.68Gbps 3.2Gbps 6.37Gbps 
I/O Write 

Bandwidth(MB/s) 
407.4 N.A N.A 

I/O Read 
Bandwidth(MB/s) 

565.7 N.A N.A 

Decoding 
Latency(us) 

1.05 2.92 8.19 

Paper [9] applys a 32-bit parallel architecture in encoding and 
2-stage pipeline to accomplish the decoder with strong error 
correction capability and long decoding latency. For paper [12], 
it proposes a parity-check block as an additional decoding step, 
and a novel memory based syndrome updating method 
effectively improves the energy efficiency as well as the 
decoding latency. Despite the decoding latency is short, the 
error correction capability is not strong in such a method. As 
shown in Table 2, by increasing the degree of parallelism and 
using pipeline scheduling adequately, we can effectively 
increase data throughput and reduce decoding latency. 

V. CONCLUSION 
This paper improves the reading and writing performance of 

the system by designing the pipeline of the ECC module and 
increasing the degree of parallelism. The ECC module can 
support different error correction bits, having been tested on the 
physical SSD, whose test results have reached the anticipated 
effect. It supports 7.68Gbps with 64-bit parallel encoding and 
3-stage pipeline decoding structure. Planar-level parallelism is 
not used in this design because of the more demanding 
constraints, which will result in the increasement about the 
complexity of system, overhead of pipeline scheduling and the 
power consumption of system. For writing operation, if the chip 
is shared by I/O bus and DMA between the planes, the time of 
I/O, ECC and DMA will not be submerged adequately by the 
programming operation. Therefore, we will improve the 
pipeline scheduling mode to achieve the plane level in order to 
further improve system performance in the further work. 
Considering there are only two ECC cores, the decoding 
efficiency may be impacted, we will also perfect this part to 
further improve the performance of the system.  
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