
Construction of exponentially fitted explicit peer
methods

Dajana Conte, Beatrice Paternoster, Leila Moradi and Fakhrodin Mohammadi

Abstract—It is the purpose of this work to present exponentially
fitted explicit two-step peer methods for the numerical integration of
ordinary differential equations exhibiting oscillatory solution.

We will use a problem oriented approach based on exponential
fitting, in order to exploit a-priori known information about the qual-
itative behavior of the solution. Moreover the constructed methods
have inherent method parallelism, therefore they are suitable for the
numerical solution of high dimension ordinary differential systems
arising for example in the semi-discretization in space of partial
differential equations.

The construction of methods with2 and 3 stages is provided.
Numerical tests show that the error of EF peer methods is smaller
with respect to that of classical peer methods, as the frequency
of oscillation increases, thus confirming the effectiveness of this
problem-oriented approach.

Keywords—peer methods, exponential fitting, oscillatory prob-
lems, ordinary differential equations

I. I NTRODUCTION

WE consider initial value problems for ordinary differ-
ential equations

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
d, t ∈ [t0, T ],

(1)
where f : R × R

d → R
d is smooth enough to guarantee

the existence and the uniqueness of the solution. We are
interested in solving the problem (1) in the case when the
solution exhibits a pronounced oscillatory character. Systems
of this kind arise in the semi-discretization in space of partial
differential equations in many applications (compare [1], [63],
[64], [85], [74] and references therein). Classical numerical
methods may require a very small stepsize in order to ac-
curately reproduce the qualitative behavior of the solution,
therefore it is convenient to usespecial purposeformulae,
i.e. numerical methods adapted to the problem, constructed
in order to be exact on functions other than polynomials.

Following the general idea shown in the classical mono-
graph [71] (compare also the review paper on the topic
[79]), the adaptation of already existing schemes has led to
exponentially fitted methods for a wide range of problems such
as interpolation, numerical differentiation and quadrature [34],
[32], [36], [37], [67], [68], [73], [72], [89], numerical solution
of integral equations [18], [19], [20], [21], partial differential
equations [46], [58], [57], [59] and ordinary differential equa-
tions [4], [40], [41], [42], [45], [71], [68], [90]. In particular,
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2-step hybrid exponentially fitted methods for the integration
of second order differential equations have been presented in
[38], [42], [43], whereas different estimates for the parameter
characterizing the fitting space have been proposed in [40],
[45]. Adapted Runge Kutta methods have been constructed in
[39], [44], [58], [60], [65], [71], [68], [77], [78], [86], [87],
while adapted peer methods in [22], [6], [76].

Peer methods are characterized by several stages like Runge
Kutta but all of these stages exhibit the same properties,
such as accuracy and stability (see [6], [75], [83], [91] and
references therein). Such methods, combining the advantages
of Runge-Kutta and multistep methods, achieve good stability
features and have no order reduction for very stiff systems
[82]. Moreover, two-step peer methods have inherent method
parallelism when the actual stages rely only on the previous
ones [5], [80], [82], [84].

In [6], [76], it has been shown that it is possible to
construct explicit two-steps stage peer methods adapted to
fitting space of high dimension2 s. In particular, authors
have derived explicit peer methods having2 and 3 stages
and fitted to trigonometric spaces. In [22] the authors derived
a general class of exponentially fitted two-step explicit peer
method having orders, by employing the six-step procedure
described in [71].

It is the purpose of this paper to describe the practical con-
struction of parallel explicit exponentially fitted peer methods,
as a sublcass of methods introduced in [22]. In summary, in
Section II we recall classical parallel explicit peer methods, in
Section III we derive exponentially fitted parallel explicit peer
methods. Section IV contains the construction of methods with
2 and 3 stages while in Section V we show some numerical
experiments. Section VI is devoted to conclusions. Finally the
Appendix contains informations about theηm(Z) functions,
which are used to construct the coefficients of the methods.

II. CLASSICAL EXPLICIT PEER METHODS

With the aim of constructing peer methods having inherent
method parallelism (see [80], [81]), we considers-stage two-
step peer method with fixed stepsizeh having the form

Yni =

s
∑

j=1

bij Yn−1,j + h

s
∑

j=1

aij f(tn−1,j , Yn−1,j), (2)

i = 1, . . . , s, where

Yni ≈ y(tni), tni = tn + ci h, i = 1, . . . , s.
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The fixed nodesci < 1 for i = 1, . . . , s are assumed to be
distinct and we setcs = 1, soYns is the approximation of the
solution at grid pointtn+1. By using the notation:

Yn = [Yni]
s
i=1 , F (Yn) = [f(tni, Yni)]

s
i=1 ,

A = [aij ]
s
i,j=1 , B = [bij ]

s
i,j=1 ,

the method (2) can be rewritten in a more compact form

Yn = (B ⊗ I)Yn−1 + h (A⊗ I)F (Yn−1), (3)

where I is the identity matrix of dimensiond. The matrices
of coefficientsA andB are constructed in order by means of
the order conditions:

Theorem 2.1:The peer method (2) has orderp = s if

B 1 = 1, (4a)

AV1D = CV0 −B (C − I)V1, (4b)

where 1 = [1, 1, . . . , 1]T , C = diag(c1, . . . , cs), D =
diag(1, . . . , s) and

V0 =







1 c1 . . . cs−1
1

...
...

...
...

1 cs . . . cs−1
s






,

V1 =







1 (c1 − 1) . . . (c1 − 1)s−1

...
...

...
...

1 (cs − 1) . . . (cs − 1)s−1






.

We associate to the numerical scheme (2) the linear operator
defined as

Li[h,w] y(t) = y(t+ ci h)−
s

∑

j=1

bij y(t+ (cj − 1)h)

− h

s
∑

j=1

aij y
′(t+ (cj − 1)h),

(5)

i = 1, . . . , s, wherew contains the coefficients of the method.
We observe as the order conditions of Theorem 2.1 are
obtained by annihilating the difference operator (5) on the set
polynomials

{

1, t, t2, . . . , ts
}

. (6)

III. E XPONENTIALLY FITTED EXPLICIT PEER METHODS

We now aim to construct exponentially fitted explicit two-
step peer methods with a fixed stepsizeh, which are partic-
ularly suitable for problems with hyperbolic or trigonometric
solutions. We then consider the fitting space

F =
{

1, t, t2, . . . , tK , e±µt, t e±µt, t2e±µt, . . . , tP e±µt
}

,
(7)

where µ is a parameter characterizing the exact solution
and it is real or complex if the exact solution belongs to
the space spanned by hyperbolic functions or trigonometric
functions, respectively. The coefficients matricesA andB are
now derived by annihilating the difference operator (5) on the
basis functions (7), with suitable choices forK and P . In
particular, by following the six-step procedure of [71], we get
the following results (see [22]).

Theorem 3.1:Assume s is even. The peer method (2) has
orderp = s and is adapted to the fitting space

F =
{

1, e±µt, t e±µt, t2e±µt, . . . , t
s

2
−1e±µt

}

,

if the coefficient matricesA andB satisfy

B 1 = 1, (8a)

AD3 = D1 −BD2, (8b)

where1 = [1, 1, . . . , 1]T and

D1 =











. . .
1

2i
c2i1 ηi−1

(

c21 Z
) 1

2i
c2i+1

1 ηi
(

c21 Z
)

. . .

...
...

. . .
1

2i
c2is ηi−1

(

c2s Z
) 1

2i
c2i+1
s ηi

(

c2s Z
)

. . .











,

D2 =











. . .
1

2i
ĉ2i1 ηi−1

(

ĉ21 Z
) 1

2i
ĉ2i+1

1 ηi
(

ĉ21 Z
)

. . .

...
...

. . .
1

2i
ĉ2is ηi−1

(

ĉ2s Z
) 1

2i
ĉ2i+1
s ηi

(

ĉ2s Z
)

. . .











,

D3 =











. . .
i

2i−1
ĉ2i−1

1 ηi−1

(

ĉ21 Z
)

+
1

2i
ĉ2i+1

1 Zηi
(

ĉ21 Z
)

...

. . .
i

2i−1
ĉ2i−1
s ηi−1

(

ĉ2s Z
)

+
1

2i
ĉ2i+1
s Zηi

(

ĉ2s Z
)

1

2i
ĉ2i1 ηi−1

(

ĉ21 Z
)

. . .

...
1

2i
ĉ2is ηi−1

(

ĉ2s Z
)

. . .











,

wherei = 0, 1, . . . , s
2 − 1, and ĉj = 1− cj , j = 0, 1, . . . , s.

In case of odd number of stages we have the following.
Theorem 3.2:Assume s is odd. The peer method (2) has

orderp = s and is adapted to the fitting space

F =
{

e±µt, t e±µt, t2e±µt, . . . , t
s−1

2 e±µt
}

,

if the coefficient matricesA andB satisfy

B v0 = v1 − ZAv2, (9a)

AF3 = F1 −B F2, (9b)

where Fi for i = 1, 2, 3 are obtained by deleting the first
column toDi for i = 1, 2, 3, and

v0 =
[

η−1 (ĉ
2
1 Z), . . . , η−1 (ĉ

2
s Z)

]T
, (10a)

v1 =
[

η−1 (c
2
1 Z), . . . , η−1 (c

2
s Z)

]T
, (10b)

v2 =
[

ĉ1η0 (ĉ
2
1 Z), . . . , ĉsη0 (ĉ

2
s Z)

]T
. (10c)

IV. CONSTRUCTION OFEF PEER METHODS

In this Section we describe the practical derivation of EF
explicit peer methods by using Theorems 3.1-3.2.
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A. Methods with two stages

Theorem 4.1:Let

c =

[

0
1

]

, B =

[

0 1
0 1

]

, (11a)

A =

[

0 0
1−η

−1(Z)
Zη0(Z) −η−1(Z) 1−η

−1(Z)
Zη0(Z) + η0(Z)

]

. (11b)

Then the peer method (2) has orderp = 2 and is adapted
to the fitting space

{

1, e±µt
}

.

Proof: Matrix B clearly satisfies (8a). Fromc1 = 0, c2 =
1, we haveĉ1 = −1, ĉ2 = 0 and

D1 =

[

1 0
η−1(Z) η0(Z)

]

, D2 =

[

η−1(Z) −η0(Z)
1 0

]

,

D3 =

[

− 1
Zη0(Z)

η
−1(Z)

Zη0(Z)

0 1

]

.

Then form (8b) we getA = (D1 −BD2)D
−1
3 and the thesis

follows.
The corresponding classic peer method is obtained in the

limit asZ → 0 and has coefficients:

c =

[

0
1

]

, B =

[

0 1
0 1

]

, (12a)

A =

[

0 0
1
2

3
2

]

. (12b)

B. Methods with three stages

Theorem 4.2:Let

c =





0
1/2
1



 , A = F1F
−1
3 , B = H1 −AH2, (13)

with

H1 =





0 0 1
0 0 η−1(

Z
4 )

0 0 η−1(Z)



 , H2 =





0 0 −Zη0(Z)
0 0 −Z

2 η0(
Z
4 )

0 0 0



 ,

F1 =





0 0 0
1
2η0(

Z
4 )

1
8η0(

Z
4 )

1
16η1(

Z
4 )

η0(Z) 1
2η0(Z) 1

2η1(Z)



 ,

F3 =





η−1(Z) −η0(Z)− Z
2 η1(Z) 1

2η0(Z)
η−1(

Z
4 ) − 1

2η0(
Z
4 )−

Z
16η1(

Z
4 )

1
8η0(

Z
4 )

1 0 0



 .

Then the peer method (2) has orderp = 3 and is adapted
to the fitting space

{

e±µt, te±µt
}

.

Proof: Fromc1 = 0, c2 = 1/2, c3 = 1 we haveĉ1 = −1,
ĉ2 = −1/2, ĉ3 = 0 and the vectors in (10) assume the form

v0 =





η−1(Z)
η−1(

Z
4 )

1



 , v1 =





1
η−1(

Z
4 )

η−1(Z)



 , v2 =





−η0(Z)
− 1

2η0(
Z
4 )

0



 .

Thus the matricesH1 andH2 can be written as

H1 = [0 |0 | v1], H2 = [0 |0 | v2],

where0 = [0, 0, 0]T . Then we have

B = [0 |0 | v1 −Av2],

and, as the first two columns ofB are zeros and the last row
of v0 is equal to1, we get (9a). Then by substituting the
expressionB = H1 −AH2 in (9b) we obtain

A(F3 −H1F2) = (F1 −H2F2),

where

F2 =





−η0(Z) 1
2η0(Z) − 1

2η1(Z)
− 1

2η0(
Z
4 )

1
8η0(

Z
4 ) − 1

16η1(
Z
4 )

0 0 0



 .

As H1F2 = 0 andH2F2 = 0 the matrixA satisfies (9b) and
the thesis follows.

The corresponding classic peer method is obtained in the
limit asZ → 0 and has coefficients:

c =





0
1/2
1



 , B =





0 0 1
0 0 1
0 0 1



 , (14a)

A =





0 0 0
5
24 − 2

3
23
24

7
6 − 10

3
19
6



 . (14b)

V. NUMERICAL EXPERIMENTS

We show the results obtained by integrating the following
Prothero-Robinson problem [66]

y′(t) = λ ( y(t)− sin(ω t+ t) ) + (ω + 1) cos(ω t+ t),

y(0) = 0,
(15)

in the intervalt ∈
[

0,
π

2

]

with λ = −1. The exact solution is

y(t) = sin(ω t) cos(t) + cos(ω t) sin(t)

therefore we employ the exponentially fitted methods (11) and
(13) with µ = iω. Fig. 1 shows that the exponentially fitted
methods (11) and (13) are more accurate than their classic
counterparts (12) and (14), which become totally inaccurate
for highly oscillating problems.

Moreover, we estimate the orderp of the exponentially fitted
peer methods (11) and (13) employing the following relations

p = lim
h→0

p(h), p(h) ≈ log2

(

E(h)

E(h/2)

)

, (16)

whereE(h) andE(h/2) are the errors with a stepsizeh and
h/2, respectively. Table I shows that the estimated orderp(h)
of the exponentially fitted peer methods (11) and (13) are equal
to 2 and3, respectively.
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Fig. 1. ErrorE(N) in the last end point of the interval obtained by integrating
problem (15) with the classic peer methods (12) and (14) and the exponentially
fitted ones (11) and (13) by usingN grid points and different values for the
frequencyω.

N EXP. FITTED s = 2 EXP. FITTED s = 3

80 2.57 −

160 1.91 3.52

320 1.98 3.09

640 2.00 3.24

TABLE I
ESTIMATED ORDER OF THE EXPONENTIALLY FITTED PEER METHODS(11)

AND (13) COMPUTED BY EQUATION (16) WITHIN THE INTEGRATION OF

PROBLEM (15) WITH ω = 50.

VI. CONCLUSIONS

We have constructed a general class of parallel EF peer
methods. These methods are suitable for the numerical in-
tegration of ordinary differential equations having a solution
with oscillatory behavior or an exponential decay. The adopted
strategy is based on adapting existing methods in order to be
exact (within round-off error) on trigonometric or hyperbolic
functions. Numerical experiments have confirmed the effec-
tiveness of the approach.

Future work will address the construction of implicit EF
peer methods, suitable for the numerical integration of oscilla-
tory stiff problems. Moreover we will employ the constructed
methods for the numerical solution of ordinary differential
systems arising in the semi-discretization in space of partial
differential equations.

APPENDIX

ηm(Z) FUNCTIONS

The set of functionsηm(Z), m = −1, 0, 1, 2, . . . has been
originally introduced in [71] in the context of CP methods
for the Schr̈odinger equation. The functionsηm(Z) with m =
−1, 0 are defined by

η−1(Z) =











cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

(17)

η0(Z) =















sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0

(18)

and those withm > 0 are further generated by recurrence

ηm(Z) =
1

Z
[ηm−2(Z)−(2m−1)ηm−1(Z)], m = 1, 2, 3, . . .

(19)
if Z 6= 0, and by following values atZ = 0:

ηm(0) =
1

(2m+ 1)!!
, m = 1, 2, 3, . . . (20)

The differentiation rule is

η′m(Z) =
1

2
ηm+1(Z) , m = −1, 0, 1, 2, 3, . . . (21)

For more details on these functions see [34], [71] or the
Appendix of [67].
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