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Abstract—The treatise is focused on the numerical solution of
λ-ω reaction-diffusion problems, by means of a suitably adapted
method of lines. Due to the non linearity of the vector field and
the oscillatory behaviour of the solution, we propose to combine a
spatial semidiscretization of the operator through trigonometrically
fitted finite differences with an IMEX integration in time. Accuracy
and stability properties of the overall numerical scheme are proved
and experiments confirming the effectiveness of the approach are also
provided.
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I. INTRODUCTION

This paper is devoted to the numerical solution of reaction-
diffusion systems of the following type

ut = uxx + λ(r)u− ω(r)v

vt = vxx + ω(r)u+ λ(r)v
(I.1)

with u, v : [0,∞) × [0, T ] −→ R, r =
√
u2 + v2, ω(0) > 0,

λ(0) > 0.
These problems are frequently denoted as λ-ω problems,

since their qualitative properties are governed by the form of
the two functions λ(r) and ω(r) appearing in (I.1) (see [62],
[67] and references therein). An interesting qualitative feature
that has made these problems widely used in applications [3],
[56], [57], [66], [68], [69], [71]–[73], is given by the gener-
ation of travelling waves as fundamental solutions [62]. Such
a feature is desirable for models in Life Science, since many
cell cycles behave as driven by an autonomous biochemical
oscillator [51]. In particular, λ-ω reaction-diffusion systems
model problems having a limit cycle in reaction kinetics, such
as in [3], which is proved to correspond to an isolated zero of
λ(r) [67].

As shown in [62], the exact solution of (I.1) admits the
following parametric representation

u(x, t) = r̂ cos(ω(r̂)t±
√
λ(r̂)x),

v(x, t) = r̂ sin(ω(r̂)t±
√
λ(r̂)x),

(I.2)

depending on the parameter r̂ ∈ R such that λ(r̂) > 0. This
expression, though useful to infer a qualitative behaviour of
the solution, is actually not computable since it depends on the
unknown parameter r̂. However, it is important to realize that
it is a periodic plane wave, so it has constant shape and speed
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and oscillates both in space and in time and this information
can be fruitfully used in order to assess an accurate and cheap
numerical integrator.

Indeed, since the periodic behaviour of the solution is
known, the natural idea is that of developing a numerical
method that exploits this information as much as possible,
following the lines drawn in [6], [15]–[17], [22], [28]–[31],
[34], [35], [37], [39], [44]–[46], where special purpose numer-
ical methods have been introduced by means of the so-called
exponential fitting technique [61], [63]. Standard numerical
methods could indeed strongly reduce the stepsize in order
to reproduce the oscillatory behaviour along the numerical
dynamics.

Classically, a general purpose formula is constructed in
order to be exact (within round-off error) on polynomials
up to a certain degree. However, when the exact solution
of a problem has a particular a priori known character (e.g.
periodicity, oscillations, exponential decay), classical methods
could require a very small stepsize to accurately reproduce
it, thus extremely increasing the computational burden. In
this case, it may be convenient to use fitted formulae that
are exact on functions other than polynomials: this idea gave
rise to the birth of exponential fitting (see [61], [63] and
references therein). The basis functions are chosen according
to the information known a priori about the exact solution and
belong to a finite-dimensional space called fitting space. Of
course, the chosen basis functions also depend on a parameter
connected to the solution, whose value is clearly unknown. As
a consequence, non-polynomially fitted formulae have variable
coefficients relying on this parameter instead of classical
formulae that are characterized by constant coefficients.

In summary, an accurate and efficient numerical method
based on exponential fitting has to rely on a suitable fitting
space and on a cheap - but accurate - procedure for the
estimate of the unknown parameters. Of course, these aspects
can be well treated if a priori informations, given by theoretical
studies on the problem, are known on the qualitative behaviour
of the solution. For instance, as it regards the numerical
solution of (I.1), the known parametrization (I.2) given in
[62] not only suggests to choose a fitting space based on
trigonometric functions, but also gives an idea of the spatial
and temporal frequencies, whose knowledge can be exploited
for a cheap computation of the unknown parameters, thus
avoding expensive procedures based on solving nonlinear
systems of equations as in [49], [50].

In this paper we extend the idea introduced in [39], where
the problem (I.1) has been semi-discretized in space by
the method of lines based on trigonometrically fitted finite
differences. Then, the resulting system of ordinary differen-
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tial equations has been solved by standard time integrators,
neglecting the form of the system. Here, we aim to suggest
an overall numerical scheme taking into account the nature of
the problem more closely. Indeed, the semi-discretized system
has the form

y′ = Ay + f(y)

where A is a matrix whose size depends on the number of
points chosen for the spatial semi-discretization and f(y) is
a vector-valued function. Such a system clearly exhibits stiff
components (arising from the diffusion term) and nonlinear
ones (coming from the reaction term), dictated by the expres-
sions of λ and ω which are usually chosen as [67]

λ(r) = λ0 − rp, ω(r) = ω0 − rp, (I.3)

with p > 0, λ0 > 0 and ω0 > 0. Hence, since the problem has
components of different nature, it is more natural to differently
treat them, by means of implicit-explicit (IMEX) numerical
methods that implicitly integrate the stiff terms and explicitly
the other ones, following the classic idea [1], [2], [4], [5], [58].

In summary, the numerical scheme here proposed merges
the adapted method of lines with an IMEX time solver, as
described in Sections 2 and 3; Section 4 is devoted to present
a rigorous analysis of accuracy and stability properties, while
Section 5 presents some numerical experiments confirming
the effectiveness of the approach, also in comparison with its
classical counterpart based on general purpose methods; some
conclusions are object of Section 6.

II. AN ADAPTED METHOD OF LINES

We aim to solve problem (I.1) with λ and ω having the
form (I.3) and equipped by the following initial conditions

u(x, 0) = v(x, 0) = A exp(−ξx), (II.4)

and boundary conditions

ux(0, t) = vx(0, t) = 0,

lim
x→+∞

u(x, t) = lim
x→+∞

v(x, t) = 0.
(II.5)

The dynamics occurs in an unbounded domain thus, for
its numerical treatment, we consider as numerical domain its
bounded counterpart

D := [0, X]× [0, T ] (II.6)

where X is chosen large enough that any increase would
only have negligible effects on the solution. Therefore, the
considered numerical boundary conditions are given by

ux(0, t) = vx(0, t) = 0, (II.7a)
u(X, t) = v(X, t) = 0. (II.7b)

Following the method of lines (see [60], [64], [65] and
references therein), we spatially discretize the domain (II.6)

Dh = {(xi, t) : xi = ih, i = 0, . . . , N − 1, h = X/(N − 1)},

where h is the spatial integration step. Then, we formulate
equations (I.1) and conditions (II.4)-(II.7) in correspondence

to each spatial grid point, obtaining the following system of
ordinary differential equations [39]

u′0(t) = u′2(t),

v′0(t) = v′2(t),

u′i(t) = ∆n[ui(t), h] + λ(r)ui(t)− ω(r)vi(t),

v′i(t) = ∆n[vi(t), h] + ω(r)ui(t) + λ(r)vi(t),

u′N−1(t) = 0,

v′N−1(t) = 0,

(II.8)

with 1 ≤ i ≤ N − 2, where

ui(t) := u(xi, t), vi(t) = v(xi, t), 0 ≤ i ≤ N − 1

and ∆n[Φi(t), h] (with Φi(t) = ui(t) or Φi(t) = vi(t)) is the
n-point fitted finite difference formula used to approximate the
second spatial derivatives. The system is also combined with
the initial conditions

ui(0) = vi(0) = A exp(−ξxi), 0 ≤ i ≤ N − 1. (II.9)

As in [39], [44], we approximate the second spatial derivatives
of functions u and v by the three-point finite difference
formula

∆n[Φi(t), h] =
1

h2
(a0Φi+1(t) + a1Φi(t) + a2Φi−1(t))

(II.10)
and, taking into account the known parametrization of the
wavefront (I.2), we employ the adapted version of (II.10) based
on the trigonometrical fitting space

F = {1, sin(µx), cos(µx)}, (II.11)

with spatial frequency µ ∈ R. Thus, as given in [44], the
expressions of the coefficients a0, a1 and a2 are determined
by imposing the exactness of (II.10) on the space (II.11),
obtaining

a0(z) =
z2

2(1− cos z)
= a2(z),

a1(z) = − z2

(1− cos z)
,

(II.12)

with z = µh. Of course, it is evident that such coefficients
are no longer constant, as in the classical polynomial case,
but are functions of z. In general, z 6= 0 because h 6= 0 and
the frequency is not null in the case of periodic solutions.
Nevertheless, when z tends to 0, the variable coefficients
(II.12) tend to the classical ones:

a0 = a2 = 1, a1 = −2. (II.13)

Hence, the trigonometrically fitted formula retains the same
order of accuracy of the corresponding classical one as shown
in [44], which is equal to 2.

As aforementioned, the actual employ of trigonometrically
fitted formulae relies on the accurate computation of µ, on
which the coefficients (II.12) depend on. The knowledge of
the parametrization (I.2) can give an approximation strategy
based on the natural choice [39] of the same spatial frequency

µij =
√
|λ(rij)| (II.14)
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where
rij =

√
u2ij + v2ij (II.15)

with uij ≈ u(xi, tj), vij ≈ v(xi, tj). It is important to
highlight that, even if the spatial frequency of the wavefront
(I.2) is constant, it is convenient to update its approximation
at each grid point for accuracy purposes [59], [61]. Thus, the
proposed estimate is suggested by the problem and does not
increase the computational cost because it does not require
optimization techniques or the resolution of nonlinear systems
of equations as in [49], [59] and references therein.

III. IMEX TIME INTEGRATION

IMEX methods are widely used when a problem has compo-
nents of different nature, requiring different computational ef-
forts (see [1], [2], [4], [5], [58] and references therein). Indeed,
a totally explicit method can require strong restrictions on the
stepsize to guarantee the stability, especially if it integrates stiff
terms. Stiff problems are better integrated by implicit methods,
however these methods are more expensive and more complex
than explicit ones. IMEX methods implicitly integrate only
the components that need it (stiff components) and explicitly
integrate the other ones.

Differently from [39], we aim to propose an IMEX time
integration of the semi-discretized system of ordinary differ-
ential equations (II.8), due to its intrinsic nature. Indeed, that
system can be regarded in a more compact form as

U ′(t) = A(z)U(t) + Λ(r)U(t)− Ω(r)V (t)

V ′(t) = A(z)V (t) + Ω(r)U(t) + Λ(r)V (t)
(III.16)

with

U(t) =


u1(t)
u2(t)

...
uN−2(t)

 ,

V (t) =


v1(t)
v2(t)

...
vN−2(t)

 ,

A(z) =
γ(z)

h2


−2 2
1 −2 1

. . . . . .
1 −2

 ,
γ(z) =

z2

2(1− cos z)
,

Λ(r) =


λ(r)

λ(r)
. . .

λ(r)

 ,

Ω(r) =


ω(r)

ω(r)
. . .

ω(r)

 .

For the time discretization, we select M equidistant points

tj = jk, j = 1, 2, . . . ,M

in [0, T ], where k is the chosen uniform time step, and apply
the linear first order IMEX Euler method [1]

Φj+1 = Φj + kg(Φj+1) + kf(Φj)

where g is the diffusion term and f is the reaction term.
Thus, the implicit part of the integrator only involves the stiff
components of the solution. Hence, the numerical scheme for
(III.16) assumes the form

U j+1 = U j + kAj+1U j+1 + kΛjU j − kΩjV j

V j+1 = V j + kAj+1V j+1 + kΩjU j + kΛjV j
(III.17)

or, in a more compact form,

W j+1 = W j + kAj+1W j+1 + kΓjW j (III.18)

where
W =

[
U
V

]
,

Aj+1 =

[
Aj+1

Aj+1

]
, Γj =

[
Λj −Ωj

Ωj Λj

]
.

We observe that the matrices Γ and A depend on r that is
approximated by (II.15), so they have to be recomputed at
each time step.

IV. ACCURACY AND STABILITY ANALYSIS

We now aim to analyze accuracy and stability properties
of the novel numerical scheme (III.18), which originates from
exponentially fitted spatial semi-discretization and IMEX time
integration. The overall scheme will be denoted as IMEX-EF
in the remainder of the treatise.

A. Convergence analysis

First of all, let us prove the consistency of the IMEX-EF
scheme (III.18) with the problem (I.1). As it will be clear
during the proof, the order of consistency of the numerical
scheme will also be computed: as expected, since the finite
difference employed in spatial semidiscretization has order 2
and the IMEX-Euler method has order 1, we are going to
prove that the order of consistency is O(z2) + O(k), where
z = µh as in (II.12) and k is the time stepsize.

Theorem IV.1. The IMEX-EF method (III.18) is consistent
with the problem (I.1) with initial conditions (II.4) and
boundary conditions (II.7) and the order of consistency is
O(z2) +O(k).

Proof: We report here the proof for the u component only,
since that for the v component of the solution is obtained in the
same way. We define the local truncation error of the method
as the residual operator

Ph,k[u] =
u(xi, tj+1)− u(xi, tj)

k
− F1 (u(xi, tj), v(xi, tj))

− γ(z)

h2
(u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)) ,

(IV.19)
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where F1(u(xi, tj), v(xi, tj)) = λ(r)u(xi, tj)−ω(r)v(xi, tj).
We next compute the following Taylor series expansions useful
to suitably rewrite the residual operator (IV.19)

u(xi, tj+1) = u(xi, tj) + kui,jt +
k2

2
ui,jtt +O(k3),

(IV.20a)

u(xi+1, tj+1) = u(xi, tj+1) + hui,j+1
x +

h2

2
ui,j+1
xx +O(h3),

(IV.20b)

u(xi−1, tj+1) = u(xi, tj+1)− hui,j+1
x +

h2

2
ui,j+1
xx +O(h3),

(IV.20c)

ui,j+1
xx = ui,jxx + kui,jtxx +

k2

2
ui,jttxx +O(k3), (IV.20d)

where

ui,jt =

(
∂u

∂t

)
i,j

, ui,jtt =

(
∂2u

∂t2

)
i,j

,

ui,j+1
x =

(
∂u

∂x

)
i,j+1

, ui,j+1
xx =

(
∂2u

∂x2

)
i,j+1

,

ui,jxx =

(
∂2u

∂x2

)
i,j

, ui,jtxx =

(
∂3u

∂tx2

)
i,j

,

ui,jttxx =

(
∂24u

∂t2x2

)
i,j

.

Equation (IV.20a) leads to

u(xi, tj+1)− u(xi, tj)

k
= ui,jt +

k

2
ui,jtt +O(k2),

while the sum between (IV.20b) and (IV.20c), taking into
account (IV.20d), gives

u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)

= h2ui,jxx + h2kui,jtxx +O(k2h2).

We now expand γ(z) in power series, obtaining

γ(z) = 1 +
z2

12
+

z4

240
+O(z6).

Hence, the local truncation error (IV.19) assumes the form

Ph,k[u] = ui,jt +
k

2
ui,jtt +O(k2)− F1(u(xi, tj), v(xi, tj))

− 1

h2

(
1 +

z2

12
+

z4

240
+O(z6)

)
·
(
h2ui,jxx + h2kui,jtxx +O(h2k2)

)
= ui,jt − F1(u(xi, tj), v(xi, tj))

− ui,jxx + k

(
1

2
ui,jtt − u

i,j
txx

)
+O(k2)

−
(
z2

12
+

z4

240
+O(z6)

)
·
(
ui,jxx + kui,jtxx +O(k2)

)
.

Since u(x, t) and v(x, t) are the components of the exact
solution of the problem (I.1), they fulfill the equation

ui,jt − ui,jxx − F1(u(xi, tj), v(xi, tj)) = 0.

Therefore, the local truncation error becomes

Ph,k[u] = k

(
1

2
ui,jtt − u

i,j
txx

)
+O(k2)− z2

12
ui,jxx

−
(
z2

12
+

z4

240
+O(z6)

)(
kui,jtxx +O(k2)

)
−
(
z4

240
+O(z6)

)
ui,jxx

= O(k) +O(z2).

We now focus our attention to convergence analysis, by
rigorously proving the overall boundedness of the global error.

Theorem IV.2. Suppose that the vector valued function
F (W (·, tj)) = ΓW (·, tj) is smooth enough and satisfies the
bound

‖∇F‖∞ ≤ Fmax.

Then, the global error

Ej+1 = W (·, tj+1)−W j+1

fulfills the bound∥∥Ej+1
∥∥
∞ ≤ (1 + kFmax)j

·
j∑

β=0

1

(1− kAmax)β+1
max

s=1,2,...,j+1

∥∥∥R(s)
h,k

∥∥∥
∞
,

being Amax an upper bound for ‖A‖∞ and R(j+1)
h,k = O(k)+

O(z2). In other terms, under the above hypothesis, the IMEX-
EF method (III.18) is convergent.

Proof: The discretization error in a fixed time grid point
tj+1 is given by

Ej+1 = W (·, tj+1)−W j+1,

where W (·, tj+1) is the exact solution in tj+1. Consistency of
the method implies that

W (·, tj+1) = W (·, tj)+k AW (·, tj+1)+kF (W (·, tj))+R(j+1)
h,k ,

where R(j+1)
h,k = O(k)+O(z2) and F (W (·, tj)) = ΓW (·, tj).

Therefore, the discretization error assumes the form

Ej+1 = W (·, tj) + k AW (·, tj+1) + kF (W (·, tj))
+R(j+1)

h,k −W j − k AW j+1 − kF (W j)

= Ej + k A Ej+1 + k[F (W (·, tj))− F (W j)] +R(j+1)
h,k .

The regularity assumption on F allows us to apply the Mean
Value Theorem, leading to∥∥F (W (·, tj))− F (W j)

∥∥
∞ = ‖∇F‖∞

∥∥W (·, tj)−W j
∥∥
∞

= ‖∇F‖∞
∥∥Ej∥∥∞ .
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Moreover, since F has bounded derivative and satisfies
‖∇F‖∞ ≤ Fmax, we have∥∥F (W (·, tj))− F (W j)

∥∥
∞ ≤ Fmax

∥∥Ej∥∥∞ .

We next consider the following bound

‖A‖∞ = ‖A‖∞ =
4γ

h2
=

2µ2

1− cos(z)
≤ Amax

due to the fact that the values µ and h are bounded themselves
because they are the spatial frequency and the spatial stepsize,
respectively. Then, the norm of the discretization error is given
by∥∥Ej+1

∥∥
∞ ≤

∥∥Ej∥∥+ k ‖A‖∞
∥∥Ej+1

∥∥
∞

+ k
∥∥F (W (·, tj))− F (W j)

∥∥
∞ +

∥∥∥R(j+1)
h,k

∥∥∥
∞

≤
∥∥Ej∥∥+ kAmax

∥∥Ej+1
∥∥
∞

+ kFmax
∥∥Ej∥∥∞ +

∥∥∥R(j+1)
h,k

∥∥∥
∞
.

The last inequality can be rewritten by isolating the discretiza-
tion error at j + 1 step∥∥Ej+1

∥∥
∞ ≤

1 + kFmax
1− kAmax

∥∥Ej∥∥∞+
1

1− kAmax

∥∥∥R(j+1)
h,k

∥∥∥
∞
.

(IV.21)
We denote

Q =
1 + kFmax
1− kAmax

and S =
1

1− kAmax
and recursively apply Equation (IV.21) until the discretization
error at first step appears, as follows:∥∥Ej+1

∥∥
∞ ≤ Q

∥∥Ej∥∥∞ + S
∥∥∥R(j+1)

h,k

∥∥∥
∞

≤ Q
[
Q
∥∥Ej−1∥∥∞ + S

∥∥∥R(j)
h,k

∥∥∥
∞

]
+ S

∥∥∥R(j+1)
h,k

∥∥∥
∞

≤ Q2
∥∥Ej−1∥∥∞ +QS

∥∥∥R(j)
h,k

∥∥∥
∞

+ S
∥∥∥R(j+1)

h,k

∥∥∥
∞

≤ Q3
∥∥Ej−2∥∥∞ +Q2S

∥∥∥R(j−1)
h,k

∥∥∥
∞

+QS
∥∥∥R(j)

h,k

∥∥∥
∞

+ S
∥∥∥R(j+1)

h,k

∥∥∥
∞

...

≤ Qj+1
∥∥E0

∥∥
∞ +QjS

∥∥∥R(1)
h,k

∥∥∥
∞

+ . . .

+QS
∥∥∥R(j)

h,k

∥∥∥
∞

+ S
∥∥∥R(j+1)

h,k

∥∥∥
∞
.

Of course
∥∥E0

∥∥
∞ = 0. Thus, for each j we obtain∥∥Ej+1

∥∥
∞ ≤ S[Qj +Qj−1 + · · ·+Q+ 1] max

s=1,2,...,j+1

∥∥∥R(s)
h,k

∥∥∥
∞

≤ (1 + kFmax)j

·
j∑

β=0

1

(1− kAmax)β+1
max

s=1,2,...,j+1

∥∥∥R(s)
h,k

∥∥∥
∞
,

tending to 0 as h and k tend to 0.
We observe that the proofs of above Theorems IV.1 and

IV.2 do not depend on the choice of the parameter µ and the
expression of the functions λ and ω appearing in (I.1).

B. Stability analysis

The following theorem provides a simple criterion for the
analysis of stability properties of the IMEX-EF method. The
proof is completely independent on the way the parameter µ
is estimated.

Theorem IV.3. The method (III.18) is stable if∥∥(I− kA)−1
∥∥ ≤ 1.

Proof: Following the idea in [70], we aim to prove
stability by controlling the propagation of the error caused by
an incoming perturbation. To do this, we perturb the solution
W j as follows

W̃ j = W j + δ.

Since
W j+1 = (I− kA)−1(W j + kΓjW j),

W̃ j+1 = (I− kA)−1(W̃ j + kΓ̃jW̃ j),

the error due to the perturbation is given by

Ej+1 = W j+1−W̃ j+1 = (I−kA)−1[Ej+k(ΓjW j−Γ̃jW̃ j)]

and its norm is bounded by∥∥Ej+1
∥∥
∞ ≤

∥∥(I− kA)−1
∥∥
∞

·
( ∥∥Ej∥∥∞ + k

∥∥∥ ΓjW j − Γ̃jW̃ j
∥∥∥
∞

)
≤
∥∥(I− kA)−1

∥∥
∞

·
( ∥∥Ej∥∥∞ − k (∥∥ ΓjW j

∥∥
∞ −

∥∥∥ Γ̃jW̃ j
∥∥∥
∞

) )
.

(IV.22)

We now bound the nonlinear terms in (I.3) by

|λ(ri,j)| = |λ0 − rpi,j | ≤ λ0 + rpi,j ,

|ω(ri,j)| = |ω0 − rpi,j | ≤ ω0 + rpi,j .

Since
rpi,j = (u2i,j + v2i,j)

p/2 ≤ (ui,j + vi,j)
p

we obtain∥∥Γj
∥∥
∞ := max

i=1,...,2(N−2)
{|λ(ri,j)|+ |ω(ri,j)|}

≤ θ0 + 2 max
i=1,...,2(N−2)

{
rpi,j
}

≤ θ0 + 2 max
i=1,...,2(N−2)

{(ui,j + vi,j)
p}

≤ θ0 + 2p+1
∥∥W j

∥∥p
∞ ,

where θ0 = λ0 + ω0. Thus, we have∥∥ ΓjW j
∥∥
∞ −

∥∥∥Γ̃jW̃ j
∥∥∥
∞
≤
∥∥ Γj

∥∥
∞

∥∥W j
∥∥
∞ +

∥∥∥Γ̃j
∥∥∥
∞

∥∥∥W̃ j
∥∥∥
∞

≤
[
θ0 + 2p+1

∥∥W j
∥∥p
∞

] ∥∥W j
∥∥
∞

+
[
θ0 + 2p+1

∥∥∥W̃ j
∥∥∥p
∞

] ∥∥∥W̃ j
∥∥∥
∞

≤ θ0
[∥∥W j

∥∥
∞ +

∥∥∥W̃ j
∥∥∥
∞

]
+ 2p+1

[∥∥W j
∥∥p+1

∞ +
∥∥∥W̃ j

∥∥∥p+1

∞

]
≤ 3θ0 + 2 · 3p+1,
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where we use that
∥∥W j

∥∥
∞ ≤ r̂ and r̂ ≤ 3

2 . This last inequality
is suggested by the results in [39], where the authors have
shown that the numerical solution oscillates in [−1.19, 1.19].
Therefore, the norm of the error (IV.22) is∥∥Ej+1

∥∥
∞ ≤

∥∥(I− kA)−1
∥∥
∞

( ∥∥Ej∥∥∞ − k(θ0 + 2 · 3p+1)
)

≤
∥∥(I− kA)−1

∥∥
∞

∥∥Ej∥∥∞ .

Last inequality immediately suggests the stability condition∥∥(I− kA)−1
∥∥
∞ ≤ 1.

V. NUMERICAL EXPERIMENTS

We now present some numerical results obtained by solving
the system of PDEs (I.1) with the following values for the
parameters as in [67]

λ0 = 1, ω0 = 2, p = 1.8, A = 0.1, ξ = 0.8.

Fig.1 shows the numerical solution obtained by the new
method IMEX-EF (III.18) based on the combination between
the IMEX strategy and exponential fitting technique. We have
chosen the rectangular domain (x, t) ∈ [0, 150] × [0, 60]. It
is useful to note that the spatial interval is large enough in
order to justify the use of boundary conditions (II.7) instead
of (II.5). The profile of the numerical solution is coherent
with the theoretical expectations presented in [67]: indeed, the
solution starts with an exponential decay and then evolves to a
wavefront that moves through the domain with constant speed
and shape. Moreover, this wave front is followed by periodic
plane waves and the solution respects the boundary conditions.

We now compare the numerical results of the new method
(III.18) with the analogous IMEX method combined with
classical finite difference (II.10) depending on constant co-
efficients (II.13). As it is clear in Fig. 2 and Fig. 3 and in
Table I, if the stepsize is increased, the numerical solution
produced by the exponential fitting method is stable while
that obtained by the classical approach results unstable. If
the stepsize is reduced (so, when the numerical solution
exhibits stable modes), we observe that the proposed IMEX-
EF is somehow comparable with its classical counterpart.
However, this benefits in accuracy could be largely improved
by estimating better the parameter correlated to exponential
fitting. The selection of this parameter is indeed a crucial issue
in the exponential fitting procedure and can increase extremely
the computational burden if it is carried out by solving non-
linear systems as, for instance, in [50]. The proposal to adopt
an estimate of the parameter suggested by the problem does
not increase the computational cost at all, but the accuracy
is more compromised. In summary, the exponentially fitted
version IMEX-EF is a more stabilized version of the IMEX-
CLASS scheme, even when the value of the parameter is not
accurately computed.

h k error
IMEX-EF 3 1.5 8 · 10−1

IMEX-CLASS 3 1.5 2267848.05
IMEX-EF 3 0.5 9.2 · 10−3

IMEX-CLASS 3 0.5 2.08 · 10−2

TABLE I
COMPARISON BETWEEN THE IMEX-EF METHOD (III.18) AND THE SAME

IMEX METHOD WITH STANDARD FINITE DIFFERENCE FORMULAE IN
TERMS OF THE ERROR ON EXTREMITIES WHEN THEY ARE APPLIED TO THE
PROBLEM (I.1) WITH INITIAL CONDITIONS (II.4), BOUNDARY CONDITIONS

(II.7).
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Fig. 1. Numerical solution of λ − ω reaction-diffusion system (I.1), with
initial conditions (II.4) and boundary conditions (II.7) computed by the new
method (III.18) with spatial stepsize h = 3 and time stepsize k = 0.5.
The component u(x, t) is depicted on the top and the component v(x, t) is
represented on the bottom.

VI. CONCLUSIONS

For the numerical solution of a reaction-diffusion problem
of λ-ω type (I.1), we have introduced a novel numerical
scheme which relies on qualitative behaviour of the solution,
i.e. the wavefront described by (I.2), and the structure of the
system of ordinary differential equations obtained by spatial
semi-discretization through adapted finite differences. The
overall numerical scheme is trigonometrically fitted in space
and IMEX in time. The properties of the overall scheme are
analyzed, with special emphasis to convergence and stability
analysis, by also proving that it enables to improve the
stability properties with respect to its classical counterpart,
based on polynomials. Numerical experiments confirm that the
IMEX-EF scheme is more stable than its classical counterpart,
even when the unknown parameters on which the adapted
schemes depend are not accurately estimated. This work is a
preliminary study about the combination of trigonometrically
fitted finite difference formulae and IMEX methods in the
1D case. As a future research, we aim to extend the pre-
sented ideas to 2D and 3D cases, where the construction of
trigonometrically fitted finite difference formulae may be made
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Fig. 2. Numerical solution of λ − ω reaction-diffusion system (I.1), with
initial conditions (II.4) and boundary conditions (II.7) computed by a standard
IMEX method with spatial stepsize h = 3 and time stepsize k = 1.5.
The component u(x, t) is depicted on the top and the component v(x, t)
is represented on the bottom.
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Fig. 3. Numerical solution of λ − ω reaction-diffusion system (I.1), with
initial conditions (II.4) and boundary conditions (II.7) computed by the new
method (III.18) with spatial stepsize h = 3 and time stepsize k = 1.5.
The component u(x, t) is depicted on the top and the component v(x, t) is
represented on the bottom.

more challenging by the presence of a different frequency
in each spatial direction. Further issues will also regard the
improvement to the accuracy of the adapted scheme in the
stable modes, with respect to the classical IMEX scheme,
also by means of adapted general time discretizations [24],
[38], [40], [42]. The research will also be oriented to the
application of analog techniques to stochastic problems [12],

[13], [23], [36], problems with memory [8]–[11], [14], [18]–
[21], [26], [32], [33], also in a structure-preserving or meshfree
perspective [7], [25], [27], [43], [47], [48], [52]–[55].
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