
 

 

  
Abstract— Wavelet transform-based filters are widely adopted 

for noise removal from grayscale digital images because these 
techniques can effectively combine cancellation of noise and 
preservation of image details. The aim of this paper is to provide  
accurate quantitative evaluations of these key filtering features 
without the limitations (and the errors) of current metrics. For the 
first time, the exact amounts of filtering distortion and unfiltered 
noise produced by a wavelet-based denoising filter are formally 
computed resorting to the filter theory only. Computer simulations 
are reported in the paper in order to show how residual noise and 
filtering distortion affect the results at the pixel level. Comparisons 
with current metrics are also provided. 
 
Keywords— image denoising, wavelet transform, wavelet 

shrinkage, image quality assessment, Gaussian noise.  

I. INTRODUCTION 
ENOISING algorithms are of paramount importance in 
digital imaging because noise can significantly degrade 

essential information that is embedded in the image data [1]. In 
this framework, wavelet transform-based filters are one of the 
most powerful and widely adopted approaches to noise 
removal especially in the field of medical imaging [2-3]. 
Indeed, these techniques can realize an effective trade-off 
between noise reduction and preservation of image details. As 
an example, medical applications encompass (but are not 
limited to) digital mammography [4], ultrasound imaging [5], 
computed tomography (CT) [6-7] and magnetic resonance 
imaging (MRI) [8-9]. The basic principle of wavelet denoising 
consists in performing the wavelet transform of the noisy data, 
thresholding the wavelet coefficients (wavelet shrinkage) and 
finally inverting the wavelet transform to obtain a denoised 
version of the input data. Many different approaches are 
available in the literature in order to choose wavelet function 
and shrinkage method [10-17]. The choice of shrinkage 
method is a very important aspect in wavelet denoising 
because it has a direct impact on the accuracy of the result in 
terms of residual noise (RN) and collateral distortion (CD). 
The former represents the noise left by insufficient filtering, 
whereas the latter takes into account detail blur and artifacts 
produced by excessive (or wrong) smoothing. The information 
lost during noise cancellation is a very critical issue in many 
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applications. Thus, quantitative evaluations of RN and CD 
would be of paramount importance for the validation of any 
new denoising technique. Several full-reference metrics have 
been proposed for measuring RN and CD in grayscale images. 
In vector approaches, a vector error is typically evaluated 
whose components aim at estimating the different amounts of 
RN and CD left after filtering [18-19]. Vector approaches 
overcome the drawbacks of classical scalar metrics, such as the 
mean squared error (MSE) and the peak signal-to-noise ratio 
(PSNR) that cannot distinguish between noise cancellation and 
detail preservation. Vector metrics also overcome the 
limitations of techniques that mimic the human perception 
[20]. As observed in [21], these metrics can produce the same 
result for filtered pictures having different combinations of RN 
and CD. However, a very compelling issue with current 
metrics yielding separate estimates of RN and CD is to know 
how accurate these estimates are [22-24].  
    In this paper we show how a solution to this problem can be 
found focusing on wavelet denoising theory. For the first time, 
we shall theoretically evaluate the true values of  RN and CD 
for this class of filters, without the limitations and the 
inaccuracies of current scalar and vector metrics. Results of 
many computer simulations are reported in the paper in order 
to show how RN and CD depend upon the threshold of the 
wavelet coefficients and, for a comparison, how erroneous the 
available metrics are. The exact locations of filtering errors 
due to RN and CD will be shown too. This paper is organized 
as follows. Section II describes the theoretical evaluation of 
RN and CD, Section III presents the results of many computer 
simulations, and, finally, Section IV reports conclusions. 

II. COMPUTING THE TRUE VALUES OF RN AND CD  
Let us deal with digitized images having L gray levels 

(typically L=256). Let r(i,j) and x(i,j) be the pixel luminances 
at location [i,j] in the reference (noise-free) and in the noisy 
pictures, respectively (i=1,…M; j=1,…,N). Regardless of the 
mechanism of noise generation, let n(i,j) be the amount of 
noise corruption affecting the pixel at location [i,j]: 
 

)j,i(r)j,i(x)j,i(n −=                           (1)  
 

The basic approach to wavelet denoising typically involves 
three steps: a linear discrete wavelet transformation (DWT), a 
nonlinear shrinkage of the wavelet coefficients, and a linear 
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inverse transformation (IDWT). Thus, let us apply a generic 
DWT to the set of noisy input data { })j,i(x  and let 

)q,p(u )k,h(
x  denote the wavelet coefficient at location  [p,q] in 

the k-th subband of the h-th stage. According to (1), the noisy 
image { })j,i(x  can be considered as the sum of two 
components: 
 

      { } { } { })j,i(n)j,i(r)j,i(x +=                        (2) 
 

where { })j,i(r  is the reference (noise-free) picture and 
{ })j,i(n  briefly denotes the noise. Since the transform is 
linear, we have: 
 
  { }( ) { }( ) { }( ))j,i(nDWT)j,i(rDWT)j,i(xDWT +=         (3) 
 
The corresponding wavelet coefficients are given by the 
following relationship: 
 
             )q,p(u)q,p(u)q,p(u )k,h(

n
)k,h(

r
)k,h(

x +=                   (4) 
 
Now, let )q,p(v )k,h(

x be the wavelet coefficient modified after 
shrinkage. Regardless of the specific shrinkage method that is 
adopted, we shall express such modification as follows: 
 

)q,p(u)q,p(w)q,p(v )k,h(
x

)k,h()k,h(
x =                  (5)  

 
where )q,p(w )k,h(  is a weight ranging from zero to unity 

).1)q,p(w0( )k,h( ≤≤ When 1)q,p(w )k,h( = , the wavelet 
coefficient is passed unchanged. Conversely, when  

0)q,p(w )k,h( = , the role of the coefficient is cancelled, as 
typically occurs in hard thresholding. The filtered image 
{ })j,i(f  is obtained by performing the IDWT: 
 
      { } { }( ))q,p(u)q,p(wIDWT)j,i(f )k,h(

x
)k,h(=            (6) 

 
Thus, remembering (4), we have: 
 
      { } { } { })j,i(f)j,i(f)j,i(f nr +=                                  (7) 
 
where: 
 
      { } { }( ))q,p(u)q,p(wIDWT)j,i(f )k,h(

n
)k,h(

n =         (8) 
 
      { } { }( ))q,p(u)q,p(wIDWT)j,i(f )k,h(

r
)k,h(

r =         (9) 
 
The term { })j,i(fn  is the result of the filtering action that aims 
at reducing the noise { })j,i(n . On the contrary, { })j,i(fr  
represents the unwanted effect that modifies the original 
information { })j,i(r .  

The filtering error )j,i(r)j,i(f)j,i(E −=  can be expressed as 
follows: 
 
                 )j,i(E)j,i(E)j,i(E rn +=                        (10) 

                 )j,i(f)j,i(E nn =                (11) 

                 )j,i(r)j,i(f)j,i(E rr −=                          (12) 

where )j,i(En  is the (signed) error component dealing with RN 
and )j,i(Er is the (signed) error component that generates CD. 
The resulting error components depend on the possible 
compensation of )j,i(En and )j,i(Er . In order to evaluate 
these components, we shall perform a decomposition of the 
absolute error )j,i(e : 
 
           )j,i(e)j,i(e)j,i(E)j,i(e CDRN +==                    (13) 
 
where )j,i(eRN  and )j,i(eCD clearly denote the absolute error 
components addressing RN and CD, respectively 
( 0)j,i(e,0)j,i(e CDRN ≥≥ ). The computation of these 
components depends on the signs and amounts of )j,i(En and 

)j,i(Er , as follows. 
1)  Let us suppose that )j,i(ERN and )j,i(ECD  have the same 
signs. Since no compensation occurs, we have:  

)j,i(E)j,i(e RNRN = , )j,i(E)j,i(e CDCD = . 
2) Let us suppose that )j,i(ERN and )j,i(ECD  have different 
signs and )j,i(E)j,i(E CDRN ≥ . In this case, RN prevails: 

)j,i(e)j,i(eRN = , 0)j,i(eCD = . 
3) Finally, let us suppose that )j,i(ERN and )j,i(ECD  have 
different signs and )j,i(E)j,i(E CDRN < . Since CD 
prevails, we have: 0)j,i(eRN = , )j,i(e)j,i(eCD = . 
Now, the RN and CD on the entire picture can be computed in 
terms of mean absolute errors MAERN and MAECD as follows:  
 
             CDRN MAEMAEMAE +=                       (14) 

 

             ∑ ∑
= =

=
M

1i
RN

N

1j
RN )j,i(e

MN
1MAE                       (15)   

 

             ∑ ∑
= =

=
M

1i
CD

N

1j
CD )j,i(e

MN
1MAE                       (16) 

 
We chose the MAE instead of the mean squared error (MSE), 
because a two-terms RN-CD decomposition of the MSE would 
be erroneous, according to (13).  
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                             (a)                                                          (b)                                                          (c)                                                         (d) 
 
Fig.1 - Simulated BrainWeb data corrupted by Gaussian noise (σ2=225) and processed by wavelet filtering with different threshold values T:  (a) T=2, (b) T=10, 
(c) T=18, (d) T=28.  

                                                           (a)                                                                                                                            (b) 
                                                                                                                                                                                                                                                   
Fig.2 − Results given by the proposed approach and current metrics: (a) MAE, MAERN and MAECD evaluations, (b) RMSE, RMSEA , RMSEB and QILV 
evaluations  (2 ≤ T ≤ 30).  

 
 

 III. RESULTS OF COMPUTER SIMULATIONS 
In this section we shall investigate how the nonlinear 

shrinkage of the wavelet coefficients affects the quality of the 
result in terms of RN and CD. In all the experiments, we 
adopted the excellent software package for forward 2-D DWT, 
soft thresholding and inverse 2-D DWT, available in [25-26]. 
The first test deals with simulated BrainWeb data [27-29]. We 
corrupted the original data by adding zero-mean Gaussian 
noise with standard deviation σ2=225 and we performed 
wavelet filtering by choosing increasing values of threshold T. 
Some results are depicted in Figs.1a (T=2), 1b (T=10), 1c 
(T=18) and 1d (T=28). From visual inspection, we can easily 
see that residual noise and detail preservation decrease as the 
value of T increases. The evaluations of MAERN and MAECD 

that are achieved when the T ranges from 2 to 30 are 
graphically depicted in Fig.2a. As the threshold T becomes 
larger, the MAERN correctly decreases, whereas the MAECD 

increases, as it should be. For a comparison, we considered the 
Quality Index based on Local Variance (QILV) [30] that is 
often adopted as a measure of detail preservation in medical 
imaging. If we observe the QILV evaluations in Fig.2b, 
however, we see that this index wrongly increases for growing 
values of T in the interval 2≤Τ≤8. We also considered for a 
comparison vector metrics such as the VRMSE method 
presented in [18]. In this approach, the RMSEA and RMSEB 
components yield the filtering errors in the uniform and edge 
regions of the filtered image aiming at estimating residual 
noise and collateral distortion, respectively. The incorrect 
behavior of these metrics, however, is apparent (Fig.2b): the 
RMSEA should not increase (20≤Τ≤30) and the RMSEB 

should not  decrease (2≤Τ≤16).  
We performed a second group of tests using the well-known 

Shepp-Logan phantom image corrupted by zero-mean 
Gaussian noise (σ2=225). The results yielded by wavelet 
filtering with increasing values of threshold T are shown
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                             (a)                                                          (b)                                                         (c)                                                         (d) 

                             (e)                                                          (f)                                                          (g)                                                         (h) 
 
Fig.3 − Shepp-Logan phantom image corrupted by Gaussian noise (σ2=225) and processed by wavelet filtering with different threshold values T: (a) T=6, (b) 
T=12, (c) T=18, (d) T=30; (e)-(f)-(g)-(h)  corresponding error maps of  the true error components eRN(i.j) (green) and eCD(i.j) (red).   
 

                                                           (a)                                                                                                                             (b) 
 
Fig.4 − Results given by the proposed approach and current metrics: (a) MAE, MAERN and MAECD evaluations, (b) RMSE, RMSEA , RMSEB and QILV 
evaluations  (2 ≤ T ≤ 34).  
 
 
in Fig.3. The corresponding maps of absolute error 
components )j,i(eRN  (green) and )j,i(eCD  (red) are 
graphically depicted too. For T≤12, we easily see that large 
amounts of noise affect the filtered data. For T=18, some 
unfiltered noise is apparent, whereas the presence of  
collateral distortion becomes well perceivable. For T=30, a 
small number of pixels is still noisy, whereas the most 
annoying effect is represented by distortion also including 
typical wavelet artifacts [31]. The evaluations of MAERN and 

MAECD that are achieved when T ranges from 2 to 34 are 
graphically depicted in Fig.4a. As in the previous group of 
experiments, the correct behavior of MAERN and MAECD is 
apparent. For growing values of  T, the MAERN decreases and 
the MAECD increases, as it should be. Conversely, the QILV 
becomes  larger for values of T ranging from 2 to 10, and the 
RMSEA wrongly increases in the interval 28≤Τ≤34 (Fig.4b). 
The proposed approach can yield exact quantitative 
evaluations of RN and CD, whereas other methods cannot.  
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                           (a)                                                          (b)                                                         (c)                                                        (d) 

                          (e)                                                          (f)                                                          (g)                                                         (h)  
 

Fig.5 − “Airfield” image corrupted by Gaussian noise (σ2=300) and processed by wavelet filtering with different threshold values T: (a) T=6, (b) T=12, (c) 
T=18, (d) T=30; (e)-(f)-(g)-(h)  corresponding error maps of  the true error components eRN(i.j) (green) and eCD(i.j) (red).   

 

                                                         (a)                                                                                                                          (b) 
 
Fig.6 − Results given by the proposed approach and current metrics: (a) MAE, MAERN and MAECD evaluations, (b) RMSE, RMSEA , RMSEB and QILV 
evaluations  (2 ≤ T ≤ 30).  
 
 

 
We  performed  a  third  group  of  tests  using  the  “Airfield” 
picture corrupted by zero-mean Gaussian noise with variance 
σ2=300. The results given by wavelet filtering for growing 
values of threshold T are shown in Fig.5. The corresponding 
maps of absolute error components are graphically provided 
too. The evaluations of MAERN and MAECD that are achieved 
when T ranges from 2 to 30 are graphically represented in 
Fig.6a, whereas the values of  RMSE, RMSEA, RMSEB and 

QILV are reported in Fig.6b. As in the previous case, the 
incorrect behavior of competing metrics is apparent. The 
QILV aims at measuring the detail preservation: however, it 
incorrectly increases for growing amounts of smoothing 
(2≤Τ≤8). On the other hand, the RMSEA (measuring the 
unfiltered noise) wrongly increases in the interval 22≤Τ≤30, 
and the RMSEB    (measuring  filtering  distortion)  decreases  
in the interval 2≤Τ≤15. 
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                            (a)                                                          (b)                                                         (c)                                                         (d)  

                           (e)                                                         (f)                                                           (g)                                                          (h)  
 

Fig.7 − “Boats” image corrupted by Gaussian noise (σ2=350) and processed by wavelet filtering with different threshold values T: (a) T=6, (b) T=12, (c) T=18, 
(d) T=30; (e)-(f)-(g)-(h)  corresponding error maps of  the true error components eRN(i.j) (green) and eCD(i.j) (red).   

 
 

                                                         (a)                                                                                                                             (b)  
 
Fig.8 − Results given by the proposed approach and current metrics: (a) MAE, MAERN and MAECD evaluations, (b) RMSE, RMSEA , RMSEB and QILV 
evaluations  (2 ≤ T ≤ 30).  
 

 
 

We  performed  a  fourth  group  of  tests  using  the “Boats” 
test image corrupted by zero-mean Gaussian noise with 
variance σ2=350. The results given by wavelet filtering are 
shown in Fig.7. The correct behavior of MAERN and MAECD 
is graphically depicted in Fig.8a, whereas the values of  
RMSE, RMSEA, RMSEB and QILV are reported in Fig.8b. 
The limitations and inaccuracies of these  metrics are 
apparent, as in the previous experiments. 

IV. CONCLUSIONS 
In this paper we have presented a new approach to the 

investigation of the accuracy of wavelet-based image 
denoising. We have shown how the formal expressions for 
key features such as residual noise and collateral distortion 
can be directly derived from wavelet denoising theory 
regardless of the specific choice of wavelet function and 
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shrinkage method. Result of computer simulations have 
shown how exact quantitative evaluations of these important 
features can now be computed without being impaired by the 
limitations and inaccuracies of current metrics. It is expected 
that the availability of more accurate information about the 
filtering behavior could very likely lead to more powerful 
classes of wavelet-based filters. 
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