
 

 

 

Abstract—In this study, we propose a new SSVEP-based BCI 

approach for 2D cursor control. Our goal is to allow a subject to gaze 

at a point on a PC screen and move a cursor on it, not fixing a 

flickering LED but gazing between 4 LEDs. The result is a dependent 

BCI which provides a mean ITR of 21 bit/min (SD: 3 bit/min). Data 

were collected using a wireless electroencephalograph with just two 

dry electrodes (O1, O2) and analyses were performed offline. 

 

Keywords— Analog-Like Control, BCI, Harmonics, SSVEP, 

EEG, Dry Electrodes.  

I. INTRODUCTION 

Brain-Computer Interface (BCI) is a communication or 

interaction system in which messages or commands that 

an individual sends to the external world do not pass through 

the normal brain’s output pathways of peripheral nerves and 

muscles: some well-defined brain activity is extracted directly 

from the brain and translated into the desired action. Actually, 

several different brain signals have been successfully used, 

such as EEG, fNIRS, fMRI, MEG and ECoG and several 

different strategies to process them have been adopted (e.g., 

P300, SSVEP, mu, SCP)[1].  

We can divide BCIs into two main categories: dependent 

and independent. A dependent BCI needs a peripheral 

pathway activation (i.e. the ability to gaze) to generate a useful 

signal, whereas an independent BCI does not.  

SSVEP systems, compared with the other BCI systems, 

have recently gained a lot of interest because they can be used 

after a very short training time providing good performances 

as compared to other systems. They are based on the fact that 

when a user watches a light flickering at a fixed frequency f, 

the EEG power spectrum of occipital region channels shows a 

peak localized at the same f frequency and its relative 

harmonics. Thus, it can be possible for a user to activate a 

command or a specific function by gazing at a flickering light, 

usually a LED, which acts as a digital switch, by analyzing 

EEG signals and look for the presence of the spectral peak. 

Moreover, if several LEDs flicker at different frequencies, 

each of them can be bound to a different action that then can 

be executed. In other words, the system guesses the action by 
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analyzing the EEG signal at the occipital region.  

Due to SSVEP signals stationarity, time domain analyses 

are not always the best option to process them and frequency 

domain analyses are often considered a better option [2].  

In Fig. 1 (left panel) a typical power spectrum relative to the 

O1 electrode position, while a user is looking at a 9Hz 

flashing LED, is shown: peaks at 9Hz and other harmonics can 

be easily observed. Similarly, when the same user looks at a 

7Hz flashing LED, peaks at 7Hz and harmonic frequencies 

can be also easily identified (Fig 1, right panel). 

It has been also found [3] that, in the spectrum of EEG 

signals acquired during a stimulation with two lights flickering 

at two different frequencies f1 and f2, and close to each other, it 

is sometimes observed the presence of peaks at the average 

frequency (f1+f2)/2 or their sum (f1+f2). 

Other important features to take into account describing the 

quality of a BCI system are the level of user-friendliness, the 

level of comfort and, as already mentioned, a short training 

time to be able to operate it. Classical SSVEP based BCIs, 

however, fail to provide a comfortable solution because 

requiring fixating a flashing LED causes quickly fatigue. For 

this reason, in a previous study [4] we have demonstrated that 

it is possible to obtain a 1-D analog-like control asking 

subjects to gaze between two flickering LEDs, thus avoiding 

this problem. This is possible because the amplitude of the 

spectral peaks decreases as the gaze of the user moves away 

from the flickering LED so that it is possible to estimate the 

distance of a fixed target with respect to the flickering light in 

a workspace of 30 cm and with a mean error of 2cm [4]. 

Another important issue is that with our approach 

performances can be boosted thus providing another important 

advantage with respect to classical implementations. 

At state of the art, BCI protocols focusing on two-

dimensional control are often hybrid processing of different 

type of brain signals. Protocols are mainly based on a digital 

approach (e.g. using frequency as a tag to select a command 

instead of another one) and few works proposed continuous 

control protocols [4] [5] so that they actually are two BCI 

systems that work in series. 

In this study, we propose a new SSVEP-based BCI 

approach for 2D cursor control, thus improving our previous 

1D work. Our goal is to allow a subject to gaze at a point on a 

PC screen and move a cursor on it, not fixing a flickering light 

but gazing between 4 lights thus avoiding lack of comfort 

issues while boosting performances. 
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Fig. 1: Power spectra relative to O1 while gazing at a 9Hz (left)  and 7Hz (right) flickering LED. 

 

II. MATERIALS AND METHODS 

A. The Experimental Protocol 

Twelve volunteers participated to the study, 7 males and 5 

females, with an average age of 30y (SD: 7y). 

Four white LEDs are used to elicit the SSVEP potentials, 

driven by an Arduino UNO board, to allow a full control on 

the stimulation frequency and of the light intensity. The white 

color is chosen because it is the one that was reported in 

previous studies to provide the higher responsiveness [6]. In 

this protocol we choose the four stimulation frequencies in 

order to avoid harmonics overlaps at the lower frequencies 

(<50Hz) and to avoid overlaps with the monitor refresh rate 

(60 Hz). 

The four LEDs are set on a squared frame of 21.7cm (i.e. 

800 pixels) (Fig. 2) whose diagonals are parallel and 

perpendicular with the direction of the gravity force. 

To maximize the responsiveness [7], frequencies are also 

chosen within the α band and are settled as 8.5 Hz (bottom), 

9.5 Hz (right), 10.5 Hz (top), 11.5 Hz (left). 

The frame is placed on a 24 inches PC monitor, this last 

used to indicate the target positions to fixate. 

Every subject is positioned at 80 cm from the screen with 

his/her eyes centered with the center of the frame. An eye 

tracker (The Eye Tribe) was used to collect gaze data to verify 

that users performed correctly the task.  

We ask each subject to gaze at one among 64 different 

targets, positioned on an 8 by 8 matrix. Each target (e.g. 

fixation point) is defined by a point on the screen that is turned 

on one time per trial while the others are off. In Fig. 2 all 

possible target positions are shown. Targets are distributed 

uniformly between the four LEDs whose flickering 

frequencies are illustrated in Fig. 3. 
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Fig. 2: the custom frame used in the study and the 64 targets all 

turned on to calibrate the system. Arrows indicate LED positions. 

 

 
Fig. 3: spatial distribution of the targets and LEDs 

 

A. Data acquisition 

The acquisition is done using a wireless, 8-channel, 

Neuroelectrics StarStim electroencephalograph with 500Hz 

sampling rate and a 125Hz low-pass filter. A standard headset 

based on 10-10 EEG system is used but only two dry-

electrodes are used and positioned at the O1, O2 locations of 

the 10-20 international system.  

In this protocol, we want to use only two dry electrodes to 

have the simplest set-up, in order to let the system be 

utilizable in a wide range of different situations.  

B. Data analysis 

The off-line processing of the collected data allows us to 

build, through various phases, a subject-specific model that 

can calculate the coordinates of the gaze position on the screen 

and to estimate the error committed in this calculation. The 

data are firstly processed with the NPX Lab software [8] and 

then with custom-made Matlab scripts. 

BCI’s performances are often defined by using the 

Information Transfer Rate (ITR) which considers either speed, 

accuracy, number of choices and frequency of transferred bits. 

For a generic BCI system, with N commands available to the 

user and p probability to be chosen and with s commands 

selected every minute, the ITR is described as follow: 

 

ITR = s*[log2(N)+p*log2(p)+(1-p)*log2(1-p/N-1)] 

 

Twelve tracks, one for each subject, were exported in EDF+ 

format and processed with NPXLab [8].  

For each subject, the Fast Fourier Transform is computed 

for each 4 seconds Performance epoch and exported to obtain 

a new output file. This file (in ASCII format) contains a 

matrix of 64 rows and n+2 columns. Each row is associated 

with a single trial of one single subject, the first two columns 

reporting the coordinates, in terms of pixels, of each target. 

The remaining n columns describe the whole dataset: each 

column reports the values of the spectral amplitudes of each 

single frequency for both O1 and O2 electrodes (all 

frequencies from 0 Hz to 249 Hz with a resolution of 0.25 

Hz). The datasets are then loaded into the Matlab 

environment, where the rest of the processing is executed. 

As the number of features is greater than the number of 

observations (2000 vs. 64) we need to drastically reduce them. 

A first selection is made by selecting only the features in the 

5-99 Hz band (380 features per sensor). 

At this point, we decided to face the problem of the 

correspondence between features and spatial coordinates of 

the targets by breaking it down into four polar coordinates 

sub-problems, one for each LED representing the origin of the 

polar systems. For each target the radius (ρ) and phase (ϕ) 

(Fig. 4), relative to the 4 coordinate systems, are computed, 

thus obtaining eight values (4 radii and 4 phases). Eight linear 

regressions were computed to correlate each spectral feature 

with each of the 8 coordinates. A total of 6080 linear 

regressions (380 * 2 * 8) were then performed. 

It has been observed, in a previous study [4], that the ρ and 

ϕ can be related to the angular distance of the gaze position 

from the LED. Therefore, the idea was to construct eight 

different linear models capable of estimating ρ and ϕ from the 

spectral features. A unique algorithm capable of predicting the 

coordinates of the target on the screen was then developed 

starting from the spectral characteristics of the EEG signal. 

Because of the limited number of observations made, the 

dataset to compute the model was further reduced: we selected 

the 48 spectral features with the best correlations among the 

6080. This number (48) is used to limit the phenomenon of 
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overfitting by selecting 75% of the maximum number of free 

parameters possible (63, equal to the number of observations 

minus one).  

 

 
 
Fig. 4: definition of the coordinate systems Green cross indicates 

target position. 

 

Then, a multiple linear regression is performed on the set of 

48 features, obtaining the 49-parameters of the linear model. 

The “corrected Akaike information criterion" (AICc) is also 

calculated. AICc is a coefficient that considers both the 

goodness of the model's adaptation to the observed data and its 

complexity in terms of quantity of parameters that constitute 

it. At this point a new regression is performed, excluding the 

feature with the highest (worst) p-value from the input data. 

The AICc is also calculated for this new model. This operation 

is iterated 47 times excluding the less statistically relevant 

feature each time and calculating the AICc again. 

At the end of the process, the model with the best AICc 

among the computed 48 is finally chosen, thus the features set 

to be used is determined.  

For each of the 4 coordinate systems, then, the mean error 

of its predictive ability is computed by using a leave-one-out 

method. This technique consists in recalculating the model 

coefficients excluding one observation at a time, applying the 

model to the observation previously excluded and defining the 

error between the real value of ρ or ϕ and the predicted one. 

Since this protocol included 64 observations, the procedure 

can be repeated 64 times. For each coordinate system, the 

mean error was computed to provide an index of the quality of 

the model. 

Once the features to be used are defined we need to get a 

reliable estimation of the coordinates of the target by merging 

the information obtained from the 4 different coordinate 

systems. 

For each target an 800*800 matrix M is defined where each 

cell will hold a score relative to one pixel of the targets 

working space.  

For each of the 4 coordinate systems, a normal Gaussian 

function is constructed with zero mean and with the SD equals 

to the previously computed mean error, in order to obtain a 

function directly related with the quality of the calculated 

model. At this point, for each of the 4 coordinate systems, we 

define a ring function with the radius estimated by the model 

centered on the origin of the coordinate system, and whose 

section orthogonal to the circumference is the previously 

computed Gaussian. By summing the values of the 4 rings, 

into the cells of the M matrix, we obtain a representation such 

as the one of fig 5. 

 

 
Fig. 5: visual representation of matrix M for one target prediction. 

 

The cell with the highest value corresponds to the point of 

the space which represents the best prediction of the target. 

We decide to bring to the edge of the domain any 

predictions that hypothesize the target outside the workspace, 

obtaining an improvement in the estimation without affecting 

the validity of the protocol. 

Finally, the distance between the predicted and the real 

target is calculated and the average error on all 64 targets is 

evaluated. 

Again, the mean error of the predictive ability is computed 

by using a leave-one-out approach.  

If a predicted value falls outside the target’s workspace, it is 

moved on the nearest workspace boundary. In this way, the 

error is reduced by using information that is in any case 

known a priori (a boundary condition of the prediction 

domain) without altering the statistical validity of the results.  
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III. RESULTS 

On Table I the results for predictions in the 2D workspace 

in terms of mean error of the 64 targets are reported. The data 

are presented individually for each of the 12 subjects and then 

an average between them is done. The subject that presents the 

best results was S10, which provides a mean error of 2.0 cm, 

whereas S1, the worst performing one shows a mean error of 

2.8cm. 

The average error committed in the 2D predictions, 

calculated on all subjects is 2.4 cm (SD: 0.2 cm) which is 

about one order of magnitude less than the length of the 

diagonal of the workspace. 

 

TABLE I 
 

 Subject Error [cm] Error [px] 

S1 2.8 104 

S2 2.6 95 

S3 2.3 83 

S4 2.5 93 

S5 2.7 100 

S6 2.3 84 

S7 2.4 87 

S8 2.6 96 

S9 2.3 86 

S10 2.0 75 

S11 2.7 99 

S12 2.1 79 

Avg 2.4 90 

SD 0.2 9 
 

Table 1: errors in 2D models 

 

 

 
Fig. 6: Real (red) and estimated (blue) positions of the target 

relative to S10. 

In Fig. 6 are reported the actual (red) and estimated (blue) 

gaze position relative to subject 10. Each segment represents a 

trial so that one can have an idea of the distance among the 

real and estimated target position. 

Finally, the theoretical ITR indices are calculated for each 

subject hypothesizing an online BCI with a 6s trial duration 

and reported in Table II.  

 

TABLE II 
 

 Subject ITR 

S1 17 

S2 19 

S3 23 

S4 20 

S5 18 

S6 21 

S7 24 

S8 23 

S9 23 

S10 27 

S11 18 

S12 23 
 
Table 2: Theoretical ITR [bit/min] 

  

IV. CONCLUSIONS 

Preliminary studies have shown that the amplitude of the 

spectrum of SSVEP signals is modulated by the distance of 

the gaze from the stimulus that has elicited them [4]. 

Linear models have been built to approximate this trend. 

The models committed errors, on average, lower at 15% of the 

maximum distance measured and, in the best case, less than 

10%. 

The algorithm that was implemented for the construction of 

the models has selected relatively high frequencies compared 

to the expectations and compared to the classic frequencies of 

the SSVEPs [9]. The reason could be the use of dry electrodes, 

which guarantee good acquisition in a wider band compared to 

gel electrodes. Especially in the subjects who presented the 

better results, in addition to the fundamental stimulation 

frequencies, superior harmonics and combinations of these 

same harmonics were automatically selected. That denotes a 

non-linearity in the transmission of the visual signal from the 

retina to the visual cortex or in the genesis of the bioelectric 

signal in the cortex itself. 

The results achieved in the linear models made it possible to 

obtain good performance even in the 2D prediction of the 

target position. The space within which the targets were 

visualized was 13.5 cm × 13.5 cm and the average error 

committed was 2.3 cm. 

The training phase has been reduced as short as possible, 
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consisting of only 8.5 min. The whole protocol was easy and 

intuitive. The system, thanks to the dry electrodes (no 

assembly stuff and no gel in the hair) and the wireless 

electroencephalograph, was comfortable and practical, 

simplifying any use for any subject or patient. Subjects 

reported that visual stimulation was neither fatiguing nor 

bothersome.  

Future work will include online implementation and testing 

on a BCI and NeuroFeedback platform such as [10, 11]. 
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