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Abstract—For the problem that it is difficult in building the 

accurate mechanism models of the industrial 4-stage evaporator, A 
new data-driven subspace identification algorithm is proposed. Firstly, 
a basic procedure of subspace identification method is introduced. 
Then, the state-space model, obtained from the PO-MOESP (Past 
Output MOESP, MOESP is one form of the subspace identification 
methods) algorithm, is regarded as the system model. Lastly, it is 
applied to the process simulation on the industrial 4-stage evaporator. 
Through comparisons of performance with a traditional subspace 
identification algorithm, the superiority of the proposed algorithm is 
illustrated.  
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I. INTRODUCTION 

ith the development of industrial technology, the 
industrial processes become more complex than before 

and it’s more difficult in building the accurate mechanism 
models of these processes. But large amounts of data are 
produced and stored in these processes every day. Hence, the 
data-driven approach has been obtained widespread attention 
since it emerged [1]. And there are many industrial control 
methods to control the processes. But one drawback of the 
traditional industrial control methods is based on input-output 
model, including parametric and nonparametric ones. In order 
to improve the control performance, a state-space model should 
be adopted, so the modern filter theory and the design method 
of controller developed in recent years can play a role [2]. 
Subspace identification is one of system identification 
algorithms for state-space modeling [3-5]. The control workers 
may relieve completely from the tedious mechanism modeling 
and the accurate state-space model can be obtained when there 
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is enough process input-output data which it’s an excellent 
data-driven method [6]. The comparison of subspace and 
classical identification methods can be seen in Fig. 1 [7-9]. 

The PO-MOESP subspace identification algorithm is used to 
solve the problem when one wants to jointly model the 
deterministic and stochastic part of the system. Therefore it is 
important in control and prediction [10-11]. 

The evaporator is a nonlinear industrial process control 
system, and considering the complexity of system, it’s difficult 
in building the accurate mechanism models [12].  The 
conventional model-free control methods, such as PID control, 
will result in poor control performance. So we should adopt the 
model-based control method and the premise is to obtain the 
system accurate model. The PO-MOESP subspace 
identification algorithm can achieve this goal. 

The main contribution of this paper is that we propose a 
subspace-based data-driven identification method for the 
industrial 4-stage evaporator and it employs the PO-MOESP 
algorithm which is more suitable for industrial processes. 
Firstly, the basic procedure of subspace identification is given. 
Then, through PO-MOESP algorithm, the state-space model 
can be obtained from the data and it’s used in the industrial 
4-stage Evaporator. 

The paper is arranged as follows. We start in Section 2 with 
the basic procedure of subspace identification. In Section 3, we 
give the PO-MOESP subspace identification algorithm. In 
Section 4 the simulation example is presented that show the 
potential of the proposed method. The conclusion is drawn in 
Section 5. 
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II. THE BASIC PROCEDURE OF SUBSPACE IDENTIFICATION  

Consider a typical industrial state-space system of order n  
in stochastic form: 
 

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

x k Ax k Bu k w k

y k Cx k Du k v k

   
  

                                  (1) 

 

where ( ) mu k   is input, ( ) ly k   is output, ( ) nx k   is 

state, ( ) nw k   is process noise and ( ) lv k   is measured 

noise. ( , , , )A B C D  are system state-space matrices. The 

stochastic model identification problem is stated with Fig. 2. 
Assuming that k  is the current time, f  is the length of the 

future time, and (1) can be transformed by iteration: 
 

( )f f f f f f fy x k H u G w v                            (2) 

 
where  system vectors fy , fu , fw , fv , extended 

observability matrix f  and Toeplitz matrices fH , fG  are: 
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The (2) can be written in the form of Hankel matrices: 
 

f f f f f f f fY X H U G W V                                 (3) 

 
and the form of Hankel matrices at the past time p  can be 

presented as 
 

p p p p p p p pY X H U G W V                                            (4) 

 
The input Hankel matrix is expressed as 
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where N  is the sampling time. Similarly, fY , pY , fW , fV , 

pW , and pV  have similar definitions. 

The state vector matrices are 
 

 ( ) ( 1) ( 1)fX x k x k x N f    ,  

 ( ) ( 1) ( 1)pX x k p x k p x N f p       . 

 
In order to obtain the system matrices, the subspace 

identification method is generally composed of two steps: (1) 
Determine the extended observability matrix f  or estimate 

the system's state sequence  fX ; (2) Compute system matrices. 

 

III. THE PO-MOESP SUBSPACE IDENTIFICATION ALGORITHM  

The stochastic model identification problem is of interest 
when one wants to jointly model the deterministic and 
stochastic part of the system. With the PO-MOESP subspace 
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Fig. 2. The scheme of the stochastic model 
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identification algorithm, a controller can be implemented as 
shown in Fig. 3. 

According to the Section 2, firstly, we need to remove the 

f fH U , f fG W  and fV  in (3). The instrumental variable in the 

PO-MOESP method is chosen as a combination of past inputs 
and outputs: 
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                                               (5) 

 
Multiplying Equation (2) from the right by projection 

operators 
fU   and 

pW  to remove f fH U , f fG W  and fV  

terms: 
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It can be solved in the usual way using the RQ 

decomposition: 
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It can be deduced that: 
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  Through SVD decomposition of  42 43R R : 
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where n  is the system model order.  nU  can be obtained and 

we can get: 
 

 1 1: ( 1) ,1:n nU U f l n                            (10) 

 2 (1 ) : ,1:n nU U l fl n                             (11) 

 
and system matrices A  and C  can be derived as 
 

†
1 2n nA U U                                        (12) 

 1 1: ,:nC U l                                    (13) 

 
  Next, carry out the conversion of (1): 
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  It can be rewritten as the Kronecker product: 
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where   expresses Kronecker product. Define the 
following matrices: 
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and the (15) can be denoted as the matrix form: 
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  Noise ( )v k  is independent with ( )u k  and 0x , so 
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The system matrices B  and D  can be obtained by the least 

square method of (17). 
 

IV. SIMULATION EXAMPLE 

A typical industrial 4-stage evaporator system is shown in 
Fig. 4. There are three inputs and three outputs in the system. 

The three inputs are input product flow iq , vapour flow vq  to 

first evaporator and cooling water flow cq  to condenser 
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respectively. The three outputs are dry matter content TDS  of 

output product, output product flow oq  and output product 

temperature  T  respectively. 

In order to validate the algorithm, the data obtained from the 
evaporator’s industrial object identification is used directly, 
and the first 1000 data are used for model identification and 
verification. For comparison, the traditional subspace 
identification algorithm in [13] is conducted. In the two 

algorithms, a suitably large estimate at the model order was 
chosen, and the corresponding singular values displayed [14]. 
By examining the singular values of the model, see Fig. 5, it 
was shown that most of the system information was stored in 
the first five singular values, so the model order is chosen as 5. 
f  can be set to three times of model order that 15f  . The 

response of the identified model and process output with 
proposed PO-MOESP is given in Fig. 6 whereas with 
traditional subspace identification algorithm is shown in Fig. 
7. The red solid line is represented as the identified output and 
the blue dashed line represented as the process output. 

 
To test the cross validation, a form of prediction error is 

defined as [15-16]: 
 

 
 
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
                 (18) 

 
 
 
 
 
 
 

where ky  and ˆky  are the values at instant k  of process and 

model output respectively. It is evident that with the increase of 
VAF, the model is more satisfactory. The prediction error on 
the validation data set can be seen in Table 1 and the 
performance using the PO-MOESP is better comparing with 
the traditional algorithm. This is attributed to the system model 
incorporating stochastic part can be identified by the 
PO-MOESP algorithm even better. 

Table 1. The prediction error on the validation data set 

Outputs Traditional 
algorithm VAF 

PO-MOESP 
VAF 

TDS  65.5447 80.9608 

oq  45.8329 84.1373 

T  73.6743 80.8299 
 

V. CONCLUSION 

In this paper, based on the basic procedure of subspace 
identification method, the PO-MOESP subspace identification 

 

Fig. 4 Diagram of the 4-stage evaporator 
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Fig. 5 Singular values of the 4-stage evaporator model 
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algorithm is addressed. The system matrices are identified 
through the PO-MOESP subspace identification, then it’s 
applied to the industrial 4-stage evaporator to verify the 
effectiveness of the proposed algorithm. 
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