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Abstract—Embedded processors are key building blocks for IoT
platforms. Such processors should provide flexible computing and
low-power consumption for the small form factor devices to have
better battery life. This paper introduces an implementation of a new
design for a 32-bit RISC embedded processor optimized for low-
power budget and targeting IoT applications. The proposed processor
is capable to execute a small set of simple instructions in few
cycles, and hence, efficient for low-power embedded applications.
The instruction set is inspired by the state-of-the-art Thumb-2 ISA
by ARM. The performance of the processor is analyzed in terms of
delay and power. The design is described in VHDL, implemented and
simulated on Vivado and tested using Nexys 4 DDR board featuring
Xilinx’s Artix-7 FPGA.
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I. INTRODUCTION

INTERNET of Things (IoT) refers to a giant network that
extends to everyday objects, namely ’Things’. Things can

be sensors, actuators, wearables, mechanical machines, home
appliances or even persons. These objects, while not consid-
ered computers, are able to communicate with other objects
and computers through the Internet via embedded systems
without human intervention. Fig. 1 depicts the components
of an IoT device. Sensors in each IoT device are used to
monitor and collect data from the surrounding environment;
local processor or microcontroller (MCU) is used to process
these data and interface to a wireless device for connectivity
[1].

The internal design of the processor, which describes the
hardware components and their interconnections, is known
as the microarchitecture [2]. The microarchitecture is usually
divided into two main parts: the datapath and the control
unit. The datapath comprises structures — memories, registers,
ALUs, etc. and the multiplexers that connect them together.
The control unit is responsible for generating the driving
signals that control these structures in order to define the
dataflow. Fig. 2 abstracts the components that make up an
ARM core; one of the most pervasive processors in the world
that are embedded in a wide range of products from cell
phones to vehicles [3].

A processor must execute a sequence of instructions, where
each instruction performs some primitive operation, such as
adding two numbers [4]. The instructions supported by a
particular processor and their binary encodings are known
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Fig. 1: Block diagram of IoT device.

as its instruction-set architecture (ISA). In computer orga-
nization, the processor architecture is a combination of its
microarchitecture and ISA.These instructions are nothing but
the basic data-processing, load/store, and branch instructions
which are able to build a more complex program.

The Power consumption in mobile IoT devices depends on
the type of sensors, processor and radio transceiver within
the device [5]. Typically, IoT Devices are powered through

Fig. 2: ARM core functional units and dataflow model.
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rechargeable batteries and/or harvested energy for at least a
portion of the time [6]. This is one of the reasons that power
dissipation has become an important concern, where it is
essential for devices to use minimal power while providing
a good performance. Therefore, the power-performance trade-
off drives the need for a new type of low-power processors.

Reduced Instruction Set Computer (RISC) processors can
perform data transfer and set up communications efficiently
[4]. On the other hand, digital signal processors (DSPs) are
well suited to process the signals with lower latency and
power. Combining RISC and DSPs into a single processor
core would reduce the cost, area and complexity and meet the
energy goals.

This paper introduces a new design for a low-power 32-
bit embedded processor combining DSP and RISC. This
architecture is able to execute a small set of simple instructions
in a few cycles and hence, efficient for low-power embedded
applications. The instruction set is inspired by the state-of-the-
art Thumb-2 ISA by ARM [7].

The rest of the paper is organized as follows: section II
introduces the architecture of the proposed processor, section
III explains the design in details, the simulation and results
are discussed in section IV. Finally, section V concludes the
paper.

II. PROCESSOR ARCHITECTURE

In this section, the architecture of the proposed processor
is explained showing the purpose and the behavior of the
different components of the processor. Fig. 3 depicts the
microarchitecture of the proposed processor. It is also worth
pointing out that the data lines are marked in black while
control signals are marked in red.

The architecture of the proposed processor is based on a 32-
bit RISC microarchitecture and a rich 32-bit instruction set.
The data-path follows the Harvard architecture in which the
instruction storage and data storage are physically separate.
It consists of a register file, program counter (PC), instruc-
tion memory, data memory, Arithmetic-Logic Unit (ALU),
barrel shifter, and a powerful Multiply-accumulate (MAC)
unit. These structures are connected through multiplexers that
enable multiple selections to the direction of dataflow. The
processor features a three-stage fetch-decode-execute pipeline
to improve the throughput of the processor by overlapping
multiple instructions during execution.

The instruction set has a very regular encoding that supports
several data-processing, load-store instructions, and branch
instructions. Most instructions contain dedicated fields for: the
operation to be performed, two source operands, a shift-control
over the second operand, and a destination operand. The first
source operand is always located in the register file whereas
the second one can be an operand located in the register file
or an immediate operand encoded into the instruction. All
instructions are executed unconditionally, except the condi-
tional branch instruction, which enables the program to bypass
subroutines if a condition was not satisfied. The instruction set
architecture of the proposed processor is found in appendix A.

A. Data-processing units

ALU is the fundamental building block of the processor
which carries out most of the data-processing operations.
It generates status codes, known as flags, which are useful
for detecting errors and making comparisons and decisions
in conditional codes. The ALU operations of the proposed
processor are not limited to the basic arithmetic and logic
operations, but they are also extended to include digital signal
processing, single-input multiple-data (SIMD), and packing
and unpacking operations which can significantly improve
the performance of the processor. These operations can be
performed on data stored in registers only.

The arithmetic instructions are divided into basic arithmetic
and parallel arithmetic instructions. For basic arithmetic, a
single operation is performed on a pair of operands of data type
word. However, parallel arithmetic supports SIMD operations
in which two or four addition, subtraction operations or a mix
of them are done on a pair of two half-words or four bytes in
one cycle. Fig. 4 illustrates the concept of addition/subtraction
in SIMD. Hence, the processor requires less time to solve more
complex problems at maximum speed and performance. The
logic instructions refer to bitwise logical operations which are
performed on 32-bit words of data.

The second operand of the ALU can be optionally shifted
by a barrel shifter connected directly to the ALU. The barrel
shifter is capable of performing five different types of 32-
bit position shift and rotate operations. The shift operations
are not restricted to shift instructions. However, the second
operand can be shifted before executing some data-processing
and data-transfer instructions in order to support address
scaling and constructing immediate values. In this way, the
barrel shifter can increase the number of operations performed
per instruction, reduce the number of cycles required and
improve the performance of the processor.

For the load instructions, the address is always calculated
from a base register value, an immediate operand, PC value
or another shifted base register value. A word of data at the
calculated address is then read from the data memory and
written into a destination register. The same goes for the store
instructions, except that a PC value cannot be used to calculate
the address and the word of data is read from a source register
and written to a memory location.

DSP applications are typically performed by an optimized
Multiply-Accumulate unit which multiplies two numbers and
accumulates the result onto an accumulator. The proposed
processor includes a new design for a low-power MAC unit
capable of performing several 16-bit, dual 16-bit, and 32-bit
MAC operations in which up to three operands are involved.
The two operands are the multiplier and multiplicand while
the third operand is used for accumulation purposes. Like the
ALU, MAC operations can be performed on data stored in
registers only. The proposed MAC operations can be carried
out on signed or unsigned operands and the result can be a
word of 32-bits for short multiplication or double-words of
64-bits in case of long multiplication. In order to maximize
the performance, all the MAC operations are executed in
one cycle. However, for long multiplication, two cycles are
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Fig. 3: The Microarchitecture of the Proposed Processor

required to store the result in the registers, as the register file
is able to write only one register at a time. DSP instructions
include saturation instructions that can be used with signed
and unsigned operands to round their value to the maximum
value supported by the processor and prevent overflow. MAC
unit is a fundamental block that maximizes the performance
of the processor.

Both ALU and MAC have no direct access to operands
stored in memory. Memory can be accessed only by load-store
instructions. Therefore at least two instructions are required to
perform an operation on memory operands, or to perform an
operation and store its result in memory. Data-processing and
load-store instructions can read one of their operands from the
PC. However, these instructions cannot change its value; only
branch instructions can change the contents of PC to change

the program flow.

B. Register File

The register file of the proposed processor consists of
sixteen resisters. The registers R0 to R12 are general purpose
registers that can hold all data types. Registers R13 to R15
are special purpose registers which can only hold the data
essential for specific operations: R13 is a stack pointer (SP)
that keeps the address of the last program request in a stack;
R14 is a link register (LR) which contains the address to return
to after finishing a subroutine or a function call completes; and
R15 is the program counter that holds the address of the next
instruction to be fetched. The program status register (PSR)
is another special purpose register that stores the flags used
in conditional execution. However, PSR is not a part of the
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Fig. 4: Addition/Subtraction in SIMD: a) byte operands, b)
halfwords, c) bytes interchanged and d) complete word

register file.
Unlike general purpose registers, only certain instructions

are able to access special purpose registers and changing
the contents of these registers will likely cause a change
in the program flow. A register specifier to R15 can have
different meanings according to the instruction. For branch
and load/store instructions, this register specifier lets data to
be read and written into the PC. However, in most of the
data-processing instructions, it indicate a second operand of
zero when used as a source register, or that the result of
the operation is not to be written when used as a destination
register.

The proposed processor is able to address memory of up to
4GB. The storage is distributed among two memory elements:
an instruction memory that stores the program code and a
data memory for data operands. The processor memory is
the primary storage that contains the data and instructions of
the program in operation. The instruction memory is accessed
every cycle to load a new instruction into the pipeline. The data
memory is read or written only when a load/store instruction is
performed, which is responsible for the data transfer between
the data memory and registers.

C. Pipeline Stages

Each stage of the pipeline consists of a stage-latch to hold
the data of the stage and block any change from the previous
stages. The latch is followed by a combinational circuit that
performs operations on data within the stage. The enable
signals of these latches are synchronously generated every
cycle by the control unit. Fig. 5 illustrates the pipeline stages.

The pipeline stages are organized as follows:

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

...

...

...

...

T1 T2 T3 T4 T5

Fig. 5: The three-stage pipeline of the proposed processor

• Fetch Stage: An instruction, in a memory location stored
in the PC, is read from the instruction memory and the
next instruction address is calculated. The results of the
stage are passed to the decode-stage latch.

• Decode Stage: The instruction is decoded by the in-
struction decoder, which generates all the control signals
required to switch on and off the components of the
processor and control the selection of the multiplexers
to define the dataflow. It generates the addresses of
the operands to be read from, or written into registers
and memory. Furthermore, it decodes immediate operand
expressions if available within the instruction. The gen-
erated control signals and the immediate operand are
connected to the execute-stage latch.

• Execute Stage: The control signals generated from the
decode stage are allowed to drive the components of the
processor. At the beginning of the cycle, the register file is
read, shift type and shift operand are applied to the barrel
shifter, operands are processed by data-processing units
(ALU or MAC unit). The source of the next instruction
is selected such that the PC is updated to the address
of the following instruction in the sequence, or switch
to another one in case of executing a branch instruction.
Finally, the results are written into the register file or data
memory by the end of the cycle.

D. Control Unit

The control unit is responsible for directing the response of
the processor components. Once an instruction is fetched, the
control unit receives the current instruction from the datapath
and tells the datapath how to execute that instruction. It
includes the instruction decoder along with the extra logic that
provide timing and control signals according to the instruction.
Specifically, it generates the driving signals for multiplexer
select, register enable, and memory write to control the op-
eration of the datapath. The control unit plays an important
role as well in controlling the stages of the pipeline to prevent
hazards.

III. PROCESSOR DESIGN

A. Register File

The register file can read up to three registers through three
read-ports, namely ‘RD1’, ‘RD2’ and ‘RD3’. Each read-port is
associated with a 4-bit register specifiers namely, ‘A1’, ‘A2’
and ‘A3’, to determine the source registers. It can write in
one register at a time through one write-port ‘WD’ associated
with a register specifier ‘A4’. Source operands are accessed
through the register file read ports at the beginning of every
cycle, while destination operands are are applied to the write-
port by the end of the same cycle. Data is only written into
the specified registers at the rising edge of the following clock
cycle when a write enable signal WE is asserted. Clock-gating
low-power technique is used to reduce power consumption by
blocking the clock signal from the registers that are not in use.
Fig.6 depicts the design of the register file.

The dataflow in the register file is controlled by a 2-
phase non-overlapping clocks, generated from the main clock.
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Fig. 6: Block Diagram of the Register File

data2

data2

data1 data2

data1 data2

CLK

CLK 1

CLK 2

WD

REG_D

REG_Q

RD

T₁ T₂ T₃

Fig. 7: 2-phase Non-Overlapping Clock Scheme

During phase 1, the read-port latches are activated and data
stored in the specified source registers are allowed on the
read-ports. The write-port, however, is not active and hence,
any change in its data will not be applied to the inputs of
the registers. On the other hand, the read-port latches are
deactivated during phase 2 and any change in the data stored
inside the registers will not affect the read-ports until the
next clock cycle. The write-port latches are enabled and the
destination operands are allowed on the input of the registers.
At the next rising clock edge, the write-port data are written
in the specified register and are ready to be accessed. In this
way, we can easily achieve the three-stage pipeline and an
extra writeback stage is no longer required. Fig.7 illustrates
the 2-phase non-overlapping clock scheme.

Memories are accessed using addresses of 32-bits and
data bus width of 32-bits.The storage space is distributed
among two memories whose addresses do not overlap, one for
instructions and another for data. The implemented instruction
memory is a 4KB asynchronous read-only memory. The data
memory, on the other hand, is a synchronous 1MB read/write
memory. Data can be written only in the data-memory when
a write enable signal ‘WD’ is asserted.

B. ALU

The ALU as shown in Fig. 8 is divided into three parts:
arithmetic, saturation and logic parts. The design of the
arithmetic block consists of four 8-bit adders which can be
used separately or together, through multiplexers, to form
two 16-bit adders or a single 32-bit adder. The result can
be saturated or divided by 2 according to the instruction.
The reason behind this design is to utilize and reuse the
same components to execute a wide range of DSP instructions
with minimum hardware reducing the power consumption. The
design of arithmetic block is shown in Fig. 9 and Table. I.

The saturation block can perform signed or unsigned satu-
ration. For signed saturation, the overflow flag is inspected. In
case of no overflow, the result is not saturated. Otherwise, the
result will be saturated to the largest signed positive number
if the overflowed result is negative and to the smallest signed
negative number if positive. For unsigned saturation, the carry-
in and carry-out of the arithmetic operation are inspected.
The carry-in indicates whether the operation was addition or
subtraction. The unsigned value is not saturated when the two

Arithmetic Unit Logic Unit
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A [31:0] | B [31:0]OP [6:0]

Y [31:0] | Flags [7:0]

32 32

323232
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Fig. 8: The design of the ALU
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Fig. 9: The Design of the Arithmetic Block

TABLE I: The Design of the Arithmetic Block

OP[1:0] OP[3:2] Adders Inputs Operation

00 00 A, B 32-bit Adder
01 00 A, B Two 16-bit Adders
10 00 A, B̄ Two 16-bit Subtractors
11 00 A, B̄ 16-bit Adder and 16-bit Subtractor
01 01 A, B Four 8-bit Adders
10 10 A, B̄ Four 8-bit Subtractors

 
INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 629



(Un)Pack

Extend

A [31:0]

B [31:0]

Y [31:0]

OP [5:0]

32

32

32

Reverse

6

Fig. 10: Brief illustration of the Logic Block Design

carries are equal. Otherwise, the unsigned value is saturated to
the largest unsigned positive number in case of addition and
to zero in case of subtraction.

The logic block performs the basic logic operations. It
is also designed to support packing/unpacking, extend, and
reverse instructions. Packing/unpacking instructions deal with
half-words and bytes to extract 16-bit and 8-bit operands from
32-bit words, or to combine several 16-bit and 8-bit operands
into 32-bit words. Extend instructions can extend signed and
unsigned byte or halfword into a 32-bit operand. Reverse
instructions are able to change the order or bytes, halfwords,
or bits within a word of data. A brief illustration of the logic
block is depicted in Fig. 10.

The logic unit is not used in arithmetic operations while, the
adders are not used in logic, packing/unpacking, extend, and
reverse operations. Therefore, the different parts are designed
to be switched off when they are not in use to reduce power
consumption. Guard evaluation low-power technique [8] is
used to block the change in inputs to these blocks; Hence,
saving dynamic power due to transitions.

C. Barrel Shifter

The second operand passes through the barrel shifters before
it enters the ALU. The barrel shifter is capable of performing
five different shift operations which are: logic shift right, logic
shift left, arithmetic shift right, rotate, and rotate with carry.
The number of shift positions ranges between 0 and 32 and
is defined by a register based operand or immediate operand.
Each shift operation is performed by a specific combinational
block. The operand is applied to the five blocks at the same
time and the desired output is selected by a multiplexer
whose selection is controlled by the instruction decoder. Guard
evaluation low-power technique is used to switch off the
blocks that are not in use according to the instruction.

D. MAC Unit

The multiplicand and multiplier operands are denoted by A
and B, respectively, while the third operand is denoted by R,
and the result is denoted by Y . For demonstration, the main
idea of the proposed MAC unit operations is listed below:

The proposed MAC unit consists of four 16x16 bit array
multipliers whose inputs and outputs are connected to adders

−Multiply words and Accumulate
Y = R±A×B

−Multiply Halfwords and Accumulate
Y = R±A(halfword)×B(halfword)

−Multiply Word by Halfword and Accumulate
Y = R±A×B(half word)

−Dual Multiply Halfwords, Add/Subtract, Accumulate
Y = R±A(halfword)×B(halfword)

±A(other halfword)×B(other halfword)

and multiplexers. Fig. 11 shows the block diagram of the
proposed MAC unit and demonstrates its dataflow architecture.

For 16-bit MAC operations, only one multiplier is required
to multiply two halfwords. In case of dual 16-bit operations,
two multipliers are involved in multiplying two pairs of stan-
dalone halfwords and their result is then added or subtracted.
The four multipliers are connected together along with adders
to form a 32x32 bit vedic multiplier in 32-bit operations. The
result of multiplication is optionally accumulated on another
operand by means of a 32-bit and/or a 64-bit adder.

Multiplexers are responsible for choosing the desired inputs
and outputs of the multipliers and adders according to the
operation. They are used to select the desired words and
halfwords of the input and resulting operands. In addition,
select the type of multiplication, whether signed or unsigned.
In this way, the same hardware components can be reused to
perform a wide range of operations while consuming less area
and power by avoiding component replication.

The multipliers used are unsigned by default, and hence,
an extra hardware is required to perform signed multiplica-
tion. For unsigned multiplication, the operands are allowed
into the multipliers without any change. However, for signed
multiplication, the absolute value of operands is fed into the
multipliers, unsigned multiplication is performed, and finally
the sign is separately calculated and added to the result.

The multiplier blocks, denoted by ‘M0’, ‘M1’, ‘M2’ and
‘M3’, are 16x16 bit unsigned array multipliers that use dig-
ital combinational circuits to perform parallel multiplication.
Array multipliers outperform serial multiplication schemes in
terms of speed and performance. The design of an array
multiplier is based upon partial product generation, shifting
and addition. The partial product is generated by the multipli-
cation of the multiplicand with one multiplier bit. Each partial
product is shifted according to its bit position. Finally, the
result is obtained by adding the shifted partial products.

In order to maximize the performance while maintaining
minimum power and area and enable hardware reuse, the vedic
scheme is used to construct a 32x32 bit multiplier. Fig. 12
shows an example of 4x4 bit vedic multiplier. The same
methodology can be extended to construct 32x32-bit vedic
multiplier [9].

In the proposed design, ‘M0’ is used to multiply the lower
halfwords of the input operands. ‘M3’ is used to multiply the
upper halfwords. The other two multipliers ‘M1’ and ‘M2’
are used to multiply the lower halfword of the first operand
by the upper halfword of the second operand and vice-versa.
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Fig. 11: The block diagram of the proposed MAC unit.

Fig. 12: vedic scheme for 4x4-bit multiplier.

In this way, the result of multiplying the different halfwords is
obtained at the same time and can be used in operations where
two standalone multiplication results are required. The result
selection depends on the operation and is done by means of

multiplexers. In order to use the same hardware to perform
32x32 bit multiplication, the concept of vedic multiplication
was used. The results of the four multipliers are connected to
adders to extend the multiplication process. Fig. 13 depicts the
connection of adders in the vedic block.

The ‘ABS’ block is used to obtain the absolute value of the
signed operands and is required only in signed multiplication
operations. To obtain the absolute value, the most-significant
bit of the operand is inspected. If it was ‘1’ then the operand is
negative and the absolute value is the two’s complement of the
operand. Otherwise, the operand is positive and the absolute
value is equal to the operand itself. The obtained absolute
value is ready to be used with the unsigned multipliers. Fig. 14
depicts the design of both the ‘ABS’ block.

The ‘Sign’ block is required to calculate the sign of the
result in signed multiplication. The resulting operand should
be negative only if A and B were of different signs. In
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order to achieve this, the most-significant bit of A and B
are inspected. The signed result is the two’s complement of
the unsigned multiplication result when the most-significant
bits are different. Otherwise, the signed result is equal to the
unsigned multiplication result. Fig. 15 depicts the design of
both the ‘Sign’ block.

Regarding the low-power consumption, one MAC operation
does not use all the components at a time. Only some specific
components are necessary to operate when executing a certain
operation and the rest can be switched off. Therefore, guard
evaluation low-power technique is used again to block the
change in inputs to these blocks.

E. Control Unit

The control unit includes the instruction decoder and the
logic circuit that controls the stages of the pipeline to prevent
hazards. The instruction decoder is a combinational circuit
which decodes the instruction into its components and accord-
ingly, drive the control signals of the different components of
the processor. On the other hand, the pipeline control circuit
is based on a finite-state machine in which each state controls
the three stages of the pipeline. Fig. 16 depicts the finite state
machine representation of the control unit.

The processor starts at state ’C‘ whenever a reset signal
is received. In this state, the decoding and execution latches
are cleared and disabled. The fetch stage is enabled so that
the processor can read a new instruction. In the following
cycle, the control unit changes the state to ‘D’ to enable the
decode stage. However, the instruction is still not ready to be
executed. Finally, the control unit changes the state to ‘A’ in
the following cycle to enable the execution stage. Unless a
branch, load/store or conditional instruction or a reset signal
is received, the control unit remains in state ‘A’.

When a branch instruction reaches the execution stage,
there should be two other instructions waiting in the pipeline.
These two instructions should be flushed away in order to pre-
vent them from being executed. Therefore, for unconditional
branch, the processor enters state ‘B’ to execute the branch
instruction, then changes state to ‘C’ to clear the pipeline.
For conditional codes, the processor moves to state D in case
the condition was not satisfied to stall the pipeline and skip
executing the instruction. Otherwise, it will remain in state ‘A’
or enter state ‘B’ in case of conditional branch.

IV. SIMULATION AND RESULTS

The proposed processor was implemented using VHDL
using Vivado software tool by Xilinx. The testing is divided
into two parts: a simulation part where all the testing is done
on the simulation tool ISim integrated with Vivado, and a
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Decode = 1
Execute = 0

RST

B, BL

Always

RST

Always

B<cond>

LDR (literal)

Others

RST

unsatisfied

satisfied
, B<cond>

Fetch = 1
Decode = 1
Execute = 1

Fetch = 1
Decode = 0
Execute = 1

Fetch = 1
Decode = 0
Execute = 0

Fig. 16: The finite-state machine of the control unit.

 
INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 632



hardware part where the implemented design is uploaded on
Digilent Nexys 4 FPGA development kit. The estimated power
report of the processor was obtained from Xilinx Vivado.

The on-chip power report of the processor generated at
clock speed of 100MHz is shown in Figure 17. The report
defines the estimated values for the dynamic power and static
power. Static power, as well known, is the power consump-
tion in the steady state resulting from intrinsic leakage of
transistors. The static power is a constant value of 91 mW
representing 42% of the total power. The internal switching
activity and the clock frequency influencing directly the dy-
namic power. The dynamic power of the whole design is
about 129mW which is 52% of the total power consumption.
These results reflects that the proposed low-power 32-bit RISC
processor provides an ultimate solution for battery-powered
IoT applications.

For the simulation part, a test-bench was made for every
component to separately test its functionality in simulation.
In order to test the functionality of the processor as whole, a
test-code with a wide range of instructions was preloaded into
the instruction memory and the output of every component
was verified after assembly. The processor simulation was
performed at a clock speed of 100MHz. A small part of the
test-code is listed below for demonstration.
MOV R1, #2
MOV R3, #3
ADD R2, R1, R3
SUBS R0, R3, R2 <LSL,#1>
BL <P> 0x00000000
MOV R0, #0
BL 0x000c0000

The test-code starts by moveing two immediate operands of
value ‘2’ and ‘3’ into registers R1 and R3 respectively. Then, it
adds the register value of R1 to that of R3 and writes the result
into R2. The operand in R2 is then shifted by 1 position to the
left and subtracted from the operand stored in R3. The result is
written into R0 and the flags are updated. The the value of the
‘N flag’ is checked, and if the flag was clear (i.e. the result of
the subtraction operation was positive,) the program branches
to the first address in the instruction memory. If the condition
was not satisfied, the program will move an operand of ’0’
into R0 and finally, branch unconditionally to the address
‘0x000c0000’ linking the current instruction address to ‘SP’.

Figure 18 shows the obtained simulation results. According
to the figure, the control unit started at state ‘C’ after receiving

Fig. 17: The Power Report of the Processor

the simulated reset signal. The first immediate operand ‘2’ was
written into the register R1 by the end of the third cycle as
expected. Then, the second immediate operand ‘3’ was written
into R3. The two register values were added resulting in an
operand of value ‘5’ and the operand was stored in R2. The
shifted value of R2 was then subtracted from R3 resulting
in a negative value ‘FFFFFFF8’ which is written to R0 and
the N flag was set. In the next cycle, the branch condition
was not satisfied and the control unit changed the state to
‘D’ to disable the execution latch. In the following cycle,
an immediate operand of ‘0’ was written into R0. Finally,
the processor branched to address ‘0x000c0000’ after writing
the current instruction address ‘0x00000001C’ into SP. The
control unit changed the state to ‘B’ in order to execute the
branch, adding two empty bubbles to refill the pipeline.

V. CONCLUSIONS AND FUTURE WORK

Efficient hardware architecture for low-power 32-bit RISC
embedded processor has been designed, implemented and
tested in this work to fit the IoT power budget. The proposed
architecture is implemented using VHDL featuring Xilinx’s
FPGA. The DSP performance is improved by designing 32-
bit MAC unit optimized for low-power operations which is
capable to execute all operations in one cycle. A testbench
was created for every component of the proposed design to
separately test its functionality on ISim simulator integrated on
Vivado. The whole processor is tested on Nexys 4 development
board using some test codes with wide range of instructions.
The test results obtained from simulation show that power
consumption is very low at clock frequency of 100 MHz.
Future work will focus on improving the processor capabilities
by including deep-sleep mode and some encryption modules
to fulfill the need of security measures.
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APPENDIX A
INSTRUCTION SET ARCHITECTURE OF THE PROPOSED

PROCESSOR

The processor is capable of performing several operations,
which include:

• Conditional and unconditional branching
• Load/store instructions
• Logical and arithmetic shifting in both directions, and

rotation
• Addition and subtraction (with and without carry)
• Short multiplication instructions (Long multiplication in-

structions are the same, but with double the operand size)
• Logic instructions
The following tables summarize some of the most important

instructions:

TABLE II: Branch Instructions

Instruction Function

Unconditional Branch
(B)

Loads PC with an address obtained from a reg-
ister value or an immediate operand to execute
a subroutine .

Branch and Link
(BL)

Saves the current PC to SP then loads PC with
an address obtained from a register value or an
immediate operand .

Conditional Branch
(B <cond >)

Branches only if a condition is satisfied. Status
flags are used to check if the condition is true
or false. Conditions can be Equal, Not Equal,
Greater than, Less than, Negative, Positive, Zero,
Overflow, etc

TABLE III: Load/Store Instruction Operations

Instruction Operation

LDR (Immediate) Rt = M [Rn ±#imm]

LDR (Register) Rt = M [Rn ± LSL (Rm,#imm)]

LDR (Literal) Rt = M [Rn ± PC]

STR (Immediate) M [Rn ±#imm] = Rt

STR (Register) M [Rn ± LSL (Rm,#imm)] = Rt

TABLE IV: The types of Barrel Shifter Operations

Instruction Operation Flags

LSL <n> Logic Shift Left by n-bit positions. N C Z
LSR <n> Logic Shift Right by n-bit positions. N C Z
RSR <n> Arithmetic Shift Right by n-bit positions. N C Z

ROR
The least significant bit is rotated off the
right end and inserted into the most signif-
icant bit position on the left.

N C Z

RRX Shift right one bit with the old carry inserted
in the most significant bit. -

TABLE V: Signed/Unsigned Basic and Parallel Arithmetic
Instructions (optionally saturated or divided by 2)

Instruction Operation Flags

ADD
SUB

Word Addition/Subtraction

Rd = Rn ±Rm

N, C, Z, V

ADC
SBC

Addition/Subtraction with Carry

Rd = Rn ±Rm + carry
N, C, Z, V

ADD16
SUB16

Half-word Addition/Subtraction

Rd [31 : 16] = Rn [31 : 16]±Rm [31 : 16]
Rd [15 : 0] = Rn [15 : 0]±Rm [15 : 0]

G

ASX
SAX

Exchanged Half-word Addition/Subtraction

Rd [31 : 16] = Rn [31 : 16]±Rm [15 : 0]
Rd [15 : 0] = Rn [15 : 0]∓Rm [31 : 16]

G

ADD8
SUB8

Byte Addition/Subtraction

Rd [31 : 24] = Rn [31 : 24]±Rm [31 : 24]
Rd [23 : 16] = Rn [23 : 16]±Rm [23 : 16]
Rd [15 : 8] = Rn [15 : 8]±Rm [15 : 8]
Rd [7 : 0] = Rn [7 : 0]±Rm [7 : 0]

G

QADD
QSUB

Signed Saturate Add/Subtract

Rd = SAT Rn ±Rm

Q

QDADD
QDSUB

Signed Saturate, Double, Add/Subtract

Rd = SAT (Rn± SAT (Rm))
Q

TABLE VI: MAC Unit Instructions

Instruction Operation

MUL, MLA,
MLS

(Un)Signed Multiply and Accumulate/Subtract

Rd = Ra ±Rn ×Rm

(U/S)MULxy

(Un)Signed Multiply Accumulate Halfwords

xy=BB: Rd = Ra ±Rn [15 : 0]×Rm [15 : 0]
xy=BT: Rd = Ra ±Rn [15 : 0]×Rm [31 : 16]
xy=TB: Rd = Ra ±Rn [31 : 16]×Rm [15 : 0]
xy=TT: Rd = Ra ±Rn [31 : 16]×Rm [31 : 16]

(U/S)MULWx

(Un)Signed Multiply Accumulate Word by Halfword

x=B: Rd = Ra ±Rn ×Rm [15 : 0]
x=T: Rd = Ra ±Rn ×Rm [31 : 16]

SMUADx

Signed Dual Multiply, Add or Subtract, Accumulate

Rd = Ra ± Rn [15 : 0] × Rm [15 : 0] ±
Rn [31 : 16]×Rm [31 : 16]
Rd = Ra ± Rn [15 : 0] × Rm [31 : 16] ±
Rn [31 : 16]×Rm [15 : 0]
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TABLE VII: Basic Logic Instructions

Instruction Operation Flags

AND Rd = Rn ∧Rm N, C, Z
BIC Rd = Rn ∧ (¬Rm) N, C, Z
ORR Rd = Rn ∨Rm N, C, Z
ORN Rd = Rn ∨ (¬Rm) N, C, Z
EOR Rd = Rn ⊕Rm N, C, Z

TABLE VIII: Packing and Unpacking Instructions

Instruction Operation

SEL
Select Byte

If GE = 1, Rd = Rn, Else, Rd = Rm

(S/U)XTAH
(Un)Signed Extend Add Half-wrod

Rd = Rn+ Ext(Rm [15 : 0])

(U/S)XTAB16

(Un)Signed Extend Add two bytes

Rd [31 : 16] = Rn [31 : 16] + Ext(Rm [23 : 16])
Rd [15 : 0] = Rn [15 : 0] + Ext(Rm [7 : 0])

(U/S)XTAB
(Un)Signed Extend Add Byte

Rd = Rn+ Ext(Rm [7 : 0])

TABLE IX: Miscellaneous Instructions

Instruction Operation

REV Reverse Bytes in a Word
REV16 Reverse Bytes in Each Half-words

REVSH Reverse Bytes in the Lower Half-word and Sign
Extend the Result

RBIT Reverse Bits in a Word
CLZ Count Leading Zeros
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