
  
Abstract—Speech enhancement plays an important role in speech 

communication systems. Speech signal enhancement in an additive 
noise environment in speech recognition and speaker verification 
system is still a challenging task. In speech enhancement process, the 
spectral analysis method has more advantageous than other methods 
due to its simplicity and effective localization of noise components in 
the signal. But, this method does not analyze the phase information 
for efficient speech enhancement. This present work proposes a 
modified phase spectrum compensation method for speech 
enhancement in a single channel environment that analyzes both the 
magnitude and phase spectrum of the speech signal. The performance 
of the proposed method is compared with that of three conventional 
methods (Spectral Subtraction (SSUB), Minimum Mean Square Error 
(MMSE) estimator, and Phase Spectrum Compensation (PSC)) 
through four different objective measures: Log spectral distance 
(LSD), log likelihood ratio (LLR), itakura-siato (IS) measure, and 
short-time objective intelligibility (STOI). The experimental results 
show that the three objective measures (LLR, LSD, and STOI) of the 
proposed method gives better results over the conventional methods 
in four different noise Signal to Noise Ratio (SNR). 
 

Keywords—Complex spectrum, Noise reduction, Objective 
measures, Speech enhancement 

I. INTRODUCTION 
PEECH enhancement is a field of research that focuses on 
improving the quality of a speech signal under different 

environments, and it has become a very popular research topic 
in recent decades. Speech enhancement plays a key role in the 
speech communication process. Speech communication is one 
of the important modes of communication between humans 
and between human and machine. In real life, the users are 
expecting that the speech communication system should be so 
robust to work on any environment at any time [1]. Speech 
communication involves two important processes namely 
speaker verification and speech recognition. Interferences due 
to noise is significantly affecting the performance of any 
speech communication system and it affects the quality of the 
original speech signal by some ratio and it is measured using 
Signal to Noise Ratio (SNR). In specific, improving the 
speech quality of the signal under moderate to high noise (-5 
dB to 15 dB) is highly challenging [1], [2]. There are several 
kinds of research in the literature over the past several decades 
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discusses the speech enhancement process in a noisy 
environment [3]–[5]. 

Besides, the type of environment or surrounding also plays 
a key role in speech enhancement process. Because, the signal 
can be acquired from a different environment such as additive 
noise, reverberation, filtering, and clipping, etc. Hence, it is 
highly important to estimate the original speech information 
from the noise effects in the speech signal processing for 
developing intelligent speech communication systems. Recent 
developments in speech communication devices such as 
speech assisting devices, speech communication systems 
(mobile phones), hearing aids, and cochlear implants are 
highly sensitive to noise information present in the signal, 
which must be carefully removed from the original signal for 
efficient sound reproduction. This present work mainly 
focused on analyzing the degradation due to additive noises of 
different SNR from moderate to high values (0 dB, 5 dB, 10 
dB, and 15 dB). 

The major interest on speech enhancement methodology is 
to suppress the effect of noise in the original speech signal to 
improve its quality. It is one of the common problems in either 
single channel (one microphone) system or multi-channel 
(more than one microphone) system. Most of the earlier work 
in the literature focused on investigating the speech 
enhancement process in single channel microphone system 
due to its size, cost and computational efficiency [3]–[6]. The 
most successful method of speech enhancement depends on 
two major factors: (i) how effectively the method localizes the 
noise component in the signal and (ii) how intelligently it 
reduces the effects of noise to enhance the speech signal. Most 
conventional speech-enhancement methods detect the 
unvoiced region in the signal as noise or vice-versa [6], [7]. 
Noise is mainly due to artefacts or environmental factors, and 
the spectral analysis method can effectively distinguish the 
unvoiced region from the signal. Furthermore, in place of 
reducing the effect of noises, the speech enhancement 
algorithms remove the original signal information. Thereby, 
the performance of any speech enhancement algorithms 
depends on, (a) parameter settings of the algorithms (b) the 
value of SNR (c) type of noise and its environment and (d) 
calculation of noise estimation [7]. Therefore, it is always 
challenging to design and develop an intelligent speech 
enhancement algorithm that is suitable for environments with 
different noise backgrounds. Hence, it is highly evident to 
develop an intelligent and adaptive speech enhancement 
method for efficient speech enhancement in real-life 
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applications and it is an open question for researchers over the 
world. 

Some of the most popular speech enhancement algorithms 
in the literature are the spectral subtraction (SSUB) method, 
power spectrum compensation (PSC) method and minimum 
mean square error (MMSE) method [5], [8]–[13]. In order to 
analyze the short-time stationary properties of the speech 
signals, many of the speech enhancement algorithms utilized a 
time-frequency representation of the signals in specific short-
time Fourier transform (STFT) for speech enhancement 
process [14]. In general, the output of the STFT is a complex 
coefficient which has both magnitude and phase values. Most 
of the research work in the literature utilized a magnitude 
component for speech enhancement [15]. But, recently, the 
phase value also considered for efficient noise suppression in 
speech enhancement [5], [16]. 

The spectral subtraction method is the most common, 
popular and traditional method of additive noise cancellation 
used in speech enhancement. In this method, the noise 
spectrum is assessed during the silence periods in speech 
sample and it is subtracted from the noisy speech signal 
spectrum to estimate clean speech. Here, the method had an 
assumption that, the magnitude spectrum of the noise is 
constant and the speech signal is stationary over short-time. 
Thereby, the effective noise cancellation through this method 
depends on the calculation of noisy spectrum magnitude and 
phase values are not considered for speech enhancement. 
However, this method has a limitation in introducing spectral 
artifacts in noise cancellation process and various works in the 
literature have addressed this issue on improving the 
performance of spectral subtraction method in speech 
enhancement methods [12], [17]. 

 
|𝑌𝑌(𝑓𝑓)| = |𝑋𝑋(𝑓𝑓)| − 𝛼𝛼�𝑁𝑁(𝑓𝑓)�������� (1) 
 
where Y(f) is the spectrum of an original speech signal, X(f) is 
the spectrum estimate of a noisy speech signal, N(f) is the 
average spectrum estimate of the noise signal, and α is a 
constant. In this work, the value of α is equal to one for 
spectrum subtraction; a value greater than 1 denotes over-
spectral subtraction. 

In this work, for a given noisy speech sample, we determine 
the phase value of a voiced clean speech signal using STFT. 
Furthermore, we assume that the phase is uniformly 
distributed and independent of amplitude [6]. Under these 
assumptions, all four performance measures are computed 
from the given speech samples. However, we find in this work 
that the voiced sound neighboring phase values are highly 
correlated and that the phase trajectories are highly correlated 
with spectral amplitude. Thus, we conclude that using the 
noisy phase is only optimal under the limiting assumptions of 
independence and a uniform phase distribution. In STFT, the 
window is selected to trade off the width of its main lobe and 
attenuation of its side lobes to preserve most of spectral 
information of the signal. 

This paper is organized as follows. An introduction to 
speech enhancement algorithms and their significance is 

provided in section 1. The materials and methods used to 
improve speech quality using the proposed methodology are 
described in section 2. Section 3 presents the experimental 
results and discussion of algorithm performance under 
different types of noises. Finally, the conclusions and 
limitations of the present work are presented in section 4. 

II. EXPERIMENTAL METHODS 

A. Database 
This present work used the international standard 

NOIZEUS database for speech enhancement [17]. This 
database contains the speech recordings of 30 sentences from 
the IEEE sentence database produced by three male and three 
female speakers [17], [18]. Each speaker has spoken five 
sentences and recorded using Tucker Davis Technology 
(TDT) in a Speech Processing Lab at University Texas, 
Dallas, USA at a sampling frequency of 25 kHz and later its 
downsampled to 8 kHz. Since most of the speech intelligibility 
application involve the processing signal frequency to a 
maximum of 10000 Hz to cover most important frequency 
components for signal intelligibility [17]. Each sentence is 
corrupted by eight different types of real-world noises 
(Babble, Car, Exhibition hall, Restaurant, Street, Airport, 
Train station, and Train), and all the sentences include all of 
the phonemes in the American English language. The 
intermediate reference system (IRS) filters are used to obtain 
clean and noisy signals. A noise segment of the same length as 
that of the filtered clean speech signal was obtained by 
randomly from the noise recordings. The extracted noises 
segments are artificially added to the fileted clean speech 
signal in order to reach the desired SNR levels. A short 
description of the database is given in Table I. For more 
details regarding the database can be found from [17]. 

B. Proposed Speech Enhancement Method 
The proposed method employs the analysis modification 

and synthesis (AMS) framework. Analysis-modification-
synthesis (AMS) framework is used in most of the single-
channel speech enhancement process for effective speech 
enhancement in the spectral domain [17]. The AMS involve 
three-stage process namely, (i) analysis – here the input 
speech samples are processed using short-term Fourier 
Transform (STFT), (ii) modification – the noisy spectrum 
undergoes some modification in its spectrum to reduce its 
effect in the original signal (iii) synthesis – extraction of 
original speech signal using inverse STFT and overlap 
method. This present work analyzed the modification stage by 
using a complex spectrum method to effectively reduce the 
interference from the noise in the original speech signal for 
speech enhancement. 

Speech is assumed to be quasistationary and is analyzed 
framewise. We assume that at each time instance n, the clean 
speech signal 𝑥𝑥𝑡𝑡(𝑛𝑛) is degraded by additive noise 𝑣𝑣𝑡𝑡(𝑛𝑛), and 
the noisy signal is derived as 𝑦𝑦𝑡𝑡(𝑛𝑛). 

In an additive noise model, 
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𝑦𝑦𝑡𝑡(𝑛𝑛) = 𝑥𝑥𝑡𝑡(𝑛𝑛) + 𝑣𝑣𝑡𝑡(𝑛𝑛)
 (2) 
 
where 𝑦𝑦(𝑛𝑛) is the noisy speech signal, 𝑥𝑥(𝑛𝑛) is the clean 

speech signal, and 𝑣𝑣(𝑛𝑛) is the additive noise in the time 
domain. t is the frame number, t=1,2, 3, ….N, and N is total 
number of frames. 

 
TABLE I. DESCRIPTION OF THE SPEECH DATABASE. 

Segment 
no 

Parameter Values 

1. Total number of speech signals 30 
2. Total number of additive noises 8 
3. Total number of noisy signals 960 samples: 30 clean signals 

× 8 types of noises  
× 4 SNRs 

4. SNR ranges 0 dB, 5 dB, 10 dB, and 15 dB 
5. Min duration of clean/noisy signals 2.116 sec 
6 Max duration of clean/noisy signals 3.508 sec 
6. Sampling frequency 25000 Hz  
7. Downsampling frequency 8000 Hz  

 
In the frequency domain, Equation (1) becomes 
 

𝑌𝑌𝑡𝑡 [𝜔𝜔𝑘𝑘 ] = 𝑋𝑋𝑡𝑡[𝜔𝜔𝑘𝑘 ] + 𝑉𝑉𝑡𝑡[𝜔𝜔𝑘𝑘 ]
 (3) 
 
where 𝑌𝑌𝑡𝑡 [𝜔𝜔𝑘𝑘 ] , 𝑋𝑋𝑡𝑡[𝜔𝜔𝑘𝑘 ] and 𝑉𝑉𝑡𝑡[𝜔𝜔𝑘𝑘 ] are Discrete Short Time 
Fourier Transform (DSTFT) representations of output, input 
and noise spectrum, respectively, and k is the kth discrete 
frequency. In this work, we assume that the harmonic 
frequencies and amplitudes are constant for a given length of 
speech signal using STFT. 

The proposed method is illustrated in Fig. 1. It is based on 
Phase Spectrum Compensation method given by Paliwal et al. 
[13], [14]. In which conjugate symmetry of DSTFT is used to 
cancel noise components by changing angle of DSTFT 
spectrum. 

The proposed method uses power spectral density (PSD) of 
the speech signal, which gives power per unit frequency, to 
detect the presence of speech and noise in a given frame. An 
average power spectral density, Pt, is computed for each frame 
t. 

The phase spectrum compensation function is 
 

Ψ𝑡𝑡 [𝜔𝜔𝑘𝑘 ] = ϕ [𝜔𝜔𝑘𝑘 ]  Z𝑡𝑡[𝜔𝜔𝑘𝑘] 
 (4) 
 
where ψ (𝜔𝜔𝑘𝑘) is an antisymmetric function based on 
antisymmetric property of phase and is kept same for all 
frames, given as 

 

ϕ (𝜔𝜔𝑘𝑘) = �
   1, 0 < 𝑘𝑘

𝑁𝑁
< 1

2

−1 ,       1
2

< 𝑘𝑘
𝑁𝑁

< 1
0,      𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

 (5) 
 

 Z𝑡𝑡(𝜔𝜔𝑘𝑘) is the inverted power spectral density function 
scaled by a constant 𝜎𝜎 and computed as 

 
 Z𝑡𝑡[𝜔𝜔𝑘𝑘 ] = 𝜎𝜎 P̅𝑡𝑡

 (6) 
 

Inverted Power spectral density P̅ t is obtained by subtracting 
average power spectral density of each speech frame t from 
the maximum power spectral density of frames. The higher 
value of PSD of frames shows the high noise content and 
smaller value of PSD of frames indicates the high speech 
content. This allows suitable change for compensation. 

Therefore, the modified DSTFT Noisy spectrum is given as, 
 

𝑌𝑌Ψ [𝜔𝜔𝑘𝑘 ] =  𝑌𝑌𝑡𝑡[𝜔𝜔𝑘𝑘 ] +  Ψ𝑡𝑡 [𝜔𝜔𝑘𝑘 ]
 (7) 
 

The modified phase spectrum is computed as, 
 

∠𝑌𝑌Ψ [𝜔𝜔𝑘𝑘 ] = 𝐴𝐴𝐴𝐴𝐴𝐴 | 𝑌𝑌Ψ [𝜔𝜔𝑘𝑘 ] |
 (8) 
 
where ARG is complex angle function, 𝑌𝑌𝑡𝑡[𝜔𝜔𝑘𝑘 ] is the output 
spectrum, and Ψ𝑡𝑡 [𝜔𝜔𝑘𝑘 ] is the noisy spectrum. 

The enhanced complex spectrum is estimated as 
 

𝑋𝑋� [𝜔𝜔𝑘𝑘 ] = |𝑌𝑌Ψ [𝜔𝜔𝑘𝑘 ]| 𝑒𝑒𝑗𝑗  ∠𝑌𝑌Ψ [𝜔𝜔𝑘𝑘 ] 
 (9) 
 

It is then converted into time domain using Inverse STFT . 
Finally, the overlap add method is applied to get enhanced 
time domain signal, x̂t (n). 

C. 6BObjective Speech Quality Measures 
In general, the impact of noise in a signal degrades its quality 
and it is always non-uniform. Objective speech quality 
measures are used to analyze the distortion levels in a signal 
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on each frame over time [19]. In specific, the speech 
frequency varies over the time and a sequence of phonemes 
are used to produce the speech. Thereby, the magnitude of 
background noise effect varies in a speech. Though numerous 
performance measures are used in the literature for assessing 
the performance of speech enhancement methods, we focused 
to analyze the four most important measures such as Log 
spectral distance (LSD), Log Likelihood Ratio (LLR), Itakura 
Siato (IS) measure, and Short-time objective intelligibility 
(STOI) for performance comparison. These objective 
measures used to quantify the effect of background noises in 
the signal and to compare the performance of speech 
enhancement in different algorithms [20], [21]. 
 

 
Fig. 1: Overview of the proposed speech enhancement method 
 
1) Log Likelihood Ratio 
The speech production process can be effectively modeled 
using linear prediction (LP) models. Most of the objective 
performance measures depend on the calculation of a distance 
between two sets of linear prediction coefficients (LPC) 
calculated on the original and the enhanced speech. Log 
likelihood ratio (LLR) is one of the most common types of 
distance measure used in speech recognition applications. It 
was first introduced by Itakura as a distance measure for 
speech recognition applications  [22], [23]. This method has 
since been applied in many speech-processing applications, 
such as speaker verification, speaker recognition, and speech 
recognition. 

The log likelihood Ratio is defined as 
 

𝐿𝐿𝐿𝐿𝐴𝐴(𝑒𝑒𝑒𝑒���⃗ , 𝑒𝑒𝑜𝑜���⃗ ) = 𝑙𝑙𝑜𝑜𝑙𝑙 �
𝑒𝑒𝑒𝑒���⃗ 𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒���⃗

𝑇𝑇

𝑒𝑒𝑜𝑜���⃗ 𝐴𝐴𝑐𝑐𝑒𝑒𝑜𝑜���⃗
𝑇𝑇�                                                   (10) 

 
where 𝑒𝑒𝑜𝑜���⃗  is the Linear Predictive Coding (LPC) vector 
coefficient of the original signal frame, 𝑒𝑒𝑒𝑒���⃗  is the LPC vector 

coefficients of an enhanced signal frame and 𝐴𝐴𝑐𝑐  is the 
autocorrelation coefficient matrix of the original speech 
signal. In this work, only the smallest 95% of frame LLR 
values are considered to compute the average LLR value, and 
values of LLR within the range of 0 to 2 are considered in this 
work to avoid the influence of outliers. 
 
2) 8BLog Spectral Distance 

The distance measure between the feature vectors of the 
original speech signal spectrum to the enhanced speech signal 
spectrum. It is always a symmetric measure unlike to IS and 
LLR measure [22]. It is defined as 

 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑒𝑒𝑒𝑒���⃗ , 𝑒𝑒𝑜𝑜���⃗ ) = � 1
2𝜋𝜋 ∫ �10 𝑙𝑙𝑜𝑜𝑙𝑙10 �

𝐿𝐿𝑒𝑒(𝜔𝜔)
𝐿𝐿𝑜𝑜 (𝜔𝜔)

��𝜋𝜋
−𝜋𝜋 𝑑𝑑𝜔𝜔                  (11) 

 
The average value of spectral distortion over a large number 

of frames between the LPC log power spectrum of the original 
signal, 𝐿𝐿𝑜𝑜(𝜔𝜔), to the LPC log power spectrum of an enhanced 
speech signal, 𝐿𝐿𝑒𝑒(𝜔𝜔), gives us the quantity of LSD. 

 
3) 9BItakura-Siato Distance Measure 

The Itakura-Siato (IS) distance measure is defined as [23] 
 

𝐼𝐼𝐿𝐿(𝑒𝑒𝑒𝑒���⃗ , 𝑒𝑒𝑜𝑜���⃗ ) = 𝜎𝜎𝑜𝑜2

𝜎𝜎𝑒𝑒2 �
𝑒𝑒𝑒𝑒����⃗ 𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒����⃗

𝑇𝑇

𝑒𝑒𝑜𝑜����⃗ 𝐴𝐴𝑐𝑐𝑒𝑒𝑜𝑜����⃗
𝑇𝑇� + 𝑙𝑙𝑜𝑜𝑙𝑙 �𝜎𝜎𝑜𝑜

2

𝜎𝜎𝑒𝑒2� − 1 (12) 

 
Here, 𝜎𝜎𝑜𝑜2and 𝜎𝜎𝑒𝑒2are the gain of the LPC coefficients of the 

original and enhanced speech signals, respectively. Here, the 
IS were limited to the range of [0,100] to reduce the number of 
outliers in the signal. 

 
4) 10BShort-Time Objective Intelligibility 

The short-time objective intelligibility (STOI) is a 
performance measure used to find the correlation between the 
temporal envelopes of the clean speech signal to the enhanced 
speech signal in short-time overlapped segments. Initially, the 
speech samples are short-time segmented using the windowing 
process, normalizing the windowing coefficients; then, the 
value of the correlation coefficient is calculated for each 
segment. Later, the average value of correlation coefficient 
over all the time segmented speech signal represents the value 
of speech intelligibility measure. STOI can be considered as 
an alternative to the speech intelligibility index (SII) or the 
speech transmission index (STI), when you are interested in 
the effect of nonlinear processing to noisy speech, e.g., noise 
reduction, binary masking algorithms, on speech intelligibility 
[20]–[23]. 

III. 2BEXPERIMENTAL RESULTS AND DISCUSSIONS 
This section presents the experimental results of the present 

work. All the experiments were performed on the NOIZEUS 
speech corpus database to analyze the performance of the 
proposed speech enhancement method and compare it with 
that of three conventional speech enhancement methods 
(SSUB, MMSE and PSC). This database has been used by 
several researchers for speech enhancement applications and 
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its gender-matched database, and it has 30 IEEE sentences. 
One of the speech sample (Train) at 15 dB SNR is excluded 
from this work for analysis. Since the original signal source in 
the database is corrupted and could not be used for analysis. 

Initially, the speech samples from the database are framed 
using a hamming window method with a window length of 25 
ms over the 40% overlapping between the frames. This 
windowing is applied to all the speech samples in the 
database. Later, the speech samples are added with an additive 
Gaussian noise of different SNR of the same window length of 
original speech signals. Then, the STFT is applied to the noisy 
speech signals and extracted its magnitude and phase spectrum 
values. 

Finally, the speech signals are reconstructed to derive the 
time domain speech signals using a two-stage approach, 
namely, the inverse STFT and overlap-add method. Later, four 
different objective measures are computed from the original 
(clean) speech signal and enhanced speech signal for 
performance comparison over each frame. The time series plot 
of the original (clean) and enhanced speech signal over four 
different SNRs is shown in Fig. 2. This plot represents the 
signal variations over the 15000 samples for different SNRs. 
From the Fig. 2, it is highly evident that, the proposed method 
has effectively suppressed the additive Gaussian noise through 
the PSD-PSC speech enhancement method and the output 
(enhanced) speech signal is highly matched with the original 
(clean) speech signal. Figs. 3-6 illustrates the performance of 
log spectral distance measure of four different speech 
enhancement methods over eight types of noises. 

Fig. 3 shows the spectral power distribution over frequency 
for a speech signal with car noise at 0 dB, 5 dB, 10 dB, and 15 
dB. Most studies related to speech enhancement method are 
limited to a few types of noises, and very few have analyzed 
the performance of a speech enhancement method over eight 
types of noises. The average value of LSD over 30 speech 
signals in 0 dB noise is shown in Figs. 4-7. From the results, it 
indicates that the proposed speech enhancement method gives 
the lowest value of LSD over the other three methods. In 
specific, the performance of the proposed method shown the 
improvement in speech enhancement process over 
conventional methods. Also, the average value of LSD close 
to zero (enhanced signal is almost similar to clean signal) 
when the noise SNR increases. Among the four different 
speech enhancement methods, the PSC has a higher LSD 
value and then followed by SSUB (Spectral Subtraction 
method). 

The LSD variations at different noise levels (5 dB, 10 dB 
and 15 dB) are shown in Figs. 4-7. The experimental results 
confirm that the proposed method achieves lower LSD values 
than conventional speech enhancement methods for most 
types of noise. The PSC method does not perform well in 
enhancing the quality of the speech signal after filtering under 

four noise levels (0 dB, 5 dB, 10 dB and 15 dB). There are no 
large differences between the MMSE, SSUB and proposed 
method in speech enhancement process when using the LSD 
measure. However, the proposed method achieves better 
performance than the other methods due to the inclusion of 
phase variations in the speech enhancement process. 

Table II shows the performance of STOI, LLR and IS 
measure of four different noise SNRs over eight types of 
noises. The value of STOI, LLR and IS represents the average 
value over 30 speech signals. From the experimental results, 
the proposed method achieved a higher STOI value in 
comparison with other methods over four different SNRs. 
Also, the value of STOI steadily increases while the noise 
SNR increases. Though there are no large differences in STOI 
values among the speech enhancement methods, the proposed 
method perform well in comparison with the conventional 
methods. In the case of LLR, the proposed method achieves 
the lowest value in comparison with the other three speech 
enhancement methods. But, in the case of Itakura-Siato 
measure, spectral subtraction and MMSE method give optimal 
performance in speech enhancement over the proposed 
method. 
The proposed method is derived from the PSC method, with 
modification in phase spectrum computation; hence, these two 
methods yield a higher IS value than do MMSE and SSUB. 
The experimental results show that the proposed speech 
enhancement method performs well in three different, realistic 
SNRs in real time and yields optimal results at lower SNR 
values (e.g., 0 dB). This strong performance at lower SNR 
values occurs because the magnitude and phase spectrum of 
these values are more valuable for the speech enhancement 
process than are higher values. Though the present work gives 
better performance over conventional methods on three 
different noise SNRs over 30 different speech samples, it has 
some limitations. Firstly, the proposed method analyzes the 
speech signal of fixed frame duration, it is also important to 
analyze the performance of the proposed method with 
different frame durations. Secondly, the proposed method 
should be tested with other open-source and international 
standard speech corpus to validate its efficiency in speech 
enhancement process. Thirdly, the proposed method is 
evaluated only through objective measures, but, it is also 
important to analyze the performance of the proposed system 
using subjective measures and with a combination of 
subjective and objective measures. Lastly, the proposed 
method is evaluated through only a selected and most popular 
objective measures for analyzing its performance. In future, 
the researchers will work on addressing all the above five 
limitations to fine-tune the proposed method for improving its 
robustness on speech enhancement process. 
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(c) 

 

 
(d) 

Fig. 2: Time series signal plot of the speech signal over four different SNRs: (a) 0 dB (b) 5 dB (c) 10 dB and (d) 15 dB 
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Fig. 3: Power spectral density plot of speech signal with noise (car) at different noise levels: (a) 0 dB (b) 5 dB (c) 10 dB and (d) 15 dB 
 
 

 
Fig. 4: Average LSD values over eight types of noise at 0 dB 
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Fig. 5: Average LSD values over eight types of noise at 5 dB 

 
 

 
Fig. 6: Average LSD values over eight types of noise at 10 dB 

 

 
Fig. 7: Average LSD values over eight types of noise at 15 dB 
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TABLE II. PERFORMANCE OF STOI, LLR AND IS MEASURE OVER FOUR DIFFERENT NOISE SNRS 

0 dB 

Noise  
STOI LLR IS MEASURE 

MMSE PSC SSUB NEW MMSE PSC SSUB NEW MMSE PSC SSUB NEW 

Train 0.739 0.771 0.793 0.823 1.805 2.762 1.678 1.436 2.077 13.128 1.577 1.981 
Babble 0.745 0.766 0.779 0.807 2.374 3.502 2.299 1.558 4.019 75.040 2.146 7.162 
Car 0.727 0.777 0.782 0.808 2.313 2.780 1.390 1.273 3.472 18.983 1.427 1.624 
Airport 0.771 0.766 0.797 0.824 2.302 3.635 2.482 1.417 3.272 92.156 1.850 9.579 
Station 0.748 0.766 0.779 0.810 2.409 3.608 2.240 1.478 3.415 55.126 1.755 5.534 
Exhibition 0.762 0.772 0.815 0.849 2.379 3.732 2.234 1.475 3.708 91.364 1.875 6.338 
Street 0.745 0.766 0.783 0.819 2.247 2.954 1.583 1.492 3.138 23.435 3.138 1.945 
Restaurant 0.834 0.805 0.862 0.869 1.854 3.692 3.361 1.543 5.349 174.229 1.091 27.803 

5 dB 

Train 0.851 0.824 0.873 0.903 1.882 3.234 1.986 1.437 2.088 48.503 1.697 4.860 

Babble 0.855 0.827 0.871 0.895 2.072 3.537 2.240 1.516 2.499 87.036 2.305 10.144 

Car 0.841 0.828 0.863 0.889 2.577 3.594 2.538 1.509 5.490 100.611 2.297 15.043 

Airport 0.867 0.827 0.881 0.899 2.038 3.713 2.809 1.491 2.650 120.237 2.390 22.793 

Station 0.847 0.826 0.872 0.897 2.527 3.447 2.070 1.403 5.498 83.060 1.880 7.300 

Exhibition 0.871 0.823 0.891 0.912 2.452 3.740 2.385 1.520 3.451 74.432 1.979 8.454 

Street 0.841 0.823 0.864 0.895 1.579 3.448 2.219 1.396 1.836 78.429 1.836 8.069 

Restaurant 0.873 0.825 0.886 0.906 1.853 3.587 2.774 1.464 2.171 98.614 2.153 22.141 

10 dB 

Train 0.921 0.850 0.924 0.939 2.611 3.406 2.106 1.467 6.749 76.698 2.015 7.744 

Babble 0.954 0.858 0.946 0.950 2.091 3.686 2.875 1.516 2.885 126.185 2.627 29.644 

Car 0.917 0.854 0.921 0.937 1.984 3.487 1.916 1.447 2.431 89.947 2.048 6.593 

Airport 0.930 0.851 0.931 0.941 2.122 3.677 2.773 1.572 2.807 123.121 2.733 24.600 

Station 0.926 0.850 0.926 0.937 2.331 3.687 2.619 1.607 3.678 124.837 2.876 19.316 

Exhibition 0.925 0.850 0.935 0.944 2.433 3.572 2.238 1.521 4.437 106.592 2.475 10.738 

Street 0.918 0.852 0.923 0.938 2.080 3.682 2.788 1.568 2.729 121.946 2.729 26.213 

Restaurant 0.935 0.851 0.936 0.943 2.075 3.675 2.786 1.467 2.747 125.385 2.470 25.909 

15 dB 

Babble 0.955 0.860 0.954 0.965 2.242 3.686 2.815 1.559 3.353 128.217 2.922 28.448 

Car 0.954 0.860 0.951 0.959 2.034 3.674 2.791 1.582 2.595 124.422 2.932 27.402 

Airport 0.956 0.860 0.957 0.967 1.951 3.687 2.922 1.568 2.361 126.868 2.897 32.750 

Station 0.954 0.859 0.954 0.962 1.918 3.686 2.894 1.491 2.359 126.715 2.653 31.287 

Exhibition 0.956 0.860 0.960 0.966 2.066 3.672 2.462 1.592 2.816 123.975 2.912 16.649 

Street 0.952 0.859 0.948 0.954 2.247 2.954 1.583 1.492 3.138 234.346 3.138 1.945 

Restaurant 0.957 0.860 0.961 0.970 1.919 3.693 2.860 1.558 2.348 128.577 2.834 29.718 

NEW: Proposed speech enhancement method 
 

IV. CONCLUSION 
In this work, we investigated a complex spectrum based 

speech enhancement for single-channel applications. This 
proposed method analyzes the phase values of the signal 
besides the amplitude and frequency in conventional speech 
enhancement algorithms. The performance of the proposed 
method is analyzed using four objective speech quality 
measures such as LLR, LSD, Itakura- Siato distance measure, 
and STOI. The performance of the proposed method is 

compared with that of three conventional speech enhancement 
algorithms: Minimum Mean Square Error (MMSE), Spectral 
Subtraction (SSUB) and Power Spectrum Compensation 
(PSC). This present experiment revealed that the proposed 
method performed well in improving the quality of the speech 
signal over conventional methods and it is confirmed through 
the three objective measures namely, STOI, LLR, and LSD. 
Future work should focus on analyzing the performance of the 
proposed method under different operating conditions, 
including different noise environments; developing new 
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performance (composite) measures by combining the 
objective and subjective measures to evaluate the performance 
of the proposed algorithm; and utilizing recent machine 
learning methods, such as deep learning [23], to improve the 
proposed method's potential in real-time system design. 
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