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Abstract—In a typical communication system, the blind adaptive
equalizer is followed by a decision device where we have to wait until
the blind adaptive equalizer has converged to a residual inter-symbol
interference (ISI) that makes the decision process of the decision
device applicable and reliable. Up to now there is no algorithm that
supplies without the knowledge of the initial ISI the convergence
time of a blind adaptive equalizer where the blind adaptive equalizer
leaves the system with a relative low residual ISI that makes the
decision process of the decision device applicable. In this paper, we
consider the two independent quadrature carrier input case and type of
blind adaptive equalizers where the error that is fed into the adaptive
mechanism which updates the equalizer’s taps can be expressed as
a polynomial function of the equalized output up to order three.
We propose an algorithm that supplies without the knowledge of
the initial ISI the convergence time of a blind adaptive equalizer
that depends on the input signal statistics and properties of the
chosen equalizer. It should be pointed out that the convergence time
is supplied during the deconvolutional process. Simulation results
confirm the efficiency of the proposed algorithm.

Keywords—Convergence time, Switching time, Blind Adaptive
Equalizer, Deconvolution

I. INTRODUCTION

IN this paper we consider the blind adaptive equalization
issue where the error that is fed into the adaptive mecha-

nism which updates the equalizers taps can be expressed as a
polynomial function of the equalized output up to order three
as is the case in the multimodulus blind equalization algorithm
(MMA) [1], [2], [3]. Usually, the equalized output is sent to a
decision device in order to get the desired result. But, in order
to get a reliable output from the decision device, the equalized
output driven to the decision device, should contain a relative
low residual ISI that makes the decision process of the decision
device applicable and reliable. Thus, first we have to wait
for the blind adaptive equalizer to converge to the residual
ISI that makes the decision process of the decision device
applicable and reliable and only then starting with the decision
process. This means, that having the convergence time of a
blind adaptive equalizer could be very useful for making the
right decision whether starting with the the decision process of
the decision device or not. In the literature we may find the use
of dual-mode (DM) switching methods where an acquisition
algorithm (like MMA or constant modulus algorithm (CMA)
[4]) is employed to ensure symbol error rate convergence
during the initial acquisition state and then switched to a
tracking algorithm (decision directed (DD) algorithm) when
the output decision error rate is sufficiently low to achieve an
accurate final solution [5]. According to [5], some examples
are the classical Benveniste-Goursat (BG) algorithm [6], the
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dual-mode CMA (DM-CMA) [7], and its stop-and-go (SAG)
extension SAG-DM-CMA [8].

Although the DM algorithm switches in to modes, it never
stops adjusting the equalizer tap weights even when the
adjustment is in the wrong direction [9]. If we can tell whether
a particular adjustment is correct or not, we may improve the
convergence behaviour by making only the right adjustment
but bypassing those wrong ones [9]. Such a concept has been
applied to blind equalization and is termed ”stop-and-go” [12],
[11], [10], [9]. In the literature we have the work of [13]
where a closed-form approximated expression was given for
the convergence time (or number of iterations required for
convergence). But, the proposed expression in [13] is based on
the knowledge of the initial ISI which in general is unknown.
Thus, this expression [13] is unable to help achieving an
improved DM algorithm.

In this paper, we propose a novel algorithm (based on
[14]) that supplies without the knowledge of the initial ISI
the convergence time of a blind adaptive adaptive equalizer
that depends on the input signal statistics and properties of
the chosen equalizer. This new algorithm may lead in the
future to a new family of DM algorithm where the switching
to a tracking algorithm (DD algorithm) will be based on the
convergence time of the blind adaptive equalizer.

The paper is organized as follows: After having described
the system under consideration in Section II, we present in
Section III the algorithm for the convergence time that depends
on the input signal statistics and properties of the chosen
equalizer. In Section IV simulation results are presented and
the conclusion is given in Section V.

II. SYSTEM DESCRIPTION

The system under consideration is described in Fig.1 with
the assumptions following [14]:

1. The input sequence x[n] belongs to a two independent
quadrature carrier case constellation input with zero mean and
variance σ2

x where xr[n] and xi[n] are the real and imaginary
parts of x[n] respectively.

2. The unknown channel h[n] is a possibly nonminimum
phase linear time-invariant filter in which the transfer function
has no “deep zeros”, namely, the zeros lie sufficiently far
from the unit circle.

3. The equalizer c[n] is a tap-delay line.
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4. The noise w[n] is an additive Gaussian white noise
with zero mean and variance σ2

w = E[w[n]w∗[n]] where E[·]
is the expectation operator and ()∗ is the conjugate operator
on ().
The equalized output sequence is defined by:

h[n] c[n]

w[n]

x[n] y[n] z[n]

Adaptive Equalizer Decision Device

X[n]

Fig. 1. Block diagram of a baseband communication system.

z [n] = (x[n] ∗ h[n] + w[n]) ∗ c[n]

= x [n] + p [n] + w̃ [n]
(1)

where ”∗” denotes the convolution operation, p[n] is the convo-
lutional noise (convolutional error) due to non-ideal equalizer’s
coefficients (h[n] ∗ c[n] 6= δ[n]) and w̃ [n] = w [n] ∗ c [n]. The
equalized output sequence z[n] is driven to the decision device.
The output sequence of the decision device is denoted as X[n].
The adaptation mechanism of the equalizer is given by:

cl[n+ 1] = cl[n]− µ
∂F (z[n])

∂z[n]
y∗[n− l] (2)

where l = 0, 1, 2..., (N − 1), N is the equalizer’s tap length,
µ is the step-size parameter and ∂F (z[n])

∂z[n] is considered in this
paper as was done in [14] as:

∂F (z[n])
∂z[n]

= Re

(
∂F (z[n])
∂z[n]

)
+ jIm

(
∂F (z[n])
∂z[n]

)

Re

(
∂F (z[n])
∂z[n]

)
= a1zr[n] + a3z

3
r [n]

Im

(
∂F (z[n])
∂z[n]

)
= a1zi[n] + a3z

3
i [n]

(3)

where zr[n] and zi[n] are the real and imaginary parts of z[n]
respectively. The constants a1 and a3 depend on the chosen
algorithm.

III. THE ALGORITHM FOR THE CONVERGENCE TIME

It is well known ( [14], [15], [16], [17]) that the con-
volutional noise probability density function (pdf) can be
considered as Gaussian when the equalizer reaches a residual
ISI level where the eye diagram can be considered as open.
Namely, where relative reliable decisions can be carried out
by the decision device. Recently, [14] considered the two
independent quadrature carrier input case and type of blind
adaptive equalizers where the error that is fed into the adaptive
mechanism which updates the equalizers taps can be expressed
as a polynomial function of the equalized output up to order
three. A closed-form approximated expression was proposed
in [14] for the step-size parameter that shows what are the

constraints on the systems parameters (equalizers tap-length,
input signal statistics, channel power and chosen equalization
method) for which the assumption of a Gaussian model for
the convolutional noise at the convergence state holds:

µ� 2 |a1 + 3a3n2|

3

(
σ2
xN

R−1∑
k=0

|hk [n]|2
)∣∣a21 + 12a3a1n2 + 15a23n4

∣∣
(4)

where na = E[xar [n]] (a = 2, 4), |(·)| stands for the absolute
value of (·) and R is the channel coefficient’s length. Now,
for the noiseless case we have that the equalized output
(z[n] = x[n]+p[n]) reaches the sent sequence (x[n]) when the
convolutional noise (p[n]) tends to zero. Thus, if we consider
the following expression:

err = (µp − µx)
2 = (error)2

with

µp =
2 |a1 + 3a3ñ2|

3

(
σ2
xN

R−1∑
k=0

|hk [n]|2
)∣∣a21 + 12a3a1ñ2 + 15a23ñ4

∣∣
µx =

2 |a1 + 3a3n2|

3

(
σ2
xN

R−1∑
k=0

|hk [n]|2
)∣∣a21 + 12a3a1n2 + 15a23n4

∣∣
(5)

where ña = 1
L

∑b=L−1
b=0 zar [n− b] and search during the

equalization process the iteration number for which the nor-
malized err (5) achieves in the average a small predefined
threshold ε, we may get the convergence time (expressed in
iteration number) of the equalizer.

IV. SIMULATION

In this section, we show via simulation results the efficiency
of the proposed algorithm (5) for the 16QAM constellation
input (a modulation using ± {1,3} levels for in-phase and
quadrature components) and with the MMA algorithm [1], [2],
[3]. The equalizer taps for the MMA algorithm [1], [2], [3]
were updated according to:

cl[n+ 1] = cl[n]−

µMMA

(
a1MMA

zr[n] + a3MMA
z3r [n]+

j
(
a1MMA

zi[n] + a3MMA
z3i [n]

))
y∗[n− l]

(6)

where

a1MMA
= −E[x4r[n]]

E[x2r[n]]
= −E[x4i [n]]

E[x2i [n]]
; a3MMA

= 1 (7)

Three channel cases were considered.
Channel1: (initial ISI = 0.44) where the channel parameters
were determined according to [18]:
hn = (0 for n < 0; −0.4 for n = 0;
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0.84 · 0.4n−1 for n > 0).

Channel2: (initial ISI = 0.88) where the channel parameters
were determined according to [15]:
hn = [0.4851− 0.72765− 0.4851]

Channel3: (initial ISI = 0.5) where the channel parameters
were determined according to [19]:
hn = [−0.0144 0.0006 0.0427 0.009 − 0.4842 −
0.0376 0.8163 0.0247 0.2976 0.0122 0.0764 0.011
0.0162 0.0063]

For Channel1, Channel2 and Channel3, the equalizer’s
tap-length was set to 13, 13 and 21 respectively. The
equalizer was initialized by setting the center tap equal to one
and all others to zero. The simulation was carried out with
SNR values of 30 and 20 dB. In order to calculate ña, we
used L = 300 unless otherwise stated. The threshold was set
to ε = 0.005. At each simulation we used 100 Monte Carlo
trials where at each trial we captured the iteration number
for which the normalized err (5) reached ε = 0.005. In the
following we denote the averaged iteration number (calculated
out from 100 Monte Carlo trials) for which the normalized
err (5) reached ε = 0.005 as ”average-convergence-time”.

Figure 2 describes the averaged ISI as a function of iteration
number for a 16QAM source input going through channel1
for the SNR = 30 dB case. It should be pointed out that at
approximately −16 dB the eye diagram starts to be open thus
relative reliable decisions can be carried out by the decision
device. According to figure 2, the residual ISI of −16 dB
is reached at approximately 400 iteration number. Please note
that the calculated average-convergence-time was 457 which is
very close to that obtained from figure 2. Figure 3 describes the
averaged normalized err (5) as a function of iteration number
for a 16QAM source input going through channel1 for the
SNR = 30 dB case. The zoomed in version of figure 3 is
given in figure 4 where we can see that around the iteration
number of 475, the threshold value of ε = 0.005 is reached.
Thus the calculated average-convergence-time is very close to
the obtained result from figure 4.

Next we turn to the SNR = 20 dB case. Figure 5
describes the averaged ISI as a function of iteration number
for a 16QAM source input going through channel1 for the
SNR = 20 dB case. According to figure 5, the residual ISI
of −16 dB is reached at approximately 480 iteration number.
Please note that the calculated average-convergence-time was
520 which is very close to the obtained result from figure
5. Figure 6 describes the averaged normalized err (5) as a
function of iteration number for a 16QAM source input going
through channel1 for the SNR = 20 dB case. The zoomed
in version of figure 6 is given in figure 7 where we can
see that around the iteration number of 520, the threshold
value of ε = 0.005 is reached. Thus the calculated average-
convergence-time is very close to the obtained result from
figure 7.

Next we turn to test the algorithm with channel2. Figure 8
describes the averaged ISI as a function of iteration number
for a 16QAM source input going through channel2 for the

SNR = 30 dB case. According to figure 8, the residual ISI
of −16 dB is reached at approximately 580 iteration number.
Please note that the calculated average-convergence-time was
579 which is very close to the obtained result from figure
8. Figure 9 describes the averaged normalized err (5) as a
function of iteration number for a 16QAM source input going
through channel2 for the SNR = 30 dB case. The zoomed in
version of figure 9 is given in figure 10 where we can see that
around the iteration number of 600, the threshold value of ε =
0.005 is reached. Thus the calculated average-convergence-
time is very close to the obtained result from figure 10.

Next we turn to test the algorithm with channel3. Figure 11
describes the averaged ISI as a function of iteration number
for a 16QAM source input going through channel3 for the
SNR = 30 dB case. According to figure 11, the residual ISI
of −16 dB is reached at approximately 1020 iteration number.
Please note that the calculated average-convergence-time was
847 which is not far away from the obtained result from figure
11. Figure 12 describes the averaged normalized err (5) as a
function of iteration number for a 16QAM source input going
through channel3 for the SNR = 30 dB case. The zoomed
in version of figure 12 is given in figure 13 where we can
see that around the iteration number of 925, the threshold
value of ε = 0.005 is reached. Thus the calculated average-
convergence-time is not far away from the obtained result from
figure 13.
In the following, we increase for the previous case, the value
for L and calculate again the average-convergence-time for
each new value for L. Please note that L means how many
samples we take for calculating ña. On one hand we wish
to have a low value for L since this means that we need
less samples to store (we need less memory). But on the
other side, if accuracy is more important then we wish to
have a higher value for L. For L = 400 the calculated
average-convergence-time was 893. For L = 500 the calcu-
lated average-convergence-time was 944. For L = 600 the
calculated average-convergence-time was 978. For L = 700
the calculated average-convergence-time was 1055. We see
indeed that if we use L = 700 instead of L = 300 then
we are much closer to the obtained result from figure 11 for
reaching the residual ISI of −16 dB (1020 iteration number).

V. CONCLUSION

In this paper, we proposed a novel algorithm that supplies
without the knowledge of the initial ISI the convergence time
of a blind adaptive equalizer that depends on the input signal
statistics and properties of the chosen equalizer. This algorithm
is valid for the real or two independent quadrature carrier input
case and type of blind adaptive equalizers where the error
that is fed into the adaptive mechanism which updates the
equalizers taps can be expressed as a polynomial function of
the equalized output up to order three. With this new algorithm
we are now able to know the approximated time where the
blind adaptive equalizer leaves the system with a relative low
residual ISI that makes the decision process of the decision
device applicable and reliable.
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Fig. 2. ISI as a function of iteration number for a 16QAM source input
going through channel1. The averaged results were obtained in 100 Monte
Carlo trials for a SNR=30 dB. µMMA = 0.0001.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

N
or

m
al

iz
ed

 (
er

ro
r)

2

Fig. 3. Normalized err (5) as a function of iteration number for a 16QAM
source input going through channel1. The averaged results were obtained in
100 Monte Carlo trials for a SNR=30 dB. µMMA = 0.0001.
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Fig. 4. Normalized zoomed in version for the err (5) as a function of
iteration number for a 16QAM source input going through channel1. The
averaged results were obtained in 100 Monte Carlo trials for a SNR=30 dB.
µMMA = 0.0001.
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Simulated ISI for MMA

Fig. 5. ISI as a function of iteration number for a 16QAM source input
going through channel1. The averaged results were obtained in 100 Monte
Carlo trials for a SNR=20 dB. µMMA = 0.0001.
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Fig. 6. Normalized err (5) as a function of iteration number for a 16QAM
source input going through channel1. The averaged results were obtained in
100 Monte Carlo trials for a SNR=20 dB. µMMA = 0.0001.
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Fig. 7. Normalized zoomed in version for the err (5) as a function of
iteration number for a 16QAM source input going through channel1. The
averaged results were obtained in 100 Monte Carlo trials for a SNR=20 dB.
µMMA = 0.0001.
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Simulated ISI for MMA

Fig. 8. ISI as a function of iteration number for a 16QAM source input
going through channel2. The averaged results were obtained in 100 Monte
Carlo trials for a SNR=30 dB. µMMA = 0.0001.
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Fig. 9. Normalized err (5) as a function of iteration number for a 16QAM
source input going through channel2. The averaged results were obtained in
100 Monte Carlo trials for a SNR=30 dB. µMMA = 0.0001.
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Fig. 10. Normalized zoomed in version for the err (5) as a function of
iteration number for a 16QAM source input going through channel2. The
averaged results were obtained in 100 Monte Carlo trials for a SNR=30 dB.
µMMA = 0.0001.
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Simulated ISI for MMA

Fig. 11. ISI as a function of iteration number for a 16QAM source input
going through channel3. The averaged results were obtained in 100 Monte
Carlo trials for a SNR=30 dB. µMMA = 0.00004.
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Fig. 12. Normalized err (5) as a function of iteration number for a 16QAM
source input going through channel3. The averaged results were obtained in
100 Monte Carlo trials for a SNR=30 dB. µMMA = 0.00004.
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Fig. 13. Normalized zoomed in version for the err (5) as a function of
iteration number for a 16QAM source input going through channel3. The
averaged results were obtained in 100 Monte Carlo trials for a SNR=30 dB.
µMMA = 0.00004.
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