
  
Abstract—Detecting obstacles during the flight and avoiding 

them is desirable in the case of unmanned aerial vehicles intended for 
observation of a residential area, refers especially to lightweight 
micro-aviation vehicles of multi-rotor type, and is also a serious 
problem because their load capacity is limited, therefore only 
electronic sensors can be connected to the object. Usually the sensors 
built into the system are either based on a type vision (monocular or 
stereo camera) or on a laser camera. However, each of the sensors has 
its advantages and disadvantages, which is why the article presents 
the concept of a system for collecting data characterizing the flight of 
a UAV object and including them in the object identification process. 
The main purpose of this work is to perform selected studies 
(analysis, mathematical model, simulations) in the field of 
identification of small unmanned flying objects. A dynamic model 
describing UAV motion was developed, which took into account 
flight parameters using various identification methods. The structure 
of this work is contained in four chapters, in which, among others, 
the second chapter deals with the review of existing identification 
systems for small UAV objects, based on an analysis of the literature 
on the subject of research. The third chapter covers the issues related 
to aerodynamics and mechanics of small UAV objects and concerns 
linear longitudinal equations of UAVs based on Newton's second 
law. This chapter also describes the algorithm used for dynamic 
description along with incorrect filtering of "on-line" learning 
patterns and characterizes the least squares recursive method used for 
the simulation. Based on the analysis, mathematical models created, 
simulations performed and the results obtained based on them, 
practical conclusions presented in the final part of the article were 
formulated.  
 

Keywords—identification, unmanned aerial vehicle, small flying 
objects, simulations  

I. INTRODUCTION  
OWADAYS small unmanned drones are newly created 
personal aircraft used for civilian applications and 

research. These objects can provide scientists with multiple 
images with a shorter time of setting and returning data, which 
is crucial for dynamic, time-sensitive data analysis. UAV 
(Unmanned Aerial Vehicles) objects are also perfectly adapted 
to research and optimization in agriculture, characterized by 
small areas of data collection, high resolution and fast data 
availability.  

They are able to find a gap in resolution for applications in 
grazing areas, providing the necessary data for the management 
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of areas. They are also used to map and detect changes on the 
coasts and wetlands.  

Thanks to their properties, they can provide multispectral 
images in high resolutions, with the operator retaining full 
control over the time and place of taking the picture.  

However, it should be noted that there are many obstacles 
that must be overcome so that UAV objects can successfully 
integrate into the civil airspace. The biggest obstacles and 
difficulties concern safety, i.e. bypassing obstacles, 
communication between both manned and unmanned aircraft 
as well as the reliability of the system and its resistance to 
various types of failures and any damage [1], [2], [3].  

The systems described above are an integral part of effective 
and safe personal remote sensing. The development of such 
systems requires well-designed and characterized dynamic 
models [4], [5]. The dynamic model for traditional aircraft and 
rotorcraft was analytically determined by the second law of 
Newton's dynamics. The parameters of this dynamic model are 
usually determined by expensive and time-consuming tests in 
the wind tunnel.  

These methods, despite being very useful and have many 
advantages, have limitations when used for small and very 
small aircraft due to several key differences, which include:  

− low Reynolds number and speed,  
− increased dynamic speed due to smaller moments of 

inertia,  
− domination of forces and moments of driving 

dynamics in comparison with forces and aerodynamic 
moments,  

− asymmetrical and untypical shapes,  
− cases in which it is not possible to characterize all 

flight regimes, i.e. the transition from pre-flight mode 
to fixed flight, aerobatic maneuvers and reverse 
helicopter flight.  

As an alternative to the analytical methods and testing in the 
wind tunnel, system identification provides several well-suited 
methods for developing dynamic models of the system and 
identifying their parameters. There are several methods of 
system identification that meet the requirements for their 
application to small UAV objects.  

Through the system identifier, the dynamic flight model can 
be determined on the basis of the flight data, and can then be 
used to develop and check the automatic pilot control systems. 
The identification system is an indispensable tool for modeling, 
simulating and developing controllers of small UAV objects 
[6], [7].  
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The main purpose of the work is to develop and implement 
the method of system identification using the smallest recursive 
squares with the wrong "on-line" learning program. This 
method is used on small drones with a fixed wing, using one of 
the cheapest sensors.  

II. REVIEW OF EXISTING IDENTIFICATION SYSTEMS FOR SMALL 
DRONES  

A. Identification System  
System identification is the process of determining the 

mathematical model of the dynamic system by analyzing the 
measured input signals and output states of the system. For 
this purpose, estimation was used. Instead of estimating the 
system state or location of controllers, the system uses inputs 
and positions to develop a model that describes the 
relationship between the input signals and the system 
response.  

In the case of the specificity of UAV objects, the process of 
system identification begins with the design of input signals. 
Then the pilot or the automatic pilot performs maneuvers to 
stimulate dynamicly the UAV object. Signals given to 
actuators and control surfaces are recorded.  

The actual deviation of the control surfaces can also be 
recorded. Then, various types of sensors record the current 
state of the UAV object: acceleration, velocity, angular 
velocities, positions of aerodynamic angles and angles relative 
to the surface of the Earth.  

The dynamic model is recognized from the above data. If 
the structure of the model is known, then its parameters can be 
identified. This is referred to as parameter estimation, which is 
a more specific type of system identifier. The response of the 
model is checked using test data. Authentication uses a set of 
input data separated from the test data to generate the model. 
If the test data and the identified model match, it is possible to 
use it.  

However, if the model does not adequately predict flight 
characteristics, then the identification method and input 
signals must be re-examined and tested. This process is 
described below.  

1. Input signals. 
2. Database.  
3. Selection of the model structure.  
4. Choosing the system identification method.  
5. Optimization of the model using the method of 

system identification, model structure and test data.  
The above-mentioned elements of the system identifier are 

characterized in more detail in the subsequent chapters of the 
work. These chapters are designed to provide the basics of 
knowledge about the actual implementation of the system 
identifier, specifically focused on the dynamics of the UAV 
object [8], [9].  

B. Input signals  
The input signals are probably the most important part of 

the system identifier, because they affect all other aspects of 
the identification process. These signals are used to excite 
dynamic system modes.  

By analyzing the system inputs and responses, the model 
and model parameters can be determined. If the dynamic 
modes of the system are not excited, the dynamic modes will 
not be displayed in the test data and will not be able to be 
identified in the model.  

For this reason, it is very important to have inputs specially 
designed to stimulate the dynamics of the system. However, 
simple dynamic stimulation does not guarantee that the 
identification method will determine the dynamic model.  

Dynamic modes must be excited or persistently excited so 
that all the necessary modes are involved. In order for the 
identification method to have time to identify the model, it 
may be necessary to permanently excite the modes. This 
applies to dynamic systems such as fugoid oscillations for 
fixed wings.  

In contrast, inputs can be designed if there is sufficient 
information about system dynamics. This is usually not the 
case when identifying a model for a UAV object, especially 
when creating a prototype. For general inputs, it is 
recommended to perform a frequency review for the 
identification system and doublets in order to verify the 
model.  

Frequency deviations may be constant or varying depending 
on the dynamics that must be stimulated. The frequency starts 
at a given low frequency and increases up to the desired stop 
frequency (Fig. 1).  

 
Fig. 1. Changing the frequency for the system identifier from the 

flight data  
These signals can be set manually by the pilot or 

automatically by the automatic pilot. The input signals for the 
identification method are usually given by the pilot to keep the 
drone under full control (Fig. 2). Work is underway to create 
an optimal automatic pilot maneuver to determine the 
identification method [10], [11], [12].  

In summary, the following points should be considered 
when developing input data for the system identification 
structure:  

1. Frequency range.  
2. Stability of excitation.  
3. Excitation time.  
4. Types of entries.  
5. Model verification methods.  

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.2 Volume 14, 2020

ISSN: 1998-4464 8



 
Fig. 2. Doublet for model verification from flight data  

C. Preparation and collection of test data  
There are several issues that must be considered when 

determining the requirements for the identification method. 
One of the challenges of the system is to use real flight data, 
whereby flight data can be very noisy. The amount of noise 
depends on the type of sensor and its integration with avionics, 
the drone structure and the type of drive.  

For example, an inertial unit of measure registers 
acceleration as a result of changes in aerodynamic forces and 
moments and structural vibrations caused by the propulsion 
system. This type of vibration can be observed by analyzing 
the following figures (Figs. 3-6). Figures 3 and 5 show 
acceleration during frequency changes, and noise from the 
drive system is illustrated in figures 4 and 6.  

It should be noted that when accelerating in the direction of 
the Z axis, the signal to noise ratio is high and the movement 
is relatively slow compared to the noise.  

In this case, you can use a low-pass filter to eliminate noise 
from the drive. It is suggested to use the same filter in all input 
and output signals to prevent signal distortion.  

In order to collect test data, the sampling frequency of the 
sensor should be taken into account. This is due to the fact that 
if the sensor has a lower sampling rate than the frequency of 
dynamic vibrations of the system, the identification method 
may not recognize the model and its parameters.  

Sensor type requirements are based on the model, input and 
output data needed to identify the method. Sensors should be 
characterized before testing in flight to ensure data reliability. 
Other sensors or filtering should be considered if the sensor is 
inherently noisy or a certain part of the data does not have 
sufficient resolution.  

On the basis of the analysis of the literature on the subject 
of research, the sources of data collection for the UAV object 
can be grouped in the following way as a method of 
identification [13], [14], [15]:  

1. Inertial measuring unit, system GPS (Global 
Positioning System) and differential pressure sensor, 
laser altimeter, ultrasonic altimeter.  

2. GPS only.  
3. Motion capture systems.  
4. Radar.  

5. Software in the simulation loop (to compare 
identification methods).  

Typically, the identification system uses data from the 
inertial measurement unit IMU (Inertial Measurement Unit) 
and the GPS system, however, it is possible to use other 
sensors positively.  

In summary, the following issues regarding the collection of 
test data should be taken into account:  

1. Noise.  
2. Filters.  
3. The sampling frequency of the sensor.  
4. Types of sensors.  

D. Selection of the model structure  
The choice of the model structure is an important stage in 

identifying the system. This step requires prior knowledge of 
system dynamics, understanding of model properties, and 
understanding of the final application.  

Incorrect selection of the model can lead to a situation 
where only the system dynamics have been described in part. 
The system identifier may be the most important to choose the 
model. If aerodynamic coefficients are required, the model 
must have parameters as part of the structure.  

On the other hand, if the model is used to design control 
systems, an autoregulatory regression model may be 
appropriate.  

E.Choosing the system identification method  
The choice of system identification method depends mainly 

on the application and system dynamics. System identification 
methods can be divided into two groups: parametric and non-
parametric.  

Non-parametric methods identify the system with a pulse or 
frequency response and do not require prior knowledge of 
system dynamics or model structure. In turn, the parametric 
methods assume the structure of the dynamic model, and the 
model parameters are then identified from the training data.  

Parametric models can be divided into the following 
subgroups:  

1. Time-varying and temporally stable systems.  
2. Static and dynamic systems.  
3. Linear and nonlinear systems.  
4. Continuous and discrete systems. 

All these groups are interrelated and each of them contains 
only one particular aspect of the identification method [16], 
[17]. These categorizations are provided as references for the 
system identifier methods.  

III. THE RESULTS OF SIMULATION STUDIES AERODYNAMIC 
AND MECHANICAL MODELS OF IDENTIFICATION SYSTEM  

A. Derivation of 6 Degrees of Freedom of Nonlinear Motion 
Equat  
The plane motion equations can be divided into a 

translational motion and rotary motion. The second law of 
Newton's dynamics can be used to describe both the 
translational and rotational motion, in the case of this article 
they were used to develop the motion of a UAV object.  
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If the rigid body is installed, the mass of the system can not 
change over time as in the case of electrically powered drones. 
Drones with internal combustion drive are subject to the 
category of the ever-changing mass system and require special 
care in the case of deriving motion equations.  

Coordinate system  
In order to get acquainted with the coordinate system, a set 

of systems of motion equations is given in the figure below. 
This coordinate system describes the contractual marking of 
the acceleration, speed, position and angles used in the motion 
equation [18], [19].  

 
Fig. 3. Coordinate system with accelerations, speeds, positions and 

angles  

B. Derivation of 6 degrees of freedom of non-linear motion 
equations: translational movement  
Starting from the translational movement in the inertial 

frame, the rate of change of torque is equal to the sum of 
forces exerted on the body (1).  

 Σ𝐹𝐹𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

 (1) 

where: Pi - is the moment of inertia of the translation 
expressed as (2):  

 𝑑𝑑𝑖𝑖 = 𝑚𝑚𝑉𝑉𝑖𝑖  (2) 

By substituting equation (2) for equation (1), a formula for 
translational motion was obtained (3):  

 Σ𝐹𝐹𝑖𝑖 = 𝑑𝑑(𝑚𝑚𝑉𝑉𝑖𝑖)
𝑑𝑑𝑑𝑑

 (3) 

 
Fig. 4. Deviations of control surfaces  

The second law of Newton's dynamics for rigid bodies only 
applies to solid mass systems. This does not mean that the 
second law of dynamics can never be applied to a body that 
loses or gains mass. This means that both the mass and 
momentum of the entire system must be considered [20], [21].  

Because the mass is constant and to avoid confusion with 
different mass systems, for calculations the mass is taken from 
a time derivative using the constant factor rule in 
differentiation (4).  

 Σ𝐹𝐹𝑖𝑖 = 𝑚𝑚𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑

 (4) 

To simplify the expression and measurement of velocities 
and angles, the frame velocity vector is expressed in a fixed 
frame by transformations. This is important because most 
sensors send data in a frame.  

Transformation introduces additional conditions for 
translational and rotational motion equations. Additional 
conditions are caused by the body rotating in relation to the 
inertial frame. The derivative of transformation from the 
inertial body gives the velocity vector.  

Based on the above, the first vector of body speed was 
determined in the following form (5):  

 𝑉𝑉𝑏𝑏 = 𝑉𝑉𝑥𝑥𝑏𝑏 𝑖𝑖𝑏𝑏 + 𝑉𝑉𝑦𝑦𝑏𝑏 𝑗𝑗𝑏𝑏 + 𝑉𝑉𝑧𝑧𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏𝑘𝑘𝑏𝑏  (5) 

Next, the derivative was determined after the time of 
velocity vector Vb relative to the inertia frame by 
differentiating the equation (5), which resulted in (6):  
𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑖𝑖

=
𝑑𝑑𝑉𝑉𝑥𝑥𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑖𝑖𝑏𝑏 +
𝑑𝑑𝑉𝑉𝑦𝑦𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑗𝑗𝑏𝑏 +
𝑑𝑑𝑉𝑉𝑧𝑧𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑘𝑘𝑏𝑏 + 𝑉𝑉𝑥𝑥𝑏𝑏
𝑑𝑑𝑖𝑖𝑏𝑏
𝑑𝑑𝑑𝑑𝑖𝑖

+ 𝑉𝑉𝑦𝑦𝑏𝑏
𝑑𝑑𝑗𝑗 𝑏𝑏
𝑑𝑑𝑑𝑑𝑖𝑖

+ 𝑉𝑉𝑧𝑧𝑏𝑏
𝑑𝑑𝑘𝑘𝑏𝑏
𝑑𝑑𝑑𝑑𝑖𝑖

 (6) 

where: 𝑑𝑑
𝑑𝑑𝑑𝑑𝑖𝑖

 - is a time derivative relative to the inertial frame.  

The first three concepts of the right side of the equation (6) 
express the change in velocity vector Vb in the frame body 
view.  

These three components can be combined at the time of the 
Vb derivative, resulting in (7):  

 𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

=
𝑑𝑑𝑉𝑉𝑥𝑥𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑖𝑖𝑏𝑏 + 𝑑𝑑𝑉𝑉𝑦𝑦𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑗𝑗𝑏𝑏 +
𝑑𝑑𝑉𝑉𝑧𝑧𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

𝑘𝑘𝑏𝑏  (7) 

The last three components of the right side of the equation 
(6) determine the change in velocity vector Vb from the 
rotation of the body frame with respect to the inertial frame. 
The angular velocity of the body frame with respect to the 
inertial frame is expressed in 𝜔𝜔𝑏𝑏 .  

Derivatives 𝑖𝑖𝑏𝑏 , 𝑗𝑗𝑏𝑏   and  𝑘𝑘𝑏𝑏  can be found using (8):  

 
𝑑𝑑
𝑑𝑑𝑑𝑑𝑖𝑖

𝑖𝑖𝑏𝑏 = 𝜔𝜔𝑏𝑏 × 𝑖𝑖𝑏𝑏 , 
𝑑𝑑
𝑑𝑑𝑑𝑑𝑖𝑖

𝑗𝑗𝑏𝑏 = 𝜔𝜔𝑏𝑏 × 𝑗𝑗𝑏𝑏 ,  
𝑑𝑑
𝑑𝑑𝑑𝑑𝑖𝑖
𝑘𝑘𝑏𝑏 = 𝜔𝜔𝑏𝑏 × 𝑘𝑘𝑏𝑏    (8) 

Substituting equations (7) and (8) to the right-hand side of 
equation (6), the following form was obtained (9):  
𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑 𝑖𝑖

= 𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

+ 𝑉𝑉𝑥𝑥𝑏𝑏 (𝜔𝜔𝑏𝑏 × 𝑖𝑖𝑏𝑏) + 𝑉𝑉𝑦𝑦𝑏𝑏 (𝜔𝜔𝑏𝑏 × 𝑗𝑗𝑏𝑏) + 𝑉𝑉𝑧𝑧𝑏𝑏 (𝜔𝜔𝑏𝑏 × 𝑘𝑘𝑏𝑏) (9) 

Taking the last three conditions of the right side of the 
equation (9) before the parenthesis, the following forms of 
equations (10) and (11) were obtained:  

 𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑 𝑖𝑖

= 𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

+ 𝜔𝜔𝑏𝑏 × (𝑉𝑉𝑥𝑥𝑏𝑏 𝑖𝑖𝑏𝑏) + 𝜔𝜔𝑏𝑏 × (𝑉𝑉𝑦𝑦𝑏𝑏 𝑗𝑗𝑏𝑏) + 𝜔𝜔𝑏𝑏 × (𝑉𝑉𝑧𝑧𝑏𝑏𝑘𝑘𝑏𝑏)         (10) 

 𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑 𝑖𝑖

= 𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

+ 𝜔𝜔𝑏𝑏 × (𝑉𝑉𝑥𝑥𝑏𝑏 𝑖𝑖𝑏𝑏 + 𝑉𝑉𝑦𝑦𝑏𝑏 𝑗𝑗𝑏𝑏 + 𝑉𝑉𝑧𝑧𝑏𝑏𝑘𝑘𝑏𝑏) (11) 
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In the light of the above, the desired relationship was 
obtained (12):  

 𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑 𝑖𝑖

= 𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏

+ 𝜔𝜔𝑏𝑏 × 𝑉𝑉𝑏𝑏  (12) 

The resulting compound can be used in equation (4) to 
express the temporal derivative of the velocity vector with 
respect to the body frame, resulting in (13):  

 Σ𝐹𝐹𝑏𝑏 = 𝑚𝑚𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑏𝑏 × (𝑚𝑚𝑉𝑉𝑏𝑏) (13) 

By maintaining the equation of motion in fixed coordinate 
systems, to facilitate the derivation the force can be separated 
from the surface and the body as (14):  

 𝐹𝐹𝑆𝑆 + 𝑊𝑊 = 𝑚𝑚𝑑𝑑𝑉𝑉𝑏𝑏
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑏𝑏 × (𝑚𝑚𝑉𝑉𝑏𝑏) (14) 

The equations of translational motion are expressed in terms 
of their vector elements, starting from the terms related to the 
angular velocity, located on the right side of the equation (14) 
as (15):  

𝜔𝜔𝑏𝑏 × (𝑚𝑚𝑉𝑉𝑏𝑏) = 𝑚𝑚 �
𝑖𝑖𝑥𝑥𝑏𝑏 𝑖𝑖𝑦𝑦𝑏𝑏 𝑖𝑖𝑧𝑧𝑏𝑏
𝜔𝜔𝑥𝑥𝑏𝑏 𝜔𝜔𝑦𝑦𝑏𝑏 𝜔𝜔𝑧𝑧𝑏𝑏
𝑉𝑉𝑥𝑥𝑏𝑏 𝑉𝑉𝑦𝑦𝑏𝑏 𝑉𝑉𝑧𝑧𝑏𝑏

� = 𝑚𝑚�
𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏 − 𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏
𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏 − 𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏
𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏 − 𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏

� (15) 

By substituting equation (15) for equation (14) and 
expanding the rest of words of vector elements, the following 
form of equation was obtained (16):  

 �
𝐹𝐹𝑆𝑆𝑥𝑥𝑏𝑏
𝐹𝐹𝑆𝑆𝑦𝑦𝑏𝑏
𝐹𝐹𝑆𝑆𝑧𝑧𝑏𝑏

� + �
𝑊𝑊𝑥𝑥𝑏𝑏
𝑊𝑊𝑦𝑦𝑏𝑏
𝑊𝑊𝑧𝑧𝑏𝑏

� = 𝑚𝑚 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑉𝑉𝑥𝑥𝑏𝑏
𝑉𝑉𝑦𝑦𝑏𝑏
𝑉𝑉𝑧𝑧𝑏𝑏

� +𝑚𝑚�
𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏 − 𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏
𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏 − 𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏
𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏 − 𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏

� (16) 

The above equations of motion are expressed in terms of 
their vector elements in a way that allows dividing equations 
into longitudinal and lateral dynamics [22], [23], [24].  

Equation (16) can be transformed as (17):  

 𝑚𝑚 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑉𝑉𝑥𝑥𝑏𝑏
𝑉𝑉𝑦𝑦𝑏𝑏
𝑉𝑉𝑧𝑧𝑏𝑏

� = �
𝐹𝐹𝑆𝑆𝑥𝑥𝑏𝑏 + 𝑊𝑊𝑥𝑥𝑏𝑏 − 𝑚𝑚𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏 + 𝑚𝑚𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏
𝐹𝐹𝑆𝑆𝑦𝑦𝑏𝑏 + 𝑊𝑊𝑥𝑥𝑏𝑏 − 𝑚𝑚𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏 + 𝑚𝑚𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏
𝐹𝐹𝑆𝑆𝑧𝑧𝑏𝑏 + 𝑊𝑊𝑧𝑧𝑏𝑏 −𝑚𝑚𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏 +𝑚𝑚𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏

� (17) 

It should be noted that the derivation of equations is valid 
for drones with a constant mass. However, some UAV objects 
change in mass over time as a result of fuel combustion. 
Therefore, the equations of motion must take into account this 
stream of momentum.  

Since the examined drone does not change mass over time, 
the time of changing the speed can be expressed as (18):  

 �
�̇�𝑉𝑥𝑥𝑏𝑏
�̇�𝑉𝑦𝑦𝑏𝑏
�̇�𝑉𝑧𝑧𝑏𝑏

� = �
𝐹𝐹𝑆𝑆𝑥𝑥𝑏𝑏 + 𝑊𝑊𝑥𝑥𝑏𝑏 − 𝑚𝑚𝜔𝜔𝑦𝑦𝑏𝑏 𝑉𝑉𝑧𝑧𝑏𝑏 + 𝑚𝑚𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏
𝐹𝐹𝑆𝑆𝑦𝑦𝑏𝑏 + 𝑊𝑊𝑥𝑥𝑏𝑏 −𝑚𝑚𝜔𝜔𝑧𝑧𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏 + 𝑚𝑚𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑧𝑧𝑏𝑏
𝐹𝐹𝑆𝑆𝑧𝑧𝑏𝑏 + 𝑊𝑊𝑧𝑧𝑏𝑏 −𝑚𝑚𝜔𝜔𝑥𝑥𝑏𝑏𝑉𝑉𝑦𝑦𝑏𝑏 + 𝑚𝑚𝜔𝜔𝑦𝑦𝑏𝑏𝑉𝑉𝑥𝑥𝑏𝑏

� (18) 

where: Fb - is a pseudo-aerodynamic force.  
The classic equation is replaced by the following equations 

(19), (20) and (21): 

 𝑉𝑉 = �
𝑉𝑉𝑥𝑥𝑏𝑏
𝑉𝑉𝑦𝑦𝑏𝑏
𝑉𝑉𝑧𝑧𝑏𝑏

� = �
𝓊𝓊
𝓋𝓋
𝓌𝓌
� = �

𝑎𝑎𝑥𝑥𝑖𝑖𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑖𝑖𝑑𝑑𝑦𝑦
𝑠𝑠𝑖𝑖𝑑𝑑𝑣𝑣𝑠𝑠𝑎𝑎𝑖𝑖𝑠𝑠 𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑖𝑖𝑑𝑑𝑦𝑦
𝑛𝑛𝑣𝑣𝑛𝑛𝑚𝑚𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑖𝑖𝑑𝑑𝑦𝑦

� (19) 

 𝜔𝜔𝑏𝑏 = �
𝜔𝜔𝑥𝑥𝑏𝑏
𝜔𝜔𝑦𝑦𝑏𝑏
𝜔𝜔𝑧𝑧𝑏𝑏

� = �
𝓅𝓅
𝓆𝓆
𝓇𝓇
� = �

𝑛𝑛𝑣𝑣𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑟𝑟 𝑛𝑛𝑎𝑎𝑑𝑑𝑣𝑣
𝑠𝑠𝑖𝑖𝑑𝑑𝑣𝑣ℎ𝑖𝑖𝑛𝑛𝑟𝑟 𝑛𝑛𝑎𝑎𝑑𝑑𝑣𝑣
𝑦𝑦𝑎𝑎𝑦𝑦𝑖𝑖𝑛𝑛𝑟𝑟 𝑛𝑛𝑎𝑎𝑑𝑑𝑣𝑣

� (20) 

 𝑚𝑚 = 𝑊𝑊/𝑟𝑟 (21) 

After substitution of flight dynamics entries in equation 
(18), the following form of equation was obtained (22):  

   �
𝑊𝑊/𝑟𝑟 0 0

0 𝑊𝑊/𝑟𝑟 0
0 0 𝑊𝑊/𝑟𝑟

� = �
�̇�𝓊
�̇�𝓋
�̇�𝓌
� = �

𝐹𝐹𝑥𝑥𝑏𝑏 +𝑊𝑊𝑥𝑥𝑏𝑏 + (𝑛𝑛𝑣𝑣 − 𝑞𝑞𝑦𝑦)𝑊𝑊/𝑟𝑟
𝐹𝐹𝑦𝑦𝑏𝑏 + 𝑊𝑊𝑦𝑦𝑏𝑏 + (𝑠𝑠𝑦𝑦 − 𝑛𝑛𝑟𝑟)𝑊𝑊/𝑟𝑟
𝐹𝐹𝑧𝑧𝑏𝑏 +𝑊𝑊𝑧𝑧𝑏𝑏 + (𝑞𝑞𝑟𝑟 − 𝑠𝑠𝑣𝑣)𝑊𝑊/𝑟𝑟

� (22) 

C. Identified nominal model and flight data  
This sub-section presents the nominal models identified 

using the least-squares recursive model BLS (Batch Least 
Squares) and BLS model with the error filtering model in "on-
line" learning EFOL (Error Filtering Online Learning). These 
models are evaluated to match their flight data. The sine wave, 
double and single are used to evaluate the nominal models.  

It should be remembered that the nominal models were built 
from training data with narrow maneuver data during the 
flight. The remaining maneuvers are used only to assess the 
characteristics of the nominal model. This is a standard 
procedure for assessing identical models and determines 
whether the nominal models identify all dynamic modes.  

The nominal model BLS in equation (23) and BLS with the 
EFOL model (24) are presented in the context of linear 
longitudinal equations of motion.  

⎩
⎪⎪
⎨

⎪⎪
⎧
Δ�̇�𝓊

Δ�̇�𝓌

Δ�̇�𝓆

Δθ̇ ⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0,18 0,19 0,18 −9,8

−0,76 −5,13 14,05 0

−0,11 −1,89 −1,13 0

0 0 1 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧
Δ𝓊𝓊

Δ𝓌𝓌

Δ𝓆𝓆

Δθ ⎭
⎪⎪
⎬

⎪⎪
⎫

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0,43

−18,12

−37,53

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

Δ𝛿𝛿𝑣𝑣 (23) 

⎩
⎪⎪
⎨

⎪⎪
⎧
Δ�̇�𝓊

Δ�̇�𝓌

Δ�̇�𝓆

Δθ̇ ⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0,18 0,19 0,18 −9,8

−0,75 −5,12 13,98 0

−0,11 −1,91 −1,08 0

0 0 1 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧
Δ𝓊𝓊

Δ𝓌𝓌

Δ𝓆𝓆

Δθ ⎭
⎪⎪
⎬

⎪⎪
⎫

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0,45

−18,35

−37,69

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

Δ𝛿𝛿𝑣𝑣 (24) 

When assessing the nominal models and comparing them to 
validated flight data, the nominal models are initiated with the 
flight data in time equal to 0. The models are then excited 
using the elevator rudder flight data.  

The paper presents three models of responses to input data 
of the flight data, where the responses of nominal models 
display characteristic results of the system identifier. The next 
figures (Figures 5-7) show three types of input signals.  

 
Fig. 5. Distribution of the sine wave  
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Fig. 6. Distribution of the doublet  

 
Fig. 7. Distribution of the singlet  

IV. CONCLUSIONS  
System identification has been and will continue to be an 

invaluable tool for determining mathematical models that 
accurately simulate dynamic systems. This is particularly 
useful for manned and unmanned aerial vehicles where 
analytical solutions may not be sufficient, wind tunnel tests 
are not available, and CFD (Computational Fluid Dynamics) 
methods can be too time-consuming. There are many 
advantages of the UAV object identification system, but there 
are also several difficulties that need to be resolved 
appropriately [25], [26], [27].  

The conclusions drawn are a direct result of struggling with 
kinematically consistent flight data and determining linear 
equations of long-term motion parameters. It is important that 
the data about flights were kinematically consistent, otherwise 
the system identifier will be ineffective.  

The BLS and BLS with EFOL models positively identify 
linear longitudinal equations of motion parameters. The 
average value of these parameters is used to create nominal 
models. Nominal models contain flight data for sine 
maneuvers, but have a smaller set of double and single-point 
maneuvers.  

A poor match corresponds to incorrect identifying the long 
period mode. A better match can be obtained using a double or 
single signal as part of the shaping of the data model.  

Nominal models also do not predict vibrations of 1-2 [Hz], 
occurring in doublets and singlets. The causes of these 
oscillations should be investigated to see if they are the result 
of aerodynamics or the structure of the aircraft.  
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