
  
Abstract—This study used near-infrared (NIR) spectroscopy as a 

non-destructive test to predict the compressive strength (i.e., modulus 
of rupture (MOR) and the modulus of elasticity (MOE)) of Fraxinus 
mandshurica parallel to the wood grain. Tests were conducted with 
120 small and clear wood samples to obtain the diffuse NIR 
reflectance spectra of the radial and tangent surfaces of the wood 
samples. Standard normal variable transformation (SNV) combined 
with Savitzky-Golay (SG) convolution smoothing algorithm was used 
to filter the raw NIR spectra. Uninformative variables elimination 
(UVE) and a genetic algorithm (GA) were utilized to identify specific 
wavelengths in the spectra that directly correlated to compression 
strength. Finally, a partial least squares (PLS) regression model was 
developed with the identified wavelengths to determine the MOR and 
MOE of the samples. The results showed the correlation coefficients of 
the prediction models for MOR and MOE were 0.88 and 0.89, 
respectively. The root mean square errors of prediction for MOR and 
MOE models were 7.37 and 0.49, respectively. Based on these results, 
it is feasible to accurately estimate the compressive strength of 
Fraxinus mandshurica (parallel to the grain) using NIR spectroscopy. 
 

Keywords—Near-infrared spectroscopy; Compression strength 
(parallel to wood grain), Uninformative variables elimination, Genetic 
algorithm.  

I. INTRODUCTION 
RAXINUS mandshurica, a commonly used structural 
material, requires a high degree of structural performance 

and reliability, particularly with its compressive strength 
parallel to the wood grain. Traditional testing of wood 
compressive strength is to conduct destructive tests on small and 
flawless wood samples using a universal testing machine in 
accordance to standardized laboratory protocols. This method is 
accurate and reliable, but the sample preparation is cumbersome 
and the amount of testing time required is high. It cannot meet 

This work was supported by Beijing Natural Science Foundation (Grant No. 
6202023) and the Fundamental Research Funds for the Central Universities 
(Grant No. BLX2017017).  

Hao Liang is with Beijing Forestry University, Beijing, 100083 China 
(e-mail: lianghao@bjfu.edu.cn)  

Linyin Xing is with Beijing Forestry University, Beijing, 100083 China 
(e-mail: lyxing@bjfu.edu.cn)  

Jian Wen is with Beijing Forestry University, Beijing, 100083 China 
(e-mail: wenjian@bjfu.edu.cn) 

Chao Gao is with Beijing Technology and Business University, Beijing 
100048 China (e-mail: gaochao9158@btbu.edu.cn) 

Jianhui Lin is with Beijing Forestry University, Beijing, 100083 China 
(corresponding author to provide e-mail: swiq_lin@163.com). 

the actual needs of the forestry industry and the wood 
processing industry. Therefore, a non-destructive laboratory 
test method that can measure the mechanical properties of wood 
would have important application value and practical benefits to 
engineers.  

Near-infrared (NIR) spectroscopy is a fast, non-destructive, 
and indirect analysis technology that has been widely used with 
some success in the areas of agriculture, food, medicine, paper 
testing, petroleum processing, and winemaking, in addition to 
other fields. In recent years, the application of NIR 
spectroscopy in the wood sciences has become increasingly 
extensive. This tool has been used to estimate the lignin and 
cellulose content in trees, and to analyze the mechanical, 
physical and chemical properties of wood [1][2][3]. Thumm 
and Meder used NIR to assess the stiffness of dry radiata pine 
clearwood and demonstrated that when the load is applied to the 
radial face then NIR spectra obtained from the radial face are 
preferred to that obtained from the tangential face, due to 
spectral information being obtained from both latewood and 
earlywood. Tong and Zhang estimated the mechanical 
properties of thermally-modified softwood (southern pine) 
using NIR; the authors observed a close relationship between 
the NIR spectral peaks and the mechanical properties of the 
wood. Eom et al. measured the surface moisture content of 
yellow poplar in real-time using a NIR technique. Moreover, 
NIR has been used by several investigators to detect wood 
surface defects [4][5], as well as to classify the species and 
origins of the wood specimens [6][7].  

In this study, a fast and non-destructive testing method for 
measuring the compressive strength of Fraxinus mandshurica 
(parallel to the wood grain) was developed using near-infrared 
spectroscopy. First, a standard normal variable transformation 
combined with the Savitzky-Golay convolution smoothing 
algorithm was used to filter the collected NIR absorption 
spectra. Then, uninformative variables elimination (UVE) and 
genetic algorithm (GA) analyses were utilized on the recorded 
spectra to identify specific NIR wavelengths that correlated with 
the compressive strength of Fraxinus mandshurica. Finally, a 
calibration and a prediction model for the compressive strength 
(i.e., modulus of rupture (MOR) and the modulus of elasticity 
(MOE)) were developed using a partial least squares (PLS) 
regression algorithm. Through these analyses and evaluations of 
the models, it was deduced that there is a close correlation 
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between the NIR spectra and the compressive MOR and MOE 
values for Fraxinus mandshurica. The main purpose of this 
study is to develop calibrations for determining the compressive 
wood strength (parallel to the grain) using NIR spectroscopy, 
and to evaluate the predictive ability of NIR spectra with 
calibrations. 

II. EXPERIMENTAL 

A. Sample Preparation 
Fraxinus mandschurica trees grown in Northeast China 

(44°37' to 44°47' N, 27°35' to 127°55 E) were selected as test 
samples. Fifteen 20-year-old trees were felled, and the logs were 
cut at a height of 1.3 m. The logs were then were air-dried. After 
the process of drying, sawing, and sanding, 120 flawless boards 
with the dimensions of 30 mm (L) × 20 mm (T) × 20 mm (R) 
were fashioned in accordance to Chinese Standard GB/T 1929. 
The specimens were numbered from 1 to 120. These labeled 
specimens were stored at 22 ± 1 °C and 45% ± 5% relative 
humidity prior to NIR scanning and to compressive strength 
testing. 

B. Determination of Compressive Strength Parallel to the 
Wood Grain 

The MOR and MOE of the specimens were measured in 
accordance to Chinese Standard GB/T 1935 by applying 
pressure to the board at a uniform rate (10 mm/min) until 
rupture (2 to 3 min per specimen) parallel to the wood grain. A 
total of 120 specimens were divided into two groups: a 
calibration set (80 specimens) and a prediction set (40 
specimens). The specimens with the highest and lowest 
compressive strength of all the specimens were placed into the 
calibration set, and the rest of the samples were randomly 
divided into the calibration set and prediction set.  In the 
experiments conducted, 80 specimens of the calibration set 
were used to establish the calibration model, and the remaining 
40 samples of the prediction set were used to externally validate 
the model. 

C. NIR Spectra Acquisition 
It was found that the spectra with wavelength ranging from 

1000 to 1600 nm carry important information and can better 
predict the mechanical properties, density, and other properties 
of wood [8][9]. A one-chip micro integrated optic fiber 
spectrometer by INSION Co. GmbH (Heilbronn, Germany) was 
used to record the NIR spectra for the specimens. The recorded 
range was 900 to 1800 nm with a 9 nm resolution (i.e., thermal 
wavelength stability was less than 0.03 nm/K). The surface NIR 
spectrum of the specimens was collected using two bifurcated 
optical fiber probes in the laboratory. The temperature and 
relative humidity were held constant at 22 °C and 50%, 
respectively. The NIR spectra of the specimens were recorded 
in accordance to Chinese Standard LY/T 2053. The SPECview 
7.1 software (INSION Co. GmbH, Heilbronn, Germany) was 
used to collect the raw spectral data, and the data were exported 
into an Excel spreadsheet (Microsoft Corp., v.2016, Redmond, 

WA, USA). Before scanning the specimens, a spectrometer was 
turned on and allowed to warm-up for 10 min to ensure the 
stability of the recorded measurements; the instrument was 
calibrated using a commercial PTFE reference tile. Then, the 
optical fiber probe (5-mm diameter) was fixed onto a bracket, 
and the specimens were placed below the probe at a gap 
distance of 1 mm. Each specimen area was automatically 
scanned 30 times and the collected spectra were averaged to 
yield a single NIR spectral curve. The spectrum acquisition 
set-up is shown in Fig 1. The growth characteristics of the wood 
led to different absorption peaks in the NIR spectra for different 
sections, but the spectral trends were similar. Consequently, the 
radial (R) and tangential (T) spectra of the specimens collected 
in this study were used for analysis and modeling after taking 
the averaged values. 

 

Computer

NIR
Spectrometer

Fiber optic probe

Specimen  
Fig. 1 The diagram of spectra acquisition. 

III. METHODS 

A. Spectra Data Filtering 
In the process of spectra acquisition of experimental 

specimens, the baseline drift and noise interference often 
occurred due to dithering, light scattering, and other reasons 
[10]. Spectra data filtering is important for the establishment of 
an analytical model with strong prediction ability and 
robustness. Therefore, spectral data need to be filtered before 
the establishing the prediction model for compressive strength 
parallel-to-grain of specimens. Previous studies have shown that 
the standard normal variable transformation (SNV) can 
eliminate the effects of particle sizes, surface radiation 
scattering, and radiation path variations with the NIR diffuse 
reflectance spectra [11]. Based on SNV data filtering, using 
Savitzky-Golay (SG) convolution to smooth the spectra can 
effectively remove spectral noise and improve the 
signal-to-noise ratio [12].  

In this study, SNV and SG convolution smoothing were used 
to filter the raw NIR spectra. The spectral Xi,k that needed SNV 
transformation was calculated by (1), 
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where xi is the average of the spectra of the ith sample, m is the 
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number of wavelength variables, and n is the number of 
specimens in the calibration set. The SG convolution smoothing 
is calculated as (2), 
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where x is the absorbance, i and j are ordinal numbers within the 
range of wavelength variables, k! is the factorial of the 
derivative order k, and ak is the weighting coefficient. 

B. Spectral Feature Extraction 
Due to the wide range of wavelengths contained in the 

recorded NIR spectra during the experiments, some 
wavelengths have no correlation or relationship to the 
compressive strength (i.e., MOR and MOE) of the samples. 
Additionally, there was collinearity of the NIR spectra that 
resulted in redundant information that negatively affected the 
accuracy of the developed regression models. Therefore, it was 
necessary to eliminate the uninformative wavelengths and to 
extract the relevant wavelengths in the spectra for regression 
modeling. 

The UVE method was implemented to eliminate the 
wavelengths in the NIR spectra not related to the compressive 
strength of the specimens, as well as to remove the influence of 
various non-target factors [13][14][15].  

After data processing the NIR spectra with the UVE method, 
the genetic algorithm (GA) was then used on the refined data to 
extract the specific wavelengths related to MOR and MOE, as 
well as to eliminate irrelevant wavelengths from consideration. 
Moreover, the process of spectral feature extraction by the 
combined UVE and GA analyses reduced the complexity of the 
developed model, which improved the predictive accuracy and 
stability of the calibration model. 

C. Model Evaluation Standard 
After identifying the relevant NIR wavelengths, a partial least 

squares (PLS) regression model for the compressive strength 
(parallel to the wood grain) of Fraxinus mandshurica was 
developed. The regression model factor was determined by a 
cross-validation method, and the model was validated by the 
specimens of the prediction set. 

The predictability of the regression model was quantified 
using various statistical analyses: the coefficient of 
determination of the calibration model (Rc

2); the coefficient of 
determination of the prediction model (Rp

2); the root mean 
square error of calibration (RMSEC); the root mean square 
error of prediction (RMSEP); and the relative percent deviation 
(RPD). The selection of the optimal model was based on its 
predictability following a procedure described by Gierlinger et 
al. (2002). A better prediction model generally had larger Rc

2 
and Rp

2 values, as well as smaller RMSEC and RMSEP values. 
Furthermore, if the RPD of a prediction model was between 2.5 
and 3.0, the regression model was deemed to have good 
prediction accuracy. 

IV. RESULTS AND DISCUSSION 

A. Determination of the MOR and MOE of the Specimens 
The compressive strength parameters, MOR and MOE, of the 

specimens in each of the specimen sets were measured using the 
universal testing machine (Table 1). The MOR of the 120 
specimens ranged from 157.92 MPa to 263.93 MPa, while the 
MOE of all the specimens ranged from 15.83 GPa to 22.34 GPa. 
The highest and lowest values of all the wood specimens were 
contained in the calibration set. Moreover, there was good 
agreement among the mean and standard deviation (st. dev.) 
values between the two sample sets. 

 
Table 1. Measured Compressive Strengths of Specimens 

(Parallel-to-Grain) of the Data Sets 
Data Set Calibration set Prediction set All samples 
Number 80 40 120 

MOR (MPa) 

Max 263.93 255.02 263.93 
Min 157.92 183.5 157.92 

Mean 211.53 206.54 209.86 
St. Dev. 25.63 21.29 23.92 

MOE (GPa) 

Max 22.34 21.09 22.34 
Min 15.83 16.17 15.83 

Mean 19.47 18.88 19.28 
St. Dev. 1.65 1.37 1.58 

B. Raw and Filtered NIR Spectra of the Specimens 
The near-infrared spectra (900 to 1800 nm) of all 120 

specimens are shown in Fig. 2(a). Some high-frequency noise, 
baseline drift, and other negative effects were observed in the 
spectra. Hence, the raw NIR data were filtered using SNV and 
SG convolution smoothing methods. The filtered spectra (Fig. 
2(b) and 2(c)) had a clearer outline with more obvious 
absorption peaks and less noise than the raw data. 

 

 
(a) 
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(b) 

 
(c) 

Fig. 2 Original NIR and filtered NIR spectra of the samples: (a) raw 
spectra; (b) spectra filtered using SNV; and (c) spectra filtered using 

both SNV and SG. 
 

The PLS regression models were developed using the 
original spectra and the spectra filtered by various methods. The 
effects of different data filtering methods on the MOE modeling 
accuracy are illustrated in Table 2. 

 
Table 2. Effects of Different Spectral Data Filtering Methods on MOE 

Modeling Accuracy 

Data Filtering Method Raw 
Spectra SNV SG SNV & SG 

Calibration 
set 

Rc
2 0.67 0.79 0.67 0.80 

RMSEC 0.91 0.71 0.90 0.70 

Prediction set 
Rp

2 0.64 0.70 0.63 0.74 
RMSEP 0.97 0.84 0.96 0.81 

 
The PLS regression model developed using the data filtered 

by both SNV and SG had the highest MOE prediction accuracy. 
The Rc

2 and Rp
2 values of this model were 0.80 and 0.74, 

respectively, which were higher than the models based on the 
raw spectra, the SNV filtered spectra, and SG filtered spectra. 
The RMSEC and RMSEP values in this model were 0.70 and 
0.81, respectively, which were higher than the models based on 
the raw spectra, the SNV filtered spectra, and SG filtered 
spectra. It was observed that when the smoothing window of the 
SG method was 11, the filtering effect of the spectral noise was 
the best. Hence, subsequent raw NIR data were filtered using 
both SNV and SG. 

C. Irrelevant Wavelength Elimination by Uninformative 
Variables Elimination 

After spectral data filtering using both SNV and SG methods, 
the refined data were processed by the UVE method to eliminate 

irrelevant wavelengths to predict the specimens’ compressive 
strength values. The stability distributions of the variables after 
the UVE method are illustrated in Fig. 3. Figure 3 shows that the 
original full spectral wavelength variables and the introduced 
random variables were located on the left and right sides of the 
vertical line, respectively. The two dotted lines shown in the 
figure represent the upper and the lower limits for the threshold 
value of the selected variable. Stability values outside the dotted 
lines were set to an absolute value of 1, and the stability values 
inside the dotted lines were set to 0. The wavelength variables 
corresponding to the stability values within the two dotted lines 
were considered to be independent of the compressive wood 
strength. The UVE analysis of the filtered NIR spectra data 
eliminated 84 of the 117 wavelengths. As a result, 33 
wavelengths were identified that were related to the 
compressive wood strength. The distributions of these 
correlative wavelengths are shown in Fig. 4. The blue circles 
indicate the wavelengths that correlated to the specimens’ 
compressive strength. Some of the retained wavelength regions 
may be attributed to specific chemical structures in the 
specimens that are associated with MOR and MOE. 

 

 
Fig. 3 The stability distribution of each NIR wavelength by UVE 

analysis. 
 

 
Fig. 4. Distribution of related NIR wavelengths as determined by UVE 

analysis; blue circles indicate spectral wavelengths correlated with 
compressive strength. 

D. Feature Wavelength Selection by Genetic Algorithm 
The UVE data analysis reduced the irrelevant NIR 

wavelengths over the 900 to 1800 nm range from 117 to 33 
candidates. The genetic algorithm (GA) method was employed 
to optimize how these chosen wavelengths related to the 
compressive strength of Fraxinus mandshurica. In this study, 
the root mean square error of cross-validation (RMSECV) with 
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partial least squares regression (PLSR) was used to develop the 
correlation models. The experiment repeated a total of 5 
screening processes to take the intersection to obtain the final 
feature wavelength variables, and six wavelength variables 
(1482.67 nm, 1490.93 nm, 1507.46 nm, 1532.27nm, 
1623.31nm, 1664.74 nm) were selected. Figure 5(a) shows the 
optimal points of the RMSECV curve. Figure 5(b) illustrates the 
selected feature wavelength variables in the spectra by 
UVE-GA. 

 

(a) 

 
(b) 

Fig. 5. Results from characteristic wavelength selection by GA: (a) 
RMSECV variation diagram and (b) distribution of selected 

wavelengths (denoted by blue circles). 

E. Establishment of Calibration Model 
After selecting the candidate wavelengths, PLS regression 

was used to establish a calibration model for the compressive 
strength. The results from the different modeling approaches are 
shown in Table 3. 

 
Table 3. Comparison of the Results of Different Modeling Methods 

Compressive 
Strength 

Modeling 
Method 

Number of 
Selected 

Wavelength 
Variables 

Calibration Set 

Rc
2 RMSEC 

MOR 

PLS 117 0.79 10.77 
UVE-PLS 33 0.83 9.89 
GA-PLS 23 0.81 10.39 

UVE-GA-PLS 6 0.92 7.01 

MOE 

PLS 117 0.73 0.88 
UVE-PLS 33 0.77 0.81 
GA-PLS 23 0.80 0.70 

UVE-GA-PLS 6 0.92 0.52 

It was deduced from the observations listed in Table 3 that the 
calibration model based on the UVE-GA approach increased 
the Rc

2 and decreased the RMSEC (relative to PLS only model), 
which indicated that the prediction performance of the model 
had been improved. The predictability of the UVE-GA-PLS 
model was the best of all the modeling approaches examined. 
The Rc

2 and RMSEC of the MOR calibration model based on 
this approach were 0.92 and 7.01, respectively, whereas the Rc

2 
and RMSEC values were 0.92 and 0.52, respectively. 
Furthermore, the spectral dimension was reduced from 117 to 6 
candidate wavelengths when both UVE and GA methods were 
used. This approach appreciably reduced the data dimension, 
which reduced the modeling time. 

F. Predictability of the Regression Models 
After the calibration model was developed, the prediction 

models for MOR and MOE based on PLS, UVE-PLS, GA-PLS, 
and UVE-GA-PLS approaches were examined to determine 
their ability to predict compression strength parameters 
accurately. The statistical analyses of the models to represent 
the measured results from the experimental set are shown in 
Table 4. 
 
Table 4. Comparison of the Models’ Predictions to Measured Values 
Compressive Strength Models Rp

2 RMSEP RPD 

MOR 

PLS 0.70 13.09 1.62 
UVE-PLS 0.77 10.46 2.03 
GA-PLS 0.75 9.97 2.14 

UVE-GA-PLS 0.88 7.37 2.89 

MOE 

PLS 0.74 0.81 1.69 
UVE-PLS 0.74 0.58 2.36 
GA-PLS 0.73 0.62 2.21 

UVE-GA-PLS 0.89 0.49 2.80 
 

The results of Table 4 indicated that the range of Rp
2, 

RMSEP, and RPD for the MOR prediction model was 0.70 to 
0.88, 7.17 to 13.09, and 1.62 to 2.96, respectively, and the range 
of Rp

2, RMSEP, and RPD of MOE prediction model was 0.73 to 
0.89, 0.47 to 0.81, and 1.69 to 2.91, respectively. The RPD of 
PLS, UVE-PLS, and GA-PLS were all lower than 2.5, which 
showed that their predictions of MOR and MOE based on 
selected NIR wavelength measurements were not acceptable. 
Among the models, the UVE-GA-PLS model had the highest 
Rp

2, the smallest RMSEP, and the highest RPD. Hence, the 
UVE-GA-PLS model should quantitatively predict the MOR 
and MOE of Fraxinus mandschurica wood samples; however, 
the accuracy of the model’s predictions needs to be improved. 

V. CONCLUSIONS 
This study reported the relationship between the NIR spectra 

and the compressive strength of Fraxinus mandshurica (parallel 
to the wood grain). The NIR technique can be used to estimate 
the MOR and MOE non-destructively.  

After data filtering by SNV and SG convolution smoothing 
methods, the noise in the raw spectra was effectively eliminated. 
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Based on the filtered spectra, the wavelengths related to the 
compressive strength of Fraxinus mandshurica were identified 
by UVE and GA analyses. These approaches effectively 
reduced the spectral dimension and the computational 
complexity of the developed regression model while improving 
the model’s accuracy.  

The UVE-GA-PLS model for predicting the compressive 
strength of Fraxinus mandshurica was developed using 
candidate wavelengths from the data filtering methods. The 
correlation coefficient for the MOR and the MOE prediction 
model were 0.88 and 0.89, respectively; the RPD for this model 
was higher than 2.5. 

Observed results showed that the model can predict the 
compressive strength of Fraxinus mandshurica samples 
(parallel to the wood grain) without having to conduct 
destructive sample testing with a universal testing machine; 
however, the accuracy of the developed models needed to be 
further improved. 
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