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Abstract—Measurements performed on several graphene samples
have shown the presence of a minimum of the flicker noise power
spectral density near the charge neutrality point. This behavior is
anomalous with respect to what is observed in more usual semi-
conductors. Here, we report our explanation for this difference. We
simulate the 1/f noise behavior of devices made of graphene and
of more common semiconductors, through a model based on the
validity of the mass-action law and on the conservation of the charge
neutrality. We conclude that the minimum of the flicker noise at the
charge neutrality point can be observed only in very clean samples
of materials with similar mobilities for electrons and holes.

Keywords—Flicker noise, graphene, silicon, germanium, gallium
arsenide, indium arsenide.

I. INTRODUCTION

G
RAPHENE is a two-dimensional material made up of

one or a few layers of carbon atoms arranged in a

hexagonal lattice; in particular, monolayer graphene consists

of a single layer of carbon atoms, while bilayer graphene of

two coupled layers. Graphene presents quite particular and

interesting properties, which have attracted a large interest

from the academic and industrial community [1]–[16].

Quite recently, an uncommon flicker noise behavior has

been experimentally observed in several graphene samples.

Flicker (or 1/f ) noise is one of the main types of electronic

noise measured in electronic devices, characterized by a power

spectral density inversely proportional to the frequency f .
Flicker noise originates from the presence of impurities (traps)

located inside or near the conducting channel of the considered

device; these impurities, randomly trapping and detrapping

electrons from and into the channel give rise to the random

current fluctuations which represent the noise.

In common semiconductors, flicker noise power spectral

density SI approximately follows the empirical Hooge for-

mula [17], according to which it should be inversely propor-

tional to the number of free charge carriers.

On the contrary, measures of flicker noise in graphene have

shown a more complex scenario [18]–[24]. While in most

graphene samples a Λ-shaped behavior has been observed as

a function of charge density or of Fermi energy, in several

bilayer and suspended monolayer graphene samples an M-

shaped behavior has been found, with a minimum at the

charge neutrality point, in contrast with what is predicted by

the Hooge formula. In the following, we will describe our
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model [25], [26], which explains the experimentally observed

flicker noise behavior on the basis of the conservation of the

mass-action law and of the electroneutrality in the device.

Using this model, we will compare the behavior of graphene

and of more common semiconductors, and we will conclude

that a minimum in the flicker noise power spectral density is

possible only if electrons and holes have approximately the

same mobility, as in the case of graphene, and if potential

disorder in the device is very low.

II. MODEL

Let us first consider a two-dimensional device, with length

L in the transport direction x and width W in the transverse

direction y (and thus with area A = LW ). The macroscopic

current at the terminals of the considered device can be related

to the microscopic phenomena taking place inside the device

through the Ramo-Shockley-Pellegrini theorem [27]–[29]. In

detail, the current i at the terminals of the device can be

expressed as:

i =
1

L

∫

A

q(µnn+ µpp)E dxdy , (1)

where q is the modulus of the elementary charge, E is the

modulus of the electric field (oriented in the x direction), n
and p are the electron and hole surface densities, and µn and

µp are the electron and hole mobilities, respectively. Here, we

have related the current at the terminals to the drift current

inside the device weighting in each point of the device the

contribution of the drift current through a uniform function

(1/L)x̂. In the case of three-dimensional devices, this model

can be generalized substituting the superficial integral with

a volumetric integral and redefining n and p as volumetric

densities.

Assuming the main effect of the trapping/detrapping phe-

nomena to be a variation of electron and hole densities, and

dividing the current fluctuations ∆i by the mean drift current

I = q(µnn+ µpp)EW , we obtain

∆i

I
=

∫

A
q(µn∆n+ µp∆p)E dxdy

LWq(µnn+ µpp)E
≈ µn∆N + µp∆P

µnN + µpP
, (2)

where N =
∫

A
ndx dy and P =

∫

A
p dx dy.

Let us refer the variations to the condition in which the trap

is empty. Following this choice, if the trap is empty ∆N and

∆P are zero. Instead, the values of ∆N and ∆P when an

electron is trapped can be found enforcing the conservation of

the mass-action law and of the charge neutrality of the device,

i.e. solving the system
{

N∆P + P∆N = 0
∆P −∆N = 1

(3)
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(the first equation is obtained differentiating the mass-action

law, the second one enforcing a zero total charge variation).

Solving this system, we obtain ∆N = −N/(P + N) and

∆P = P/(P +N). This means that the charge of the electron

trapped in the impurity is mainly electrostatically screened

by a local reduction of mobile electrons for the energies for

which the electrons are the dominating carriers, by a local

increase of mobile holes for the energies for which the holes

are the dominating carriers, and by a combined action of

the two effects for intermediate energies. Substituting these

expressions inside Eq. (2), we obtain that:

∆i

I
=

1

µnN + µpP

µpP − µnN

P +N
χ (4)

(where χ is a random telegraph process which is equal to

0 when the trap is empty and to 1 when the trap is full).

Therefore, its power spectral density SI is:

SI

I2
=

(

1

µnN + µpP

µpP − µnN

P +N

)2

Sχ , (5)

where (neglecting the contribution of the mean value) Sχ(f)
is a Lorentzian function.

Combining the contribution of several traps, assumed re-

ciprocally independent and with properly distributed time

constants, we obtain [30]

SI

I2
= ξ

(

1

µnN + µpP

µpP − µnN

P +N

)2
1

fγ
(6)

with γ ≈ 1 (i.e., the characteristic 1/f dependence of flicker

noise).

The spectrum vanishes when µpP − µnN = 0. In the

particular case in which µn = µp, this represents the charge

neutrality point and the spectrum is symmetric with respect to

it. Otherwise, the spectrum is asymmetric, with a larger value

where the carriers with higher mobility dominate.

Also the presence of potential disorder, deriving from the

electrostatic effect of randomly located charged impurities,

has a large impact on the noise spectrum. Indeed, N and P
depend on the position of the Fermi energy with respect to the

local value of the potential. The random spatial distribution of

the potential is included in the calculation by averaging the

spectrum over a Gaussian distribution of energies around the

average value EF :

〈SI〉
I2

=
ξ

fγ

∫ +∞

−∞

(

1

µnN(ε) + µpP (ε)
·

· µpP (ε)− µnN(ε)

P (ε) +N(ε)

)2
1√
2πσ2

e−
(ε−EF )2

2σ2 dε . (7)

The standard deviation σ represents a measure of the strength

of the potential disorder, and thus depends on the quantity and

distribution of the charged impurities, and on the screening

efficiency of the material.

III. RESULTS

We have first simulated the flicker noise behavior of two-

dimensional devices based on monolayer graphene and on bi-

layer graphene with Bernal stacking. In graphene, the electron

and hole mobilities coincide, and thus in the relations of the

previous section we can consider µn = µp = µ.

The carrier concentrations are computed through an energy

integration of the occupied states in the conduction band, and

of the empty states in the valence band, respectively [31]:

n =

∫

∞

0

DOS(E)f(E − EF ) dE , (8)

p =

∫ 0

−∞

DOS(E)(1− f(E − EF )) dE , (9)

Here, f is the Fermi-Dirac occupation function, while DOS
is the density of states, which is obtained from the dispersion

relations of graphene. These last relations are approximately

symmetric with respect to the Dirac points (i.e. the degen-

eration points between the valence and the conduction band,

where we consider E = 0).
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Fig. 1. Normalized spectrum (〈SI〉/I
2)(fγ/ξ) as a function of the Fermi

energy EF , obtained for monolayer graphene at 300 K. The curve for σ = 0
has been obtained in the absence of potential disorder, while the other curves
show the effect of a potential disorder with a Gaussian distribution with σ =
15, 30, 45, and 60 meV.
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Fig. 2. Normalized spectrum (〈SI〉/I
2)(fγ/ξ) as a function of the Fermi

energy EF , obtained for bilayer graphene at 300 K. The curve for σ = 0 has
been obtained in the absence of potential disorder, while the other curves show
the effect of a potential disorder with a Gaussian distribution with σ = 15,
30, 45, and 60 meV.
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In Figs. 1 and 2, the curves with σ = 0 represent the

behavior of the flicker noise power spectral density as a func-

tion of the Fermi energy for monolayer and bilayer graphene,

respectively, at 300 K without including the effect of potential

disorder. As we expected, the spectrum is symmetric with

respect to the charge neutrality point, i.e. to the Dirac points,

where it vanishes. Indeed, in this point (where q(P −N) = 0)
∆N = −∆P and thus the current fluctuations vanish (see

Eqs. (2) and (5).

In Figs. 1 and 2 we report also the flicker noise power spec-

tral density as a function of the Fermi energy for monolayer

and bilayer graphene, respectively, at 300 K when the effect of

potential disorder is included in the calculation. Three different

nonzero values for the standard deviation σ are considered:

σ = 15, 30, 45, and 60 meV. We notice that increasing the

potential disorder (i.e. increasing σ), we have a smoothing

of the spectrum behavior, with a progressive reduction, and

finally disappearance, of the minimum. In particular, due to

the different dispersion relations, bilayer graphene is able to

electrostatically screen the effect of charged impurities better

than monolayer graphene. Therefore, for a similar impurity

distribution, smaller values of σ should be considered for

bilayer graphene with respect to monolayer graphene. This

would explain why experiments in bilayer graphene often

show a minimum of the spectrum at the charge neutrality

point, while in monolayer graphene such a minimum is rarely

observed, apart in the case of suspended graphene (where the

electrostatic effect of the charged impurities is small).

Then, we have analyzed the case of three-dimensional

devices fabricated in more common semiconductors, which

present a different mobility for electrons and holes (here, we

report results for silicon, germanium, gallium arsenide, and

indium arsenide). In this case, we have adopted a semiclassical

modelization for the carrier concentrations:

n = NC e
−

EC−EF

kBT , p = NV e
−

EF −EV

kBT , (10)

where NC and NV are the effective densities of states in

the conduction and valence bands, respectively, EC and EV

the conduction and valence band edges, kB the Boltzmann

constant, and T the absolute temperature.

The parameters used for the four considered materials are

reported in Tables I and II [32].

In Figs. 3, 4, 5, and 6, the curves with σ = 0 represent the

flicker noise power spectral density behavior as a function of

the Fermi energy at 300 K obtained for silicon, germanium,

gallium arsenide, and indium arsenide, respectively, in the

absence of potential disorder. The spectrum vanishes for the

energy value for which µpP − µnN = 0 (that in this case

does not correspond to the charge neutrality point) and is

not symmetric with respect to this point, because µn and

µp differ. This asymmetry is more visible in the cases of

gallium arsenide and indium arsenide, where the difference

between the electron and hole mobilities is larger. Due to

the asymmetry, in this case the presence of the minimum

(where the spectrum vanishes) is much less prominent than

in graphene: in gallium arsenide and in indium arsenide, in

particular, it can hardly be distinguished from the region for

smaller Fermi energies, where the flicker noise power spectrum

density is lower.

The other curves of Figs. 3, 4, 5, and 6 show the flicker noise

power spectral density behavior as a function of the Fermi

energy at 300 K obtained for silicon, germanium, gallium

arsenide, and indium arsenide, respectively, when the effect of

potential disorder is included in the simulations (with σ = 15,
30, 45, and 60 meV). It clearly appears that, in these materials,

the minimum of the spectrum does not survive in the presence

of even a small degree of potential disorder, as experimentally

observed [33].

TABLE I
VALUES OF THE EFFECTIVE DENSITIES OF STATES, OF THE ENERGY GAP,

AND OF THE MOBILITIES USED FOR SILICON AND GERMANIUM.

Si Ge

NC (cm−3) 2.82× 1019 1.0× 1019

NV (cm−3) 1.04× 1019 5.0× 1018

EG (eV) 1.12 0.66

µn (cm2/(V s)) 1400 3900

µp (cm2/(V s)) 450 1900

TABLE II
VALUES OF THE EFFECTIVE DENSITIES OF STATES, OF THE ENERGY GAP,
AND OF THE MOBILITIES USED FOR GALLIUM ARSENIDE AND INDIUM

ARSENIDE.

GaAs InAs

NC (cm−3) 4.7× 1017 8.7× 1016

NV (cm−3) 7.0× 1018 6.6× 1018

EG (eV) 1.42 0.35

µn (cm2/(V s)) 8500 40000

µp (cm2/(V s)) 400 500

IV. CONCLUSION

Comparing the flicker noise behavior of graphene and of

more common semiconductors, such as silicon, germanium,

gallium arsenide, and indium arsenide, we conclude that the

presence of a minimum of the flicker noise power spectral

density around the charge neutrality point should be observable

only in devices made up by materials with approximately

identical electron and hole mobilities, like graphene, and with

a very low level of potential disorder. Otherwise, we do not

expect such a minimum to appear. This would explain the

difference between the 1/f noise behavior measured in many

graphene samples and that of more ordinary semiconductors.
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Fig. 3. Normalized spectrum (〈SI〉/I
2)(fγ/ξ) as a function of the Fermi

energy EF , obtained for silicon at 300 K. The curve for σ = 0 has been
obtained in the absence of potential disorder, while the other curves show the
effect of a potential disorder with a Gaussian distribution with σ = 15, 30,
45, and 60 meV.
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Fig. 4. Normalized spectrum (〈SI〉/I
2)(fγ/ξ) as a function of the Fermi

energy EF , obtained for germanium at 300 K. The curve for σ = 0 has been
obtained in the absence of potential disorder, while the other curves show the
effect of a potential disorder with a Gaussian distribution with σ = 15, 30,
45, and 60 meV.
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