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Abstract—In probability and statistics, reliability 

theory and survival analysis, there exists a 20-year-old 
dilemma, initially raised by L.M. Leemis, on whether the 
cumulative or the accumulated hazard function in the 
discrete domain is more appropriate to be used in 
various types of applications. Here, we propose that 
priority should be given to the accumulated hazard 
function. 
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I. INTRODUCTION 

The cumulative hazard function (also known as the 
integrated hazard function or the hazard potential) is one of 
the several functions describing lifetime. It is a non-
decreasing function of time which does not have 
probabilistic connotation, meaning there is no law of 
probability that leads to the cumulative hazard function. Yet 
it plays a key role in reliability and survival analysis. In the 
discrete domain two such functions are recognized, the 
cumulative and the accumulated hazard function. 

The first mention of the dilemma of defining the 
cumulative hazard function in the discrete domain was, as far 
as we are aware, introduced by Leemis in [1]. He underlines 
that two possible, but different choices exist. The first 
definition (cumulative) parallels the relationship established 
in the continuous domain while the second definition 
accumulates the hazard function as it evolves over time. 
Leemis also underlined that two functions are very close 
when probability mass function values are small. However, 
the example he supplied he applied the first definition. 

Lawless [2] also noted that by analogy with continuous 
case the cumulative hazard function could be defined in two 
different ways in the discrete domain. In a section of his 
book in which he introduces a way to unify continuous, 
discrete and mixed lifetime distributions in one framework, 
he adopted the second definition. 

Kemp [3] repeats the dilemma recognized by Leemis and 
defines the cumulative Λ௧ , and the accumulated hazard 
function 𝐻௧, in the following manner: 

Λ௧ = −𝑙𝑛(𝑅௧)     (1) 

𝐻௧ = ∑ ℎ
௧
ୀ      (2) 

where 𝑅௧  is the reliability function and ℎ  is the hazard 
function. 

Kemp also establishes the relationships between two 
functions in the following way: 

Λ௧ = − ∑ 𝑙𝑛൫1 − 𝐻 + 𝐻ିଵ൯௧ିଵ
ୀ    (3) 

𝐻௧ = ∑ ൫1 − 𝑒ΛೕିΛೕశభ൯௧
ୀ     (4) 

and emphasizes that Λ௧ ≠ 𝐻௧ . 
Lai and Xie [4] also emphasize that 𝐻௧ is not equivalent to 

Λ௧  and underline that the mentioned nonequivalence has 
been noted by several authors. Also they noted that this fact 
has prompted some authors to seek for an alternative 
definition of the hazard function. Lai and Xie dedicate a 
chapter of their excellent book to this topic by quoting and 
explaining to some extent the works of Roy and Gupta [5], 
Bracquemond et al. [6] and Xie et al. [7]. 

Rinne [8] iterates Leemis’s and Kemp’s findings and 
establishes the complete set of equations describing 
relationships between the most popular discrete lifetime 
representations such as the probability mass function, 
reliability function, hazard function, cumulative hazard 
function, accumulated hazard function and the mean residual 
life function. Rinne stresses the alternative definition of the 
hazard function called the pseudo-hazard rate given by Roy 
and Gupta [5]. Also Rinne makes a note on Cox and Oakes 
[9] somewhat different definition of the cumulative hazard 
function for discrete lifetimes and concludes that if ℎ௧  is 
small, the Cox and Oakes definition is reducing 
approximately to 𝐻௧. 

II. DILEMMA FORMULATION 

It should be summarized here that both previously 
mentioned discrete definitions recognized by Leemis and by 
other authors afterwards, are based on the analogy to the 
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continuous domain. The first definition is based on the 
relationship analogy (logarithm) while the second definition 
is based on the mathematical operation analogy (switching 
integration with summation) as it is shown in Table I. 

Table I. Continuous vs. discrete definitions 

Continuous domain Discrete domain 

𝐻(𝑡) = −𝑙𝑛[𝑅(𝑡)] Λ௧ = −𝑙𝑛(𝑅௧) 

𝐻(𝑡) = න ℎ(𝜏)
௧



𝑑𝜏 𝐻௧ =  ℎ

௧

ୀ

 

In the continuous domain there is a unique cumulative 
function no matter if it is expressed by the reliability 
function, 𝑅(𝑡), or by the hazard function, ℎ(𝑡). It means that 
in the continuous domain the following identity is valid: 

−𝑙𝑛[𝑅(𝑡)] = ∫ ℎ(𝜏)
௧


𝑑𝜏    (5) 

In the discrete domain this is not so. Namely, functions Λ௧ 
(cumulative) and 𝐻௧ (accumulated) are somewhat different as 
shown by Kemp: 

−𝑙𝑛(𝑅௧) ≠ ∑ ℎ
௧
ୀ     (6) 

The Leemis dilemma may be formulated by posing the 
following question: Which of the two discrete hazards 
functions, cumulative or accumulated, is more credible to be 
used in various types of applications? The question may be 
asked in the following way as well: Which one of two 
discrete definitions is more similar to the continuous case? 

III. GENERAL CONSIDERATIONS 

The difference between Λ௧  and 𝐻௧  starts at the very 
beginning, with 𝑡 = 0. At point 𝑡 = 0 the following is valid 
for the two functions: 

 Λ = 0 because 𝑅  equals 1 by definition just as in the 
continuous domain, and 

 𝐻 = ℎ where ℎ may take values between 0 and 1. This 
is because the hazard function in the discrete domain is 
defined strictly as conditional probability while in 
continuous domain the hazard function has an 
approximate meaning of conditional probability, 
Singpurwalla [10]. 

Generally, Λ௧  increases faster than 𝐻௧  with t and after 
some time Λ௧  exceeds 𝐻௧ . This means that exists a virtual 
point where two functions cross. Relation between Λ௧ and 𝐻௧ 
depends upon the value of 𝑝. For small enough 𝑝, Λ௧ and 𝐻௧ 
after the initial dichotomy, become very close, meaning the 
virtual cross-point appears much later. Higher the value of 𝑝, 
the sooner the virtual cross-point appears, after which Λ௧ and 
𝐻௧  diverge. 

The above statements are illustrated in the example of the 
geometric distribution. For this distribution the virtual cross-
point, 𝑇௩ , can be calculated by applying the following 
formula: 

𝑇௩ = −


ା(ଵି)
    (7) 

which is displayed in Fig. 1. 

 
Fig. 1 Virtual cross points of the geometric distribution 

It is obvious from the above that for small 𝑝, 𝑇௩ occurs 
at higher values (Λ௧ and 𝐻௧ are close) while for high 𝑝, 𝑇௩ 
occurs at lower values (Λ௧ and 𝐻௧  diverge). 

Very similar results are obtained for the discrete Weibull 
distribution with shape parameter 𝛽. Fig. 2 and Fig. 3 show 
hazard functions with 0 < 𝛽 < 1  (non-increasing hazard 
function) and 𝛽 > 1 (non-decreasing hazard function) of the 
Weibull distribution, respectively. While for Λ௧  analytic 
form exists, 𝐻௧ is obtained numerically. 

 
Fig. 2 Λ௧ (blue) and 𝐻௧ (red) functions associated to the discrete Weibull distribution with 𝛽 = 0.5 and 𝑝 = 0.1 (left panel), and with 

𝛽 = 0.5 and 𝑝 = 0.8 (right panel) 
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Fig. 3 Λ௧ (blue) and 𝐻௧ (red) functions associated to the discrete Weibull distribution with 𝛽 = 1.5 and 𝑝 = 0.1 (left panel), and with 

𝛽 = 1.5 and 𝑝 = 0.8 (right panel) 
 

From the above figures it is evident that in case of small 𝑝 
and non-increasing ℎ(𝑡) functions Λ௧ and 𝐻௧ are close except 
at 𝑡 = 0 (Fig. 2, left panel). Contrary, in case of high 𝑝 and 
non-decreasing ℎ(𝑡) two functions diverge significantly (Fig. 
3, right panel). 

IV. MEMORYLESS DISTRIBUTIONS 

Here we include a short discussion on the major properties 
of exponential and geometric distributions, which will 
become important for the main result of the paper. It is well-
known that the exponential distribution is the only 
memoryless continuous distribution and the geometric 
distribution is the only memoryless discrete distribution. The 
primary effect of the memoryless property is that the hazard 
function is constant in time. Consequently, for these two 
distributions the following applies: 

ℎ(𝑡) = 𝜆      (8) 

ℎ௧ = 𝑝      (9) 

where 𝜆 > 0  is the scale parameter of the exponential 
distribution and 0 < 𝑝 ≤ 1 is the success probability of the 
geometric distribution. 

We involve in this discussion the continuous and discrete 
hazard functions in average, ℎ∗(𝑡) and ℎ௧

∗ . This function is 
usually abbreviated in reliability literature as FRA (failure 
rate in average). 

In the case of exponential distribution ℎ∗(𝑡)  strictly 
follows ℎ(𝑡) function. This is because ℎ∗(𝑡) is defined as: 

ℎ∗(𝑡) =
ு(௧)

௧
     (10) 

The substitution (see Table I.) gives the following: 

ℎ∗(𝑡) =
ି[ோ(௧)]

௧
=

ି ൣషഊ൧

௧
= 𝜆 = ℎ(𝑡)  (11) 

where 𝑅(𝑡) = 𝑒ିఒ௧  is the reliability (survivor) function of 
the exponential distribution. 

We further claim that the effects of the memoryless 
property are unique and irrespective to the domain 

considered, continuous or discrete. This claim implies that in 
case of the geometric distribution ℎ௧

∗  function must strictly 
follow ℎ௧  function as well. It is easy to show that such 
condition satisfies 𝐻௧  and not Λ௧  function. Namely, for the 
geometric distribution, 

𝑝௧ = 𝑝(1 − 𝑝)௧; 𝑡 = 0,1,2,3 …   (12) 

by applying equations given in Table I. the following is 
obtained: 

ℎு

∗ =
ு

௧ାଵ
=

∑ 
ೕసబ

௧ାଵ
=

(௧ାଵ)

௧ାଵ
= 𝑝 = ℎ௧  (13) 

ℎΛ

∗ =
Λ

௧ାଵ
=

ି (ோ)

௧ାଵ
=

ିൣ(ଵି)൧

௧ାଵ
≠ ℎ௧   (14) 

and for the shifted geometric distribution, 

𝑝௧ = 𝑝(1 − 𝑝)௧ିଵ; 𝑡 = 1,2,3 …   (15) 

the following applies: 

ℎு

∗ =
ு

௧
=

∑ 
ೕసభ

௧
=

௧

௧
= 𝑝 = ℎ௧   (16) 

ℎΛ

∗ =
Λ

௧
=

ି(ோ)

௧
=

ିൣ(ଵି)షభ൧

௧
≠ ℎ௧   (17) 

V. WEIBULL DISTRIBUTION 

We apply the same approach to Weibull continuous and 
discrete distributions. The difference is that ℎ∗(𝑡) function by 
its shape not strictly but faithfully follows ℎ(𝑡)  function. 
Term “faithfully follows” in this context means that both 
functions start at the same point and approach the same limit. 
Also we find that the ratio of two functions is fixed and equal 
to 𝛽 (shape parameter of the Weibull distribution): 

ℎ(௧)

ℎ∗(௧)
= 𝛽      (18) 

For the continuous Weibull distribution this is shown in 
Fig. 4. It should be noted that ℎ∗(𝑡)  function has slower 
decline (left panel), i.e. has slower growth (right panel) when 
compared to ℎ(𝑡). 
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Fig. 4 ℎ(𝑡) (red) and ℎ∗(𝑡) (blue) functions of the continuous Weibull distribution with 𝛽 = 0.5 and 𝜆 = 1 (left panel), and with 𝛽 = 1.5 and 
𝜆 = 1 (right panel) 

 
For the discrete Weibull distribution results are shown in 

Figures 5 and 6. Note that in this case the ratio 
ℎ

ℎಹ
∗  is very 

close to 𝛽 while the ratio 
ℎ

ℎΛ
∗  differs from 𝛽 significantly. 

 

 
Fig. 5 ℎ௧ (red), ℎΛ

∗  (blue) and ℎு

∗  (black) functions of the discrete Weibull distribution with 𝛽 = 0.5 and 𝑝 = 0.1 (left panel), 
and with 𝛽 = 0.5 and 𝑝 = 0.8 (right panel) 

 
Fig. 6 ℎ௧ (red), ℎΛ

∗  (blue) and ℎு

∗  (black) functions of the discrete Weibull distribution with 𝛽 = 1.5 and 𝑝 = 0.1 (left panel) 
and with 𝛽 = 1.5 and 𝑝 = 0.8 (right panel) 

 
Based on Fig. 5 and Fig. 6 for the discrete Weibull 

distribution the following may be concluded: 

 for the non-increasing case of ℎ௧ (0 < 𝛽 < 1) and small 
𝑝, after the initial dichotomy, the functions ℎΛ

∗  and ℎு

∗  

become very close and they may be approximated (Fig. 5, 
left panel) 

 in other cases the difference between two functions 
become more significant. In particular in the case of non-
decreasing ℎ௧ (𝛽 > 1) and high value of 𝑝. In such a case 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.23 Volume 14, 2020

ISSN: 1998-4464 152



(Fig. 6, right panel), function ℎΛ

∗  gets values above 1 
which in the discrete domain make no sense. 

Therefore for the discrete Weibull distribution, we prefer 
usage of the accumulated hazard function instead of the 
cumulative hazard function. 

VI. CONCLUSION 

The analysis presented here shows that a priority in the 
discrete domain should be given to the accumulated hazard 
function, as 𝐻௧  function has more similar properties to the 
cumulative hazard function as defined in the continuous 
domain. 

By applying 𝐻௧  function, the same memoryless effect is 
obtained in discrete domain (geometric distribution) as in 
continuous domain (exponential distribution). The similarity 
criterion also favors the accumulated hazard function in case 
of the discrete Weibull distribution. In the case of small 𝑝 
and non-increasing hazard function ( 0 < 𝛽 < 1 ) of the 
Weibull distribution, the two functions provide almost 
identical information, except at 𝑡 = 0 . In other cases the 
accumulated hazard function seems to be more credible. If 
the results for the discrete Weibull distribution can be 
assumed representative, this shows that defining the 
cumulative hazard function based on the analogy between 
mathematical operations (switching integration with 
summation) is likely correct. 

Finally, these examples show a potential to resolve the 
Leemis dilemma. We are also confident that the alternative 
definitions of discrete hazard functions, such as pseudo-
hazard rate, are not needed for this purpose. 
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