INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2020.14.30

Volume 14, 2020

Two Optimal Measurements of Normality for Finite
Set of Discrete Data

Ray-Ming Chen

Abstract—When one applies statistical models, he usually makes
the assumption that the data or error come from a normal distribution.
In order to verify or to estimate the parameters of the normal
distribution, the typical approaches would be normality tests and
model selections. In this article, we come up with two methods
that could fit the data via normal distribution and measure the
fitness. This would serve an alternative for model selection. Unlike
statistical approaches - parametric or non-parametric statistics - we
use approximation approaches to measure the optimal similarity
between a given data set and its induced normal distributions and
then search for the optimal normal distribution that has the best
similarities. The degree of similarity is defined by two approaches:
the overlapped area and the arccos function. The idea is to look
at the patterns between data set induced step function and sampled
normal distributions in the form of approximated step probability
density functions. Our analytical approach could measure the degree
of normality, or the similarity with normal distributions, which could
then used in pioneering findings for related statistical inferences.

Keywords—Normality, Step Functions, Sampling, Similarity, arc-
cos

I. INTRODUCTION

There are two main issues regarding the normality of a
distribution: normality test and estimation of parameters for
normal distribution (or model selection). There are many
theories in dealing with normality test: QQ-plot, Bayesian
statistics, frequencist test (Razali, 2011), entropy test (Vasicek,
1976). There are also other statistical approaches to test the
normality of a set of data (P., 2001; Jean, 2003). Whether
a set of data could be fitted via a normal distribution is an
important issue. It has wide applications and complications.
However, normality test does not give us the exact parameters
of the distribution. Our concern lies in estimation of the exact
parameters of the normal distribution that fits the data most.
The well known approach for such problem is Maximum
Likelihood Estimation, which also has a wide application
(D. 2019). As for the optimal estimation of the parameters,
the optimal parameter for mean is the sampled mean and
the optimal parameter for variance is the population variance
(John, 1997; Russell, 2011). It seems the problem has been
solved. However, if one checks its priori assumption: the
observed data are all assumed to be independent distribution,
he would know the unrealistic part. Such assumption is over-
simplified. On the other hand, if one takes the dependency
between random variables into consideration, then the optimal
parameters for the set of multivariate normal distribution
could only be obtained through a lengthy numerical iterative
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computational algorithms - for example, Gradient descent
method, Newton—Raphson method, Davidon—Fletcher—Powell
formula and so on (Nocedal, 2006; Fletcher, 1987). All these
algorithms too complex and have less intuitive meaning. In
this article, we put up with a method that could reduce
such complex and enhance the intuitive sense of normality.
The advantage for our approach is that it is easy to apply
and much intuitive in interpretation. The disadvantages are
it is easily disturbed by the data distribution and a sound
justification of the goodness of fit. As for the measurement
of normality, we put forward two measurements that could
directly measure the normality, or the degree of similarity
between a data set and normal distributions. The idea lies
in treating the given data set as part of the approximation
processes (M., 1981). If one looks at Riemann integral (Halsey,
2017), the way we calculate the integral of an function is
applying approximation via step functions. Here we adopt the
same algorithm by assigning a step function for the given data
and by sampling the normal distribution to yield some finite set
of points and then use these points to form step functions. Then
we compare the similarity between the data set induced step
function and the sample-induced step functions. We could then
choose the normal distribution that would yield the optimal
similarity for the given data set. The guidelines of the whole
mechanism could refer to Section Henceforth, there are
several characteristics of this article.

o Firstly, unlike MLE or other statistical method, our
estimation of parameters for a normal distribution does
not depend on the assumption that each samples are
independent;

o Secondly, we directly offer two methods to compute the
similarities between data and the fitted normal distribu-
tion;

o Thirdly, our approach offers a much intuitive interpreta-
tion of the estimation of the parameters.

o Lastly, it could be used to observe the independence of
data when one compares the computed normal distribu-
tion and the MLE model selection.

II. MAXIMAL AND MINIMAL FUNCTIONS
A. Notations and Basic Definitions

Suppose
v = (’Ul,UQ, "'7,Um717v7n7(0m+1)7

w = (wlu w2, ..., Wn—1, wnywnJrl)
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are two ascending vectors, i.e.,
V1 <V < < Um—1 < Uy < Umsi,
W <wg < - < Wpo1 < Wy < Wpt1-

For any vector E we use |E| to denote the length of E for
example, |0] = m+ 1. Let A¥; = v;41 — v;. Define first-order
difference vector of ¥ by
AT = (AT, ATs, -+ - AUpy—1, AUp,)
For example, if ¥ = (1,1.2,2.6, 3.0,3.4,4.1), then
AT =(0.2,1.4,0.4,0.4,0.7).

Let o denote the Euclidean inner product. For any vector k,
we use Ej to denote the j-th element of k. For any arbitrary
real finite set D C R, we use av(D) to denote its ascending
vector. For example if

D={-1,-5,0,8—-6.2,1.6,2.8,0.1},

then av(D) (-6.2,—5,-1,0,0.1,1.6,2.8,8). If D
has some repetitions, we use its ascending multi-set
(Blizard,1991;Singh, 2007) (or M S(D)) form

D= (1) (a2) - (o),

where o, a0, - o, € R are the elements with the relation
o < ag < -+ < oy, and where i1,49,---%, € N are the
multiplicities of the elements.

Example I1.1. Suppose a data set
D ={-2.1,32,8,—2.1,0,-2.1,3.2,-4,2.4, —6,2.4,10,0,1}.
Then D = (—6)1(—4)(—2.1)2(0)%(1)1(2.4)%(3.2)2(8) 1 (10)*.
Let S(¥) denote the unordered set of 7, i.e.,
S(0) = {v1,v2, -, V-1, Um, Um+1}-
Let Ming (i) denote the i-th minimal element in a set K.
Example I1.2. Suppose a given set
K = {12,3,9,1,8,0, 10,6}

Then Ming(1) 0, Mingk(2) 1, Mink (3)
3,MZ?’lK(4) = 6,MinK(5) = S,MZ’ILK(ﬁ) = 9,MinK(7)
10, Ming (8) = 12.

Let H = S(¢) U S(w). Let |H| denote the size of set H.

B. Step and Step Probability Matrix

Definition ILI.1. (vector intersection) Define a vector

AT = (ming (1), ming (2),--+),ming (|H|-1), ming (| H|).
Example I1.3. Suppose there are two ascending vectors

v =(-4.1,-3.3,-1.7,0.9,1.6,2.8),
(-5.1,-3.3,-3.1,—-2.1,1.9,2.1,2.8,4.2).

—

Then one could compute the intersection via ¥ A W
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A = (1.0,0.8,0.2,1.0,0.4,2.6,0.7,0.3,0.2,0.7, 1.4).

Next, we associate each finite matrix M with a step function
and vice versa as follows:

Definition IL.2. (Step Probability Matrix) M is a Step Prob-
ability Matrix (or SPM) with size m if and only if

v V1
M=, =
r 1
where ' is an ascending vector; where each ry, 79, - -7, > 0;
and where

V2
T2

Um Um+1
0 )

Um—1

T"m—1 T'm

AV e (r1,r9,  Tym_1,"m) = L.

Each step probability matrix M is identified with a
probability density function fp; : R — [0, 1] as follows:

0 if 2 € (—o0,v1);

1 if © € [v1,v2);

r9 if © € [vg,v3);
fu(z) =

Tme1 if 2 € [Um_1, 0m];

T if € [Um, Vmt1);

0 if € [Umy1, +00).

We use Dy = ¥ to represent the endpoints of the intervals in
the domain of fj; (or f, if M is understood from the context).
Moreover, throughout this article, we use a step matrix M and
its probability density function f); interchangeably.

Definition I1.3. (Algorithm) Given a finite set of real-valued
data D = (7)™ (a2)™ - ()", one could convert it into a
step probability matrix f € SPMp;; via

(65} (65 Qyp Qp41
f - i1 12 ip ’
Adei Adei Adei
where & = (a1, @9, - ,qp,apy1) and @ = (i1,49,- -+ ,ip)
and where a1 = a, + ¢, o, -+, p, 01,42, -+ ,4p) for

some positive real function ¢. An explicit ¢ could refer to
Definition

Definition I1.4. Let SPM,, 1 denote the set of all the step
probability matrices with size m + 1, i.e., SPM,,41 =

g s = = e < w < <
A < Qpy13T1,72, T, 2 0, 'm+1 = 0; Ad e
(r1,72, " Tm—1,Tm) = 1}.

Let SPM denote the set of all the finite step probability
matrices, i.e., SPM = U SPM,,. This set basically rep-

m=1
resents all the candidates of approximated probability density
function via step functions.

C. Some Proofs

(-5.1,-4.1,-3.3,-3.1,-2.1,-1.7,0.9,1.6,1.9,2.1,2.8,4.2). Claim 1. f = a1 Q2 CT‘p Qp+1 .
Moreover’ Ai&lo? Ai(éo; Al(;')o; 0
AY = (0.8,1.6,2.6,0.7,1.2), SPMp41. ) ‘ y
ISSN: 1998-4464 198
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Proof: It suffices to show

Ade(—L _ 2 .. y_q
Adei Adei Adei
This follows immediately from the definition. |

Definition ILS. (Step Matrix) M is a Step Matrix (or SM)
with size m if and only if

v v v
M= Y = | v
T L To

where ¥ is an ascending vector and each 71,72, -1y, > 0.

Um—1
T"m—1 T'm

Um vm+1

0 )

Similarly, let SM,,11 denote the set of all the step matrices
with size m + 1 and SM denote the set of all the finite step
matrices. Obviously, SPM,,,+1 € SM,,,+1 and SPM C SM.
The area of a given step function f is defined in the following:

Definition IL.6. Define Area : SM — R* by

1 T2 "m—1 T'm 0

= (AU]_,A'UQ. e 7Avm—17A’Um) L4 (rlar27 e

v (% st Up— v v
Area( |:7,1 2 m—1 m m+1:|)

7Tm—1arm)-
Example I1.4. Supppose a step function
f= -32 -21 07 15 39 5.0
~10.02

0.10 0 0.02 0.08 O
Then by the above definition, Area(f) =
(1.1,2.8,0.8,2.4,1.1) ¢ (0.02,0.10,0,0.02, 0.08) = 0.438.

Hence this f is not a probability density function. Of course, it
could be converted into a probability function by normalization
as long as Area(f) < oo.

Let f,g € SM be arbitrary. We define two operators
max,min : SM x SM — SM as follows:

Definition IL.7. Define maz(f,g) : R — RT by

maz(f,g)(x) = maz{f(z),g(x)};
similarly, define min(f,g) : R — R by

min(f,g)(x) :=min{f(z), g(x)}.

Observe that neither maxz nor min operation is closed
over SPM . Nonetheless both are closed over SM, which is
sufficient to our purpose.

Claim 2. max and min are closed over SM.

Proof: Let f,g € SM be arbitrary. Then both Dy and
D, are finite, i.e., the ranges of both functions are also finite.
Henceforth, the ranges of both max(f,g) and min(f,g) are
finite, i.e., mazx(f,g), min(f,g) € SM. [

Definition IL.8. (vector-based floor function) For each ascend-
ing vector U, we define a floor function | |7 : [v1, V] — S(7)
by |z]y = v; iff only if v; <2 < vjq1.

For example, if ¢ = (—3.5,—2.1,0.8,1.9,2.9,5.8), then
|[—0.9]57 = —2.1 and [5.5]|5 = 2.9.

ISSN: 1998-4464
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Lemma IL.1. (max, min functions) Suppose f,g € SM.
Suppose
Df = (Ul,UQ, e vm7vm+1)7

Dg = (wla Wz, Wn, wn+1);

Dj A Dy = (ty, g, ,tn).
Then one has max(f,g) =
31 to th—1 th:|}
(maz(f,g)(t1)  maz(f,g)(t2) maz(f,g)(th-1) 0

and min(f,g) =

t1 to th—1 th:|
imin(f, g)(t1) min(f,g)(t2) min(f,g)(th—1) 0

Proof: By Claim | we have max(f,g),min(f,g) €
SM. Since each ¢; reflects the change of difference between
f and g, one only has to calculate the values at each ¢; as the
result claims. [ ]

For the convenience of computation, we further derive an
explicit formula as follows:

Corollary 1. maz(f,g) =

tq th—1 th]
{fF (L)) g(lta])} {f(ltn=a]), 9([th—a D)} 07
and min(f,g) =
[ t1 th-1 th]
{f (L)), gLt ]) ) {f(ltn—1D), 9([tn—1])}s 07

where the superscribed star denotes the maximum function and
the subscribed star denotes the minimum function.

Proof: By Lemma we could derive that
maz(f,9)(t:) = maz{f(t:), g(t:)} = maz{f([t:]), 9([t:])}

and similarly, we have

min(f, 9)(t;) = min{ f(t), g(t:)} = min{ f([t:), g(|t:])}-
Hence the result follows immediately. [ ]
Example IL.5. Suppose a given real multi-set
D; = (—2.4)'(—1.8)%(0.5)%(1.3)1(2.6)%(4.5)1(6.4)*,
Dy = (—3.2)%(—2.1)%*(—=1.7)3(0.5)"(2.1)*(3.2)" (4.3)3(5.4)2
(6.2)%(7.1)"(7.8)2.
Then i = (1,3,2,1,2,1,1,0). For simplicity, let us take
Plar, g, -+ gy iy, g, - oo i7) = ar — ag = 1.9.

One has & = (—2.4,—1.8,0.5,1.3,2.6,4.5,6.4,8.3). By the
algorithm mentioned in Remark [[I.3] we could associate D,
with a step probability matrix f; as follows:

fl= —24 —1.8 0.5 1.3 2.6
17 10.0556  0.1667 0.1111 0.0556 0.1111

i

4.5 6.4 8.3
0.0556 0.0556 0O

199



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2020.14.30

and similarly, we could associate D, with a step probability
matrix fo as follows:

£y = -32 =21 -1.7 0.5 2.1 3.2 4.3
27 10.078 0.078 0.118 0.039 0.157 0.039 0.118
5.4 6.2 7.1 7.8 85
0.078 0.078 0.039 0.078 0 |-

Dy = (—2.4,-1.8,0.5,1.3,2.6,4.5,6.4,8.3)
Dy, = (-3.2,-2.1,-1.7,0.5,2.1,3.2,4.3,5.4,6.2,7.1,7.8, 8.5).
Dfl A sz =
(-3.2,-2.4,-2.1,-1.8,-1.7,0.5,1.3,2.1,2.6,3.2,4.3,4.5,

5.4,6.2,6.4,7.1,7.8,8.3,8.5).

o) = [ 732 24 —21 -18 —1.7
Martye, 12) = 10,078 0.078 0.078 0.1667 0.1667
0.5 13 21 26 32 43 45
0.1111 0.0556 0.157 0.157 0.1111 0.118 0.118
54 62 64 71 7.8 83 85
0.078 0.078 0.078 0.0556 0.078 0.078 0
and
(o ) = |32 24  —21 —18 -1.7
ML J2) =10 0.0556  0.0556 0.078 0.118
05 1.3 21 26 32 43 4.5
0.039 0.039 0.0556 0.1111 0.039 0.1111 0.0556
5.4 6.2 64 71 78 83 85
0.0556 0.0556 0.0556 0.039 0.0556 0 0 |°

III. SAMPLING A NORMAL DISTRIBUTION

In order to compare the similarities between a data-derived
SM and a normal distribution, we need to sample the normal
distribution. Given a finite set of numerical data D, we would
like to find the optimal normal distribution that would fit best
for this data. If one looks at Figure [I] there are two step
functions f and g, where f is a D;-induced step matrix and g
is a Do-induced step matrix. Obviously f fits better than g does
with respect to standard normal distribution Norm(z,0,1).
On the other hand, the right-hand-side figure shows that with
proper sampling, a step probability density function could be
applied to approximate the standard normal distribution.

0 if & € (—00,—2.4);
0.2 ifze[-24,-1.3);
03  ifze[-1.3,-11);
0.35  ifxe[-11,0.1);
90 =02 ifre(01,18)
0.35  if a € [1.8,2.5);
0.25  ifz e [2.5,3);
0 if € [3,00).
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0 if € (—o0, —2);
N(-2,01)=00540  ifze (-2 —15)
N(-15,0,1) = 0.1295  if z € [~1.5,~0.8);
N(—0.8,0,1) = 0.2897  if x € [-0.8,0.4);
N(0.4,0,1) = 0.3683 if z € [0.4,1);
F(z) = { N(1,0,1) = 0.2420 if 2 € (1,1.4);
N(1.4,0,1) = 01497  if o € [1.4,2);
N(2,0,1) = 0.0540 if z € [2,2.5);
N(2.5,0,1) = 0.0175 if x € [2.5,2.7);
N(2.7,0,1) = 0.0175 if z € (2.7,3);
0 if z € [3,00).

Given a normal distribution Norm(z, u, o) (or p(z,p, o)),

l Norm(x,0,1)

04

Norm(x,0,1)

Fig. 1. Approximating Step Functions

we would like to approximate p via a step function f5, where
P = (P, P,,..,P,) is a finite partition of R. Since 99.7
of the data lies in the range of +30, we could set the step
function P, = —30, and P, = 30 and let AP, = v = %2
for all 1 < ¢ < n, where n could be any arbitrary natural
number. Now we characterize p via fp as follows: ff =

—30 30+
p(—30'7ﬂ,0') p(_30+’y,ﬂ,0')
30+ (n—1)y 30 30+ 'y]
One exam-
p(=30+ (n— Dy, p,0) p(3o,u,0
ple 1s h( ) in Figure [I} in which n = 20,0 = 1 and
v = =0.3.
0 if z € (—o0,—3);
N(-3,0,1) = 0.0044 if z € (-3 —2 7);
N(-2.7,0,1) = 0.0104  if x € [-2.7, —2.4);
N(-24,0,1) = 0.0224  if x € [~2.4,-2.1);
h(z) =
N(2.4,0,1) = 0.0224 if © € [2.4,2.7);
N(2.7,0,1) = 0.0104 if z € [2.7,3);
0 if © € [3,00);

where o = 1,n = 20 and v = $2.
One might argue that strictly speaking f5 ¢ SPM. This is
true, since the induced step function could only capture 99.7
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percent, and not 100 percent as n — oo (or |P| — 00). These
step functions indeed could be regarded approximately belong
to SPM.

IV. PROBABILITY DENSITY FUNCTION

In Remark we have given an algorithm to compute a
data-induced step probability function. These functions would
be used to match the similarity between them and the sam-
pled step function in Section Suppose D = MS(D) =
(—6)1(—=4) 1 (—2)2(=1)1(0)3(3)%(5)*(9)' (12)! (as shown in
Figure ??). By the distinct elements in D, we form a basic
vector B(D) = (-6,—-4,-2,—1,0,3,5,9,12) in this case.
To our aim, we need to specify and justify the chosen form
of ¢. ¢ basically controls the duration of a probability. Since
it is the last point in the data and should not affect too much
the whole distribution of data. In order to diminish its affect
on other points, we decide such duration based on the concept
of average duration as follows:

Definition IV.1. (Algorithm) Suppose a finite set of data D =
b b2 - - - bir. Then it is converted into a step function via

b1 b b
i1 i . in—1
f]D) — n ) n ) n '
Zlk'Abk Z%Abk Z%'Abk
k=1 k=1 k=1
bn bn+l
B by — b
n 0 , whereb,, 11 = b, + T ! g
Z i - Aby, = )
k=1 ]
j=1

Remark 1. The duration between b,, and b, is decided by

Zb:%_b; -1, Where zb:’;_b; is the average probability duration.
j=1"%7 j=1"J

This mechanism is afming at reducing the impact of the last

data point on other points.

Example IV.1. Suppose D is given as above. Since b, 11 =
9

b+ 1+1+21i1_+(§i)2+1+1 1=12+33-1=13.5, one has Zi’f'
k=1
AB(D), =(1,1,2,1,3,2,1,1,1)e(2,2,1,1,3,2,4,3,1.5) =
28.5. Hence fp =
—6 —4 -2 -1 0 3 ]

0.0351 0.0351 0.0702 0.0351 0.1053 0.0702
5 9 12 13.5
0.0351 0.0351 0.0351 0.000]
This step function could be shown in Figure 2]

Example IV.2. Suppose a radar receives signals from 6:00
AM to 7:00 AM at different length of time intervals as shown
in Table [IV.2] where time stands for the observation time, Ab,,
denotes the length of the observation time, ac. denotes the
accumulated length of observation time, n. denotes the number
of signals received.

ISSN: 1998-4464
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3.0
3.0

bar charts

s 0 s w s o0 s
B(D) B(D)
E‘ § - Discrete Probability ._E* 5 i
i; 4 :g 3 - SPDF
e T T T T § B 1 T T 1 T
5 0 5 10 -10 5 0 5 10 15
B(D) BDp
Fig. 2. MS(D) and its Step Probability Density Function (SPDF) fp
] time | Ab, [ ac. [ n. [ in | Aby iy |
6:00-6:04 4 4 3 0 0
6:05-6:11 7 11 2 3 21
6:12-6:13 2 13 1 2 4
6:14-6:21 8 21 1 1 8
6:22-6:27 6 27 1 1 6
6:28-6:38 11 38 6 | 1 11
6:39-6:48 10 48 9 6 60
6:49-6:53 5 53 319 45
6:54-6:58 5 58 4 3 15
6:59-7:00 2 60 2 | 4 8
hypothetical | 3.73 | 63.73 | 0 | 2 7.46
sum 185.46

Then this set of data could be represented by D by D =
(0)°(4)°(11)*(13)*(21)*(27)* (38)°(48)° (53)°(58)*(60).
Then by = 60 + 2 - 2 = 6373 ie,
Ab1g = 3.73. This data could be associated

with an probability density function fp by fp =

0 4 11 13 21 27 38 48 53 58 60 63.73
o0 3 2 1 1 1 6 9 3 4 2 0o |’
E, k., k k. k& .k .k k.7
where £ = 185.46. The SPDF of }D (or f) can be visualized
by Figure [3]

V. SOLUTION SET: MEANS AND VARIANCES

Now we need to specify the solution set for finding the
optimal normal distribution and the given data set D. Let v =
B(D). Let m = |¥/]. Let mean(?) denote the mean of S(%).
Let 1 denote the candidates for the mean of normal distribu-
tion. We assume the mean is located betvygen v1 and v,, and

Z(Ui — mean(7))*

. . =1
the variance is located between S2 = *

> (i —w)®
i=1
m—1

m—1

and
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w
o
= ==
o b
[en] — I ]
o b
o
o T i
o - I |
o i |
= ! !
el i i
[u] 1 1
a2 i i
=} i i
o o™ | i i
S | b
o ! P
5 . | -
o ! i
o
O o ==
o
I [ | I [ | 1
0 10 20 30 40 50 60
time in minutes
Fig. 3. SPDF for Radar Signals in 60 minutes

Z(w mean(v))2 Z(w - v1)2
Lemma V.1. ‘=1 < =1
m—1 m—1
m m
Proof: Since Z —mean(7))? _Z(Ui —u)?=-m-

i=1
(v, — ) <0, the result follows. [ |

Based on this, we could delimit the range for the solution
set.

Definition V.1. The solution set induced by D is de-
fined by SSp = {Norm(z,p,0) : min(D) < p <
m m

Z(Ui — mean(?))? Z(Ui —vp)?

max(D), =L <g< =L
( )7 — — m — 1 }

Due to the unique properties of normal distribution, there is
no analytical approach to find the optimal solution. We use the
numerical computation to approximate the optimal solution.

m—1

Example V.1. Suppose D = MS(D) =
(=6)' (=)' (=2)*(=D'(0)*(3)%(5)1(9)'(12)".  Suppose
¥ = B(D). Then m = |0] = 9 and mean(v) = 1.7778

Z(Ui —v1)?
S2 = 35.9444, and =
set SSp = {Norm(z, u,o
o <104}

= 104. Hence the solution
:—6 < p <12, and 35.9444 <

Latter on, S.Sp would be simulated via Monte Carlo method.
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VI. ALGORITHMS AND MEASUREMENTS
A. Algorithms

Before we proceed further, let us summarize the algorithms
for finding the optimal normality for a finite set of numerical
data D.

1) Convert D into an ascending multi-set form (or M S (D))
(ref. Section [[I-A);

2) Construct D-induced step probability density function
fo (ref. Section [[V));

3) Construct D-induced solution set S.Sp (ref. Section [V));

4) (Looping over SSp) Apply Monte Carlo Method to
generate p and o in order to yield Norm(z, p, o) for
sufficiently large times (ref. Section [V);

5) Generate the approximated step function ff based on
the chosen normal distribution p = Norm(zx, p, o) (ref.
Section [I1I));

6) Compute maz(fp, f£) and min(fp, f) (ref. Section
[T):

7) Apply the optimal criteria to decide the fittest normal
distribution for I (ref. Section [VI-BJVI-C).

The computational complexity mainly depends on two parts:
sorting the given n data value in ascending order and counting
of the multiplicities; and applying the Monte Carlo method.
The complexity of the first part would be O(n?), while the
second part depends on the users’ predetermined sampling
times which could also be decided if one adopts some criteria
to build up the threshold.

B. First Measurement
Definition VI.1. Define Fitlst: SM x SM — [0,1] by

Area(min(f,g))

Fitlst(f9) = 4 man(f0)"

Area(min(fp, fp(“ 0)))
Area(fu,, (“ a))

in particular Fit1st(fp, f]{;(“"’))

If the value Fitlst(fp, ff Pl ”)) is close to 1, then f and ¢
have higher overlapped area and thus higher similarity.

Definition VIL.2. (optimal solution) We call p =
Norm(z,u*,0*) is a D-fittest solution (or the first type
normality of D) if and only if Fitlst(fp, p*) < Fitlst(fp,g)
for all g € SSp.

C. Second Measurement

Definition VI.3. Define F'it2nd : SM x SM — [0, 5] by

fo.A'g

Fit2nd(f, g) = L i’ N
(5.9) A1 1Al

);

arccos(
_Aped, )
AfII-11Agll

If the value Fit2nd(f,g) is close to 0, then f and g have
higher similarity.

Definition VI.4. (optimal solution) We call p =
Norm(z,u*,0*) is a D-fittest solution ((or the second

in particular Fit2nd(fp, f2*7)) = arccos(
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type normality of D) ) if and only if Fit2nd(fp,p*) <
Fit2nd(fp, g) for all g € SSp.

This measurement is the usual inner product version in the
form of two vectors: maximal function and minimal function.
The relation of these two functions is then derived (J., 1981;
A., 2016).

VII. EXPERIMENTAL RESULTS

Now we demonstrate how to find the fittest normal distribu-
tion. We apply R programming (R x64 3.6.1) to run this exper-
iment. Let us continue the data in Example Suppose D =
MS(D) = (=6)'(—4)'(=2)2(=1)1(0)*(3)%(5)' (9)' (12)".
After searching the set SS by running 10000 times, we
obtain an approximately optimal fitting for D with optimal
# = 3.8056 and optimal standard variance o = 3.4426.
The optimal measurement for Fitlst is 0.5610218. The
fitting between these two: D—induced step function and
Norm(z,3.8056, 3.4426) is shown in Figure [}

™
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o
o
2
—_ O
(0]
5 g
2 o
o
J ©
E © -
a o
o
2 =
£ © 4
5 o
[
Uf\l
o -
o
(=]
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Fig. 4. D—induced step function and its optimal fitting

By the same approach, we could also run an experiment for
the second measurement. Here we leave it for the interested
readers. Those parameters, including the size of S'S, could be
trained by machine learning or algorithms (Christpher, 2006;
Marc, 2019)

VIII. PROBLEMS AND FUTURE WORKS

In this article, we adopt numerical algorithms to estimate
the parameters of normal distribution given a set of discrete
data. It seems there are still some room to be improved
or explored. For example, whether there exists an analytical
solution for such estimation? If one could put them into one
analytical form, it might save computation time and space.
When adopting this numerical approach, we have to resort to
Monte Carlo method. The second problem would be whether
there exists a way to decide a threshold of experimental times
in which the precision of the approximation is very close to
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optimal. In the future work, we will extend our research to
multivariate data type and devise an efficient algorithm that
would produce the optimal multivariate normal distribution.

IX. CONCLUSIONS

Data fitting and its trend has been an important issue in
theoretical and applied data analysis or mathematics. It has
wide applications in various fields. In this article, we put
forward two approaches for measuring the normality between
a given data set and normal distributions. We could then find
the optimal normal distribution that could fit the data most.
The idea lies in the approximation for an integral of a function
via step functions. A discrete data set is treated as part of
the approximation process. One uses these discrete points to
generate its related step function and then uses this data set
to set the solution set for the normal distributions that would
be the target that this given data is approximating to. Then
one, based on Monte Carlo approach, generates the potential
values of the solution set. Each element in solution set is a pair
of mean and standard variance. We could then, based on this
mean and standard variance, form its step functions, which is
also approximately a probability density function. Then we
measure the similarities between the data set induced step
function and all the step function induced in the solution set.
Then one finds the best mean and standard variance that could
fit the data set most. Our approach gives an analytical solution
for fitting a finite set of numerical data and could be coupled
with statistical measurements to solve some decision problems.
In the future research, we would combine the approaches
used in regression with our methods. In addition, we will
devise some statistics to test our methods for data fitting.
Lastly, we could expand this research and try to derive the
analytical solutions for this fitting method - that might reduce
our computational time.
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