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Abstract—We simulate the transport and shot noise behavior
of graphene armchair ribbons with a series of parallel, unevenly
spaced potential barriers with a smooth profile (which could
result from the electrostatic effect of negatively biased gates). We
analyze the effect of Klein tunneling and resonant tunneling on
the individual modes propagating through the graphene channel,
showing that this structure can behave as a mode and an energy
filter for the charges injected from the contacts. Moreover, we
study the different transport regimes (ballistic, strong localized,
and diffusive) that can take place inside the graphene ribbon and
the effect on the shot noise behavior of the device.
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I. INTRODUCTION

IN the last few years, a large interest has developed on

graphene and related two-dimensional materials [1]–[20].

Graphene is a recently isolated and characterized material

made up by an planar hexagonal lattice of carbon atoms with

sp2 hybridization. It is transparent and flexible and presents

very interesting properties, among which high mechanical

strength and electrical and thermal conductivity [21]–[23]. Its

high mobility, planarity and one-atom thickness have sug-

gested a possible application in electronic devices [24]–[30],

especially for high-speed analog electronics and for sensors

[31]–[33]. At low energies, the transport behavior of graphene

can be described in terms of four envelope functions F ~α
β (y)

(with ~α = ~K, ~K ′, β = A,B), corresponding to the two

inequivalent atoms A and B of the lattice unit cell and to the

two inequivalent degeneration points (Dirac points) ~K and ~K ′

of the graphene dispersion relations. The envelope functions

have to satisfy the Dirac-Weyl equation [34], i.e., the same

relation which governs the relativistic behavior of massless

1/2-spin particles. This has made it possible to observe in

graphene, at non-relativistic speeds, relativistic phenomena

such as Klein tunneling (a physical phenomenon according to

which a relativistic particle orthogonally impinging against a

barrier is able to transmit across it with unit probability) [35]–

[37].

Several research groups have explored the transport behav-

ior of graphene in the presence of potential barriers. However,

these studies have mainly focused on unconfined graphene

with one or a series of periodically placed barriers (i.e.,
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Fig. 1. Sketch of the potential energy considered in our analysis, made up
by a series of parallel tunnel barriers with a Lorentzian profile, with different
interbarrier distances.

with a superlattice) [38]–[54] or, in a few cases, on con-

fined graphene with a single tunnel barrier [55]–[59]. Instead,

here, starting from Ref. [12] but considering barriers with a

more realistic, smooth (in particular Lorentzian) profile, we

numerically analyze the transport and shot noise behavior of

a graphene armchair ribbon with a series of parallel potential

barriers located at different reciprocal distances (a sketch of the

considered potential profile is shown in Fig. 1). These smooth

tunnel barriers can derive for example from the electrostatic

action of parallel gates, negatively biased and separated from

the graphene transmission channel by a dielectric layer [60]–

[62]. We will show that transport is mainly dominated by Klein

tunneling and by resonant tunneling, which give rise to mode

filtering and to energy filtering, respectively. In our study, we

will also analyze how the geometry of the structure can affect

the observed behavior, and in particular the transport regime

inside the device.

II. NUMERICAL METHOD

For our analysis, we have used an envelope-function based

code that we have developed to study transport in graphene

armchair structures with a generic potential [63]. This numer-

ical approach is valid in the low energy range, where the

graphene dispersion relations are approximately linear, and

if the wave function and the potential are slow-varying on

the scale of the lattice spacing [63]. Although this continuum

description is not as detailed as an atomistic model, it is prefer-

able when a structure with a large number of atoms has to be

simulated, due to its higher numerical efficiency. The simulator
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is based on the numerical solution of the Dirac-Weyl equation

(the equation that the four envelope functions of graphene have

to satisfy [34]), through a scattering matrix iterative procedure.

Let’s call x and y the longitudinal (transport) direction and the

transverse direction, respectively, and W̃ the effective width

of the ribbon (Fig. 1).

In our numerical procedure, we divide the device into a

series of sections inside each of which the potential is ap-

proximately independent of the longitudinal coordinate x. The
first step is the solution of the Dirac-Weyl equation inside each

section. In such a domain, due to translational invariance, each

of the four envelope functions can be written as the product of

a transverse component depending only on y and a plane wave

propagating along x: F ~α
β (x, y) = Φ~α

β (y) exp(iκxx) (notice

that the envelope functions depend on the wave vector ~κ
measured with respect to the Dirac points). With this position,

the Dirac-Weyl equation becomes a differential eigenproblem

(in the transverse components Φ~α
β (y) of the envelope functions

and in the longitudinal wave vector κx) on a one-dimensional

domain, corresponding to y ∈ [0, W̃ ]. The boundary condi-

tions are enforced by the vanishing, at the edges of the ribbon

(y = 0 and y = W̃ ), of the total electron wave function,

expressed in terms of the four envelope functions. More in

detail, the problem has the form:


























(σz∂y + σxf(y)) ~ϕ
~K(y) = −κx~ϕ

~K(y)

(−σz∂y + σxf(y)) ~ϕ
~K′

(y) = −κx~ϕ
~K′

(y)

~ϕ
~K(0) = ~ϕ

~K′

(0)

~ϕ
~K(W̃ ) = e2iKW̃ ~ϕ

~K′

(W̃ ) ,

(1)

where: σx, σy , σz are the Pauli matrices, ∂y = d/d y,

~ϕ
~K(y) =

[

Φ
~K
A (y)

Φ
~K
B (y)

]

, ~ϕ
~K′

(y) = i

[

Φ
~K′

A (y)

Φ
~K′

B (y)

]

, (2)

and f(y) = (U(y)− E)/(vF h̄). U is the potential energy, E
is the injection energy, vF is the graphene Fermi velocity, h̄ is

the reduced Planck constant, K = 4π/(3a) if the ordinate of a
Dirac point, and a is the graphene lattice constant. The solution

through standard techniques of this problem in the direct

domain is known to suffer numerical problems (in particular,

fermion doubling [63]–[65]). However, with these definitions

[63], [66], [67]:

~ϕ(y) =

{

~ϕ
~K(y) y∈ [0, W̃ ]

ei2KW̃ ~ϕ
~K′

(2W̃ − y) y∈ [W̃ , 2W̃ ] ,
(3)

the system can be reformulated as the following equivalent

eigenproblem on the domain [0, 2W̃ ], with periodic boundary

conditions at the domain edges for the function e−iKy ~ϕ(y):






(

∂yσz + f̃(y)σx

)

~ϕ(y) = −κx~ϕ(y)

e−i2KW̃ ~ϕ(2W̃ ) = ~ϕ(0) ,
(4)

where f̃(y) = f(W̃ − |W̃ − y|). This problem can be

very efficiently solved in the reciprocal domain, avoiding the

fermion doubling problem and obtaining a basis of transport

modes in each of the sections in which we have divided the

device. The next step is the calculation of the scattering matrix

which relates adjacent sections, i.e., the set of transmission

and reflection coefficients that describes the transport across

the interface between the two sections. In order to compute

such a quantity, we enforce the continuity, across the interface,

of the wave fuction (and thus of its components on the two

graphene sublattices made up by all the A-type atoms and

all the B-type atoms). Imagining to inject each mode at the

time across the interface and projecting the resulting equations

onto a basis of sine functions, we obtain a linear system in

the transmission and reflection coefficients, that can be easily

solved using linear algebra routines. The successive step is

the composition (through standard procedures [68]) of the

scattering matrices of the different parts of the device, in such a

way as to obtain the scattering matrix of the overall device, and

thus its transmission matrix t. Finally, from the transmission

matrix t it is possible to compute the conductance G, the shot

noise power spectral density SI , and the Fano factor F (i.e.,

the ratio between the actual shot noise power spectral density

SI and the value 2eI that would be present if the charge

carriers moved independently one from the others, with e is

the elementary charge and I the current flowing through the

device). Indeed, according to the Landauer-Büttiker formulas

[69]–[71]:

G =
2 e2

h

∑

i

wi , SI =
4 e3

h
V
∑

i

wi(1− wi) , (5)

F =
SI

2eI
=

∑

i wi(1− wi)
∑

i wi

, (6)

where h=2πh̄ is Planck’s constant, the wi’s are the eigenval-

ues of the matrix t†t, I = GV (with V the externally applied

voltage), and the sums are done over all the modes propagating

in the input lead.

The values of G and SI obtained from Eq. (5) should be

averaged over all the energy domain, weighting the result

at each energy with the difference between the Fermi-Dirac

occupation functions at the input and at the output leads.

However, in our simulations we assume to operate at a tem-

perature T such that KBT << eV (with KB the Boltzmann

constant), in such a way as to neglect the contribution of

thermal noise. Therefore, the conductance and shot noise

power spectral density will be uniformly averaged between

the electrochemical potentials of the two leads (which differ

by eV ). In the case of the Fano factor F (Eq. (6)), the average

has to be performed separately on the numerator and on the

denominator, which are the directly measurable quantities.

The presence of the contacts is modeled in the simulations

including two sections with negative potential energy (-0.2 eV

in our simulations) at the input and output leads (Fig. 1),

which allow the injection of a sufficiently high number of

propagating modes in the structure, for all the considered

values of injection energy.

We have developed the code in Fortran, exploiting Lapack

linear algebra routines [72]. The simulator has already been

successfully used to simulate the behavior of several graphene-

based devices and structures and to reproduce experimental

result, helping to explain the observed results [12]–[14], [60],
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[61], [63], [66]. The validity of our code has been previously

tested comparing its results with those obtained with a tight-

binding based code [63]. Moreover, its results for the case

of a single rectangular barrier agree with those reported in

Refs. [38], [73].

III. NUMERICAL RESULTS

Here we simulate the transport behavior of armchair

graphene ribbons with parallel potential barriers (in such a

way as to preserve Klein tunneling).

We consider potential barriers with a smooth, Lorentzian

profile, of the kind U(x) = UM/{1 + [(x− x0)/H]2}, where
UM is the maximum value, x0 is the central position, and

H is the half-width at half-maximum. This represents an

approximation of the actual potential profile electrostatically

generated at the graphene level by negatively biased gates

(Fig. 1). Smooth barriers like the considered ones are known

to present a quite selective Klein tunneling behavior [40], [48].

In the case of parallel and equally spaced barriers, when

the structure becomes periodic, the transport behavior is dom-

inated by resonant tunneling through the states quasi-localized

in the regions between adjacent barriers, and it has been found

that extra Dirac points appear in the graphene spectrum [49]–

[54].

Here, instead, the barriers are assumed to be parallel, but

unevenly spaced: in particular, in our simulations the interbar-

rier distances are randomly extracted, with uniform probability

distribution, inside a range of possible values (which we will

specify in the following).

Armchair graphene ribbons can present either a semicon-

ducting or a metallic behavior, depending on the exact number

N of dimer lines across their width: if N can be written as

3M − 1, with M an integer number, the ribbon is metallic,

otherwise it is semiconducting. Indeed, the wave function

in the graphene ribbon has to satisfy Dirichlet boundary

conditions at the edges; this enforces a discretization on the

transverse component of the wave vector, which can only

assume values multiple of π/W̃ . If N = 3M − 1 one of

these values coincides with the ordinate in the reciprocal space

of the Dirac points (the degeneration points of the graphene

dispersion relations) and thus the ribbon presents a zero energy

gap. Instead, if N 6= 3M − 1 this does not happen and the

energy gap is different from zero.

In our analysis, we will consider both the case of a semicon-

ducting ribbon, and that of a metallic ribbon, in the presence of

unevenly-spaced parallel Lorentzian barriers with identical or

different shape, orthogonal or tilted with respect to the ribbon

edges.

We assume to apply a potential V = 0.4 mV between the

output and input contacts and, therefore, we average our results

over a number of energies (5 in our simulations, which are

sufficient, due to the very small variation of the results on the

considered energy range) uniformly distributed over a 0.4 meV

interval.

We have first analyzed the case of a semiconducting ribbon

with unevenly spaced identical Lorentzian barriers, orthogonal

to the ribbon edges. In particular, we have considered a ribbon
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Fig. 2. (a) Normalized conductance G/G0 (where G0 is the conductance
quantum) as a function of the injection energy for a semiconducting graphene
ribbon with 1626 dimer lines, with a series of 1, 10, and 100 tunnel barriers
(orthogonal to the ribbon edges) with identical Lorentzian profile and with
different interbarrier distances. (b) Corresponding behavior of the Fano factor
as a function of the injection energy.

with 1626 dimer lines (and thus approximately 200 nm wide),

barriers with UM = 0.3 eV and H = 20 nm, and values of

the interbarrier distances between 150 nm and 250 nm.

In Fig. 2(a) we show the results for the normalized con-

ductance G/G0 (where G0 = 2 e2/h is the conductance

quantum) as a function of the injection energy E that we have

obtained for 1, 10, and 100 barriers. In Fig. 2(b) we report the

corresponding values of the Fano factor F .

In the case of a single barrier, we notice that the conductance

is zero for E = 0, due to the absence of any propagating

mode at zero energy in a semiconducting ribbon. Increasing

E, the conductance presents several maxima. For the energy

corresponding to the barrier peak, the conductance has a

nonzero value, because transmission takes place through the

narrow barrier through evanescent modes. Regarding the Fano

factor, we observe that it has minima for the energies for

which the conductance presents peaks, as a consequence of

the relation between the two quantities, given by Eq. (6) (with

I = GV ). Moreover, for E = 0 the value of the Fano

factor is 1 (when transmission is low, carriers move about

independently, and thus there is no shot noise suppression),

while near the top of the barrier the Fano factor is 1/3
(as predicted by Tworzydło et al. for the transmission by

evanescent modes through a narrow graphene sample [15]).

Increasing the number of barriers, for every energy the

conductance progressively decreases; at the same time, we

observe an increase of the relative variation between the local
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minima and the local maxima. Looking at the Fano factor

behavior, we notice that the fluctuations as a function of energy

increase, as a consequence of the interference between the

complex quantum paths in the device. Finally, for a sufficiently

high number of barriers, we notice that the conductance goes

to zero and the Fano factor approaches 1 (absence of shot

noise suppression), as a consequence of the vanishing of the

transmission through the structure.

Since the barriers are orthogonal to the ribbon edges and

thus to the transmission direction x, they do not introduce mix-

ing among the modes flowing through the device. Therefore,

the transmission matrix of the structure is diagonal, with each

diagonal element corresponding to a single mode. In order to

gain a better insight into the transport phenomena, it is useful

to separately examine the contribution of each mode.

Each mode i is identified by one of the values allowed (i.e.,

which satisfy the Dirichlet boundary conditions at the ribbon

edges) of the transverse component of the wave vector, and

thus by the difference κyi between this component and the

ordinate in the reciprocal space of the Dirac point. We order

the modes for increasing |κyi|. Outside the barriers, where the
potential energy is nearly zero, the relationship between the

energy value E and the components κxi and κyi of the wave

vector (measured from the Dirac point) of the i-th mode is

E = ±h̄vF
√

κ2

xi + κ2

yi. The angle of incidence of the mode

against the barrier is given by the angle of ~κ with respect to the

x direction, i.e., θi = arctan(κyi/κxi). Each barrier represents
a finite potential well for the holes. Therefore, for each value

of the transverse wave vector (and thus for each mode i) a

discrete number of quasi-bound states Ei,m exists inside each

barrier, due to the longitudinal confinement produced by the

barrier.

In Fig. 3 we report (with a color map) the value of the

transmission wi that we have numerically evaluated for each

single mode as a function of the injection energy E and of the

mode index i. In the panel (a) we show the results for a single

barrier, while in the panel (b) we plot those for 10 identical

cascaded barriers.

We notice that increasing i the average value of the trans-

mission value decreases. This is due to Klein tunneling: modes

with a lower order i have a lower |κyi| (and, for a fixed E, a

higher |κxi|). Therefore, these modes have a smaller |θi|, i.e.
they impinge more orthogonally against the barrier. Due to

Klein tunneling, these modes have a larger probability to pass

through the barrier. Therefore, a series of barriers could serve

as a mode filter, since only the lowest-order modes would

be able to pass through a finite number of barriers. Let us

notice that for a mode with θi = 0 the transmission probability

would be 1; however, in a semiconducting ribbon no mode

has κyi = 0 (and thus has θi = 0 and unit transmission)

because none of the allowed transverse wave vectors is equal

to the ordinate (in the reciprocal space) of the Dirac points.

Therefore, sufficiently increasing the number of barriers, all

the modes, including the lowest ones, will be suppressed.

The other main effect that appears from Fig. 3 is the

presence of energy ranges (which depend also on the mode) for

which the transmission is higher. This effect can be attributed
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Fig. 3. (a) Mode transmission as a function of the injection energy and
of the mode index, for a semiconducting graphene ribbon (with 1626 dimer
lines) with a single tunnel barrier (a), 10 identical barriers (b), and 10 different
barriers (c). The barriers are orthogonal to the ribbon edges, have a Lorentzian
profile, and are unevenly spaced.

to resonant tunneling: the generic mode i has a larger prob-

ability to transmit through the barriers for the energies Ei,m
of the states quasi-localized inside the barriers corresponding

to that mode. Since in this case we are considering identical

barriers, the values of these energies Ei,m are the same for

all the barriers. Therefore, increasing the number of barriers,

while the average conductance decreases, this energy selection

strengthens, since each barrier performs a further selection

on the output of the previous ones. Therefore, a series of

several identical barriers acts as an energy filter, which allows

tunneling only for specific intervals of energies.

The total conductance shown in Fig. 2(a) is given by the sum

of the contributions of all the propagating modes and thus is

affected by the described tunneling phenomena. Since we are

considering a semiconducting ribbon, with a nonzero energy

gap, for E = 0 no mode is able to transmit. Moreover, since

no mode has κyi = 0 and thus impinges orthogonally against

the barriers, all the modes are affected by the barriers and

are progressively suppressed: therefore, sufficiently increasing
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Fig. 4. (a) Normalized conductance G/G0 as a function of the injection
energy for a semiconducting graphene ribbon with 1626 dimer lines, with
a series of 1, 10, and 100 tunnel barriers (orthogonal to the ribbon edges)
with different Lorentzian profile and with different interbarrier distances. (b)
Corresponding behavior of the Fano factor as a function of the injection
energy.

the number of barriers, the conductance vanishes (and thus

Fano factor approaches 1). As a consequence of resonant

tunneling, the conductance is larger for certain intervals of

energies (as we have noticed); the position of the maxima

can be approximately estimated evaluating the energies of

the states quasi-bound inside the barriers for the lowest-order

mode, which is the mode for which transmission is maximum

and thus which more contributes to the overall conductance.

Then, we have simulated the transport and shot noise

behavior of the same armchair semiconducting ribbon with

1626 dimer lines, in which however the unevenly spaced bar-

riers (with interbarrier distances randomly distributed between

150 nm and 250 nm, as in the previous case) are not identical.

In detail, all the barriers have a Lorentzian profile with a

0.3 eV peak, but their half-width at half-maximum is randomly

extracted between 2.5 nm and 37.5 nm. The behavior of the

normalized conductance as a function of the injection energy

is shown in Fig. 4(a) for 1, 10, and 100 barriers, while in

Fig. 4(b) we report the corresponding results for the Fano

factor. Since the ribbon is still semiconducting, for E = 0 no

mode propagates through the device, the conductance is zero

and the Fano factor is 1 (as in the previous case). However,

examining the behavior as a function of energy we notice that

increasing the number of barriers the conductance peaks (and

the corresponding oscillatory behavior for the Fano factor),

observed for a single barrier, disappear. The situation is better

understood analyzing the transmission as a function of the
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Fig. 5. (a) Normalized conductance G/G0 as a function of the injection
energy for a metallic graphene ribbon with 1625 dimer lines, with a series of
1, 10, and 100 tunnel barriers (orthogonal to the ribbon edges) with identical
Lorentzian profile and with different interbarrier distances. (b) Corresponding
behavior of the Fano factor as a function of the injection energy.

injection energy for each separate mode flowing through the

structure: in the panel (c) of Fig. 3 we report a color plot

for the case of 10 different cascaded barriers. We notice that

Klein tunneling remains: the lowest-order modes are those

experiencing the largest transmission, while modes with higher

order are more suppressed by the barriers. Since the ribbon

is still semiconducting, no mode is exactly orthogonal to

the barriers and thus passes unaltered through the structure.

Therefore, for a sufficiently high number of barriers, no mode

is able to transmit through the structure, the conductance

vanishes and the value of the Fano factor approaches 1.

However, in the color map of Fig. 3(c) we do not notice

any more favored energies for which transmission is higher.

Indeed, since the barriers are different, also the energies Ei,m
of their quasi-localized states are not the same. Therefore, no

energy exists for which resonant tunneling is possible through

all the barriers. Due to the absence of resonant tunneling, the

peaks in the conductance as a function of energy disappear.

We have then considered the case of a metallic armchair

ribbon, in particular with 1625 dimer lines. First, we have

simulated the behavior in the presence of a series of identical

Lorentzian barriers (with height UM = 0.3 eV and half-width

at half-maximum H = 20 nm), with interbarrier distances ran-

domly distributed between 150 nm and 250 nm (the same case

already considered in the semiconductor ribbon). In Fig. 5(a)

and Fig. 5(b) we show the behavior of the conductance and of

the Fano factor as a function of energy, respectively. Instead,

in Fig. 6(a) and Fig. 6(b) we plot the value of the transmission
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Fig. 6. (a) Mode transmission as a function of the injection energy and of
the mode index, for a metallic graphene ribbon (with 1625 dimer lines) with
a single tunnel barrier (a), 10 identical barriers (b), and 10 different barriers
(c). The barriers are orthogonal to the ribbon edges, have a Lorentzian profile,
and are unevenly spaced.

for the individual modes as a function of the energy and of

the mode index, for a single barrier and for a series of 10

identical barriers, respectively. Also in this case, we notice

the effect of Klein tunneling, with the lowest-order modes

being transmitted by the device with higher transmission

probability, and of resonant tunneling, with the transmission

probability much higher at the energies Ei,m corresponding to

the states quasi-localized inside the barriers. However, contrary

to semiconducting ribbons, in a metallic ribbon one of the

transverse wave vectors which satisfy the Dirichlet boundary

conditions at the ribbon edges coincides with the ordinate (in

the reciprocal space) of the Dirac point. Therefore, the lowest-

order mode has κyi = 0. This mode is able to propagate in a

metallic ribbon already from E = 0 and, having an angle of

incidence θi = 0, impinges orthogonally against the barriers

and thus transmits perfectly through the device at every energy.

The consequences can be clearly noticed in the behaviors of

the conductance and of the Fano factor. Contrary to the case of

1 barrier
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100 barriers
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Fig. 7. (a) Normalized conductance G/G0 as a function of the injection
energy for a metallic graphene ribbon with 1625 dimer lines, with a series of
1, 10, and 100 tunnel barriers (orthogonal to the ribbon edges) with different
Lorentzian profile and with different interbarrier distances. (b) Corresponding
behavior of the Fano factor as a function of the injection energy.

the semiconducting ribbon, here for E = 0 the conductance is

not zero, but equal to the conductance quantum G0, since the

lowest-order mode is already able to propagate in the ribbon

and transmits perfectly through the orthogonal barriers. As

a consequence, the Fano factor vanishes: since there is unit

transmission probability, each crossing event is hindered only

by the presence of other electrons crossing the device at that

moment; therefore, crossing events are perfectly correlated,

the flow is regular, and no shot noise is present. Similarly,

when the number of barriers is very high, only the lowest-

order mode, which passes unaltered through the device, is able

to propagate; therefore, the conductance becomes equal to G0

and, since the mode is perfectly transmitted, the Fano factor

vanishes.

In Fig. 7(a) and Fig. 7(b), instead, we report the conductance

and Fano factor behavior, respectively, as a function of energy

for the metallic armchair ribbon with 1625 dimer lines in

the presence of a series of unevenly spaced (with random

interbarrier distances between 150 nm and 250 nm) different

Lorentzian barriers with a 0.3 eV peak, but with half-width

at half-maximum randomly extracted between 2.5 nm and

37.5 nm. In the panel (c) of Fig. 6 we show a color map of the

transmission probability of the individual modes as a function

of the injection energy and of the mode index. Similarly

to what we have seen in the case of the semiconducting

ribbon, the main difference with respect to the case of identical

barriers is the disappearance, when several barriers are present,

of resonant tunneling, and thus of the peaks in the transmission
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Fig. 8. (a) Normalized conductance G/G0 as a function of the injection
energy for a semiconducting graphene ribbon with 1626 dimer lines, with a
series of 1, 2, 3, 4, 5, and 10 tunnel barriers (tilted by 60

◦ with respect to the
ribbon edges) with identical Lorentzian profile and with different interbarrier
distances. (b) Corresponding behavior of the Fano factor as a function of the
injection energy (the dashed thick horizontal line represents the 1/3 value).

behavior as a function of energy. Since the barriers are

different, their quasi-localized states have different energies

Ei,m, and thus it is not possible to have resonant tunneling

through all the barriers at the same energy. Therefore, the

behavior as a function of energy is more uniform, as we notice

in the figures.

Finally, we have analyzed the case in which the barriers

are still parallel, but are tilted by a certain angle with respect

to the ribbon edges (instead of being orthogonal to them).

In particular, we have considered Lorentzian barriers with a

0.3 eV peak, a half-width at half-maximum equal to 20 nm, a

60◦ tilt angle with respect to the ribbon edges, and a distance

along x (the longitudinal direction of the ribbon) between

the barrier maxima randomly distributed between 150 nm

and 250 nm. We report the behavior of the conductance

and of the Fano factor as a function of energy, in the case

of identical barriers, for a semiconducting ribbon with 1626

dimer lines in Fig. 8, and for a metallic ribbon with 1625

dimer lines in Fig. 9. The behavior is qualitatively similar

to that observed for the case of barriers orthogonal to the

ribbon edges, with Klein tunneling and resonant tunneling

still playing their role. However, in this case a particularly

interesting feature is observed. For a significant range of

energies and of barrier numbers, the Fano factor approaches

the value 1/3 characteristic of diffusive transport. We explain

these results in the following way. Diffusive transport regime

can be reached when the device length is much greater than
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Fig. 9. (a) Normalized conductance G/G0 as a function of the injection
energy for a metallic graphene ribbon with 1625 dimer lines, with a series
of 1, 2, 3, 4, 5, and 10 tunnel barriers (tilted by 60

◦ with respect to the
ribbon edges) with identical Lorentzian profile and with different interbarrier
distances. (b) Corresponding behavior of the Fano factor as a function of the
injection energy (the dashed thick horizontal line represents the 1/3 value).

the mean free path and much less than the localization length.

In the case of barriers orthogonal to the ribbon edges, each

mode impinging against the barriers is partially transmitted

and partially reflected, but is not converted into another mode:

the transmission matrix of the structure is diagonal and the

device can be seen as a collection of one-mode systems.

Therefore, the localization length, which is of the order of

the number of propagating modes times the mean free path, is

similar to the mean free path and the diffusive regime can not

be reached. On the contrary, a set of tilted barriers mixes the

modes propagating through the device: in this case the device

is a true many-mode system, the localization length is much

greater than the mean free path, and diffusive transport can

take place.

We have also noticed that the observed effects survive even

in the presence of a low level of disorder (as we have shown

in Ref. [12] for the case of barriers with a rectangular profile).

IV. CONCLUSIONS

We have analyzed the behavior of an armchair graphene

ribbon with a series of unevenly spaced, parallel potential

barriers with a smooth, Lorentzian profile. We have found that

this structure (which could be practically achieved placing a

series of top gates at a certain distance from the graphene

ribbon) can behave as mode and (in the case of identical

barriers) energy filter. This device could be usefully exploited

in all those cases, such as interference-based or low-noise
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devices, in which a pre-selection of the modes or of the energy

components of the input signal is necessary or convenient for

a good operation of a graphene-based system. In the future,

our simulator could be improved performing a self-consistent

transport calculation of the overall structure and including all

the details of a practical implementation, and could be adopted

to identify the optimal material and geometric parameters for

the design and fabrication of the actual device.
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