
 

 

 
Abstract—This paper introduced the isotropic accelerometer 

using the circular hyperboloids method, which based on modified 
Gough-Stewart platform (GSP). By the static model of the 
accelerometer, the isotropy is defined on the acceleration matrix. On 
the basis of the isotropy condition, the relationship between isotropy 
index and geometric parameters of circular hyperboloids was 
investigated. Calculating the isotropy index by the optimization tool, 
this paper verified that it is feasible to achieve isotropy for the 
accelerometer. Then taking mass into account, a case is presented to 
optimize the parameters to construct isotropic accelerometer on 
circular hyperboloids. According to the 3D model of isotropic 
accelerometer, the static characteristic simulation was carried out by 
the finite element method. Based on the simulation experimental 
results, the calibration matrix was deduced, and the experimental 
isotropy index was obtained. Comparing the theoretical and 
experimental isotropy index, the method of circular hyperboloids was 
proved to be reliable and valid to construct isotropic accelerometer. 
 

Keywords—Circular hyperboloids, isotropy, modified Gough–Ste
wart platform, six-axis accelerometer, static model  

I. INTRODUCTION 
CCELEROMETERS, which serve to measure accelerations in 
a space, have been widely used in numerous research areas 

such as inertial navigation [1], robot control [2], head impact 
sensors [3], estimating heart rate [4], fabricating complicated 
3D devices [5], etc. How to fabricate the elastic structure is the 
key design of a multi-dimensional sensor. Due to the 
outstanding advantages in terms of precision, high stiffness, 
anti-interference, and compact structure, the Stewart platform 
[6] can be particularly applied to the elastic structure of six-axis 
accelerometers [7–10]. This paper introduced a small range 
isotropic accelerometer to accurately measure low frequency 
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and slowly change acceleration. 
For multi-axis accelerometers, isotropy is one of the key 

factors to performance. Isotropy indicates that the 
accelerometer exhibits equal properties in all directions [11], 
and it usually leads to the relative minimum error [12]. The 
isotropy performance of the accelerometer with a parallel 
mechanism mainly depends on the isotropy performance of the 
parallel mechanism. Designing a parallel robot with isotropy in 
one pose and position or over its full workspace is often 
considered as a design objective [13–15]. Zanganeh and Angele 
[16] defined a set of conditions, and presented a systematic 
method to design a 6-DOF isotropic parallel manipulator. 
Legnani introduced the concept of isotropy of a generic parallel 
manipulator, and presented how to design an isotropic parallel 
manipulator by changing the location of the Tool Center Point 
[17]. Tsai presented a reliable method to develop an isotropic 
parallel manipulator by using an isotropy generator, which 
consists of six straight lines achieving the isotropy conditions 
[15]. The optimal isotropy design for a multi-dimensional 
sensor is one of the most significant issues in this field of 
research. In the literature of multi-dimensional sensor design, 
the elastic structures of the sensor have been generally based on 
a standard Gough–Stewart platform (GSP). According to the 
physical model of solution space, Wang [18] and Yu [19] 
conducted an optimal design by using the isotropy performance 
atlases. Afzali-Far proposed full-parametric solutions to obtain 
isotropy based on two kinematic arrangements [20]. Hou 
applied genetic algorithms to optimize the parameters of the 
hyperstatic six-component force/torque sensor [21] for 
improving the isotropy. Jiang proposed the method of circular 
hyperboloid for the standard GSP, which presented a new 
approach for isotropy [22]. Tong applied the method of circular 
hyperboloid for satisfying the isotropy [23]. However, a 
drawback for standard GSP is that it is impossible to achieve 
isotropy [14, 23–25]. 

Modified GSP is feasible to satisfy isotropy [26]. 
Simultaneously, a broader definition includes more 
configurations to be selected than standard GSP. Jafari 
proposed a method to design a micromanipulator based on 
orthogonal GSP (a sort of modified GSP), which can meet 
isotropy over a small workspace [27]. Based on the screw 
theory, Yao derived the relations of key structural parameters 
leading to an isotropic configuration of the force sensor [11]. 
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Hou proposed a force sensor where both the force isotropy 
index and torque isotropy index surpassed 0.9, and built the 
solid model of the elastic structure [21,28]. Additionally, the 
method of circular hyperboloids can be used to optimize the 
parameters of sensors based on modified GSP. Jiang 
constructed the mathematical model of modified GSP according 
to the method of circular hyperboloids, and deduced the 
relations between isotropy and the geometric parameters of 
hyperboloids [29]. This was a novel approach to achieve 
isotropy with simplified design steps. Tong [23,26] applied the 
method of circular hyperboloids to study the multi-dimensional 
sensor and proved that it could achieve isotropy for 
multi-dimensional sensors based on modified GSP. 

The main contributions focus on three folds: 
(1) Based on the parallel mechanism theory and circular 

hyperboloids method, the relationship between isotropy index 
and geometric parameters of circular hyperboloids was 
investigated. 

(2) Applied circular hyperboloids method, the influence 
factors of isotropy for the accelerometer based on equal-leg 
modified GSP were analyzed, and complete isotropy for the 
accelerometer on determined circular hyperboloids proved to be 
achieved.  

(3) Considering the factors of mass such as: shape, dimension 
and material etc., the parameters of accelerometer were 
optimized on circular hyperboloids method to construct 
isotropic accelerometer, and feasibility of circular hyperboloids 
method were verified by simulation experiment.  

The organization of this paper is as follows. Following the 
introduction, Section II presents the modified GSP and 
introduces the equal-leg modified GSP. In Section Ⅲ, the static 
model is established, and the isotropy is defined. Section Ⅳ 
derives and investigates the relationship between isotropy index 
and geometric parameters of hyperboloids. In Section Ⅴ, the 
way to verify the isotropy based on the method of circular 
hyperboloids is presented, and the isotropy for accelerometer 
based on equal-leg modified GSP is proven. Section Ⅵ provide 
an example applies to illustrate the design process of an 
isotropic accelerometer. In Section Ⅶ, the relationship between 
acceleration and deformation along each leg is derived, and the 
calibration matrix is introduced. According to the solid model 
on the example’s structure, the static characteristic simulation 
was carried out. Meanwhile, the isotropy index of the simulation 
experiments was yielded. Finally, the conclusion is drawn in 
Section Ⅷ. 

II. MODIFIED GSP 

A. Modified GSP Based on Circular Hyperboloids 

A modified GSP consists of a lower platform, an upper 
platform, and six supporting legs. The upper platform and lower 
platform are composed of two concentric circles, the outer one 
and the inner one. As shown in Figure 1, six legs are divided into 
two groups, the outer legs and the inner legs, and each group of 
legs rotates symmetrically along the z-axis, with the step of 

2 / 3 . The outer legs are linked to the outer concentric circles 
by the outer hinge iA  and ( 1,3,5)iB i  .  Similarly, the inner 
legs are linked to the inner concentric circle by the inner hinge 

iA  and ( 2,4,6)iB i  .   denotes the angle between the line of 
hinge 1A  or 6A  to the centre of the upper platform and the 
x-axis. 

In order to measure the acceleration on the parallel six-axis 
accelerometer, the structure is constructed as follow. The lower 
platform is used to detachably connect the carrier. The upper 
platform is the mass, which can transfer the generalized 
acceleration into inertial force. The hinges link the legs to the 
upper/lower platform and transmit force. Thus, the stress and 
strain can be caused in the legs made of elastic material and be 
measured by the strain gauge pasted on the legs. 
 

 
Fig. 1 Schematic diagram of the modified Gough–Stewart platform. 

 
In the Cartesian coordinate system, the surface equations of 

circular hyperboloids are described as [23,26,29]: 
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where: ( 1,2)ia i  , denotes the waist radius of circular 
hyperboloids; ( 1,2)iz i   denotes the distance from the center 
of the circular hyperboloid waist circle to the origin of the 
coordinate; and ( 1,2)ic i   denotes the characteristic 
parameters of circular hyperboloids. 

According to the structural parameters of circular 
hyperboloids [29,30], the unit vectors of the two generators of 
circular hyperboloids are: 

 1 1 1 1 1 1 1( ) ( )x y z t sin t cos u   l  (3) 
 2 2 2 2 2 2 2( ) ( )x y z t sin t cos u   l   (4) 

where ( 1,2)it i   and ( 1,2)iu i   denote the characteristic 
parameters of the generators, respectively. 

Here: 
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From the properties of circular hyperboloids [30], we can 
calculate the Force matrix of the accelerometer based on 
modified GSP [26, 29]. 
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where J  is the Force matrix of the accelerometer based on 
modified GSP, which represents the force transfer from the 
upper platform to each leg. 

The vectors of 1( )p  and 2 ( )p  denote the unitary Plücker 
coordinates of the axes of No.1 and No.6 legs, respectively, 
which are functions of the rotation angle   about the z-axis 
[29]. 
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B. Equal-Leg Modified GSP 

Equal-leg modified GSP is a sort of modified GSP that has a 
simpler structure. Yao [11] proved that under the condition of 
isotropy, the upper hinge points ( 1,2,3,4,5,6)iA i   were 
distributed on a circle (shown in Figure.2). In other words, when 
the accelerometer based on equal-leg modified GSP satisfies 
isotropy, the two concentric circles in the upper platform have 
the same radius. The other definition of equal-leg modified GSP 
is the same as in Section 2.1.  

III. STATIC MODEL 

A. Acceleration Matrix 

The static mathematical model of the parallel accelerometer 
is expressed as [23,26]: 

 T f xJ M   (10) 
where x  is the generalized acceleration loaded on the mass. 

Rewrite Equation (10): 
 1 Tx f M J   (11) 

 

 
Fig. 2 Schematic diagram of the equal-leg modified Gough–Stewart 
platform. 
 
where 1 2 3 4 5 6( )Tf f f f f ff  is the vector composed of the 
forces of the six legs, and M  is the generalized mass. 

Here: 
 [ ]x y zdiag m m m I I IM   (12) 

where ,x yI I  and zI  are the moments of inertia along each axis, 
and m  is the mass. 

According to the definition in [26], the acceleration matrix of 
the accelerometer can be written as: 

 1 T G M J   (13) 

B. Isotropy 

The isotropy of a parallel accelerometer depends on the 
isotropy of the structure. Isotropy indicates that the six-axis 
accelerometer should have equal properties in all measuring 
dimensions in order to obtain the minimum measurement error. 
During designing and manufacturing for the structure of parallel 
accelerometer, there are structural errors G  causing errors 

x  in measuring acceleration The relationship between G  
and x  is shown in Equation (14) [31,32]: 

 1|| || || |||| |||| ||
|| || || ||

x

x
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

G
G G

G
  (14) 

Then, the error amplification factor, which is called the 
condition number   [31,33], is expressed as: 

 || |||| ||G G G
-1= ( )=μ cond   (15) 

The condition number is bounded to the range 1    . 
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The reciprocal of the condition number, which is called the 
isotropy index [19,32,34,35] , is often used. It can be written as: 
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The range of isotropy index is within [0,1]. When the 
condition number equals 1, the accelerometer is considered as 
most slightly affected by the errors in the elastic structure, and 
the accelerometer is isotropy. 

As is widely known, the linear acceleration and the angular 
acceleration have different dimension. So it is meaningless in 
physics to calculate isotropy between the linear acceleration and 
the angular acceleration [11]. In the paper, we discuss linear 
isotropy and angular isotropy, respectively [36]. Rewriting the 
acceleration matrix: 

  G G G=
T

a ε   (17) 

where aG  is the linear acceleration matrix, and ςG  is the 
angular acceleration matrix. 

Then, the linear isotropy is evaluated by the linear isotropy 
index: 

 1
( )a

a

S
cond


G

  (18) 

The angular isotropy is evaluated by the angular isotropy 
index: 

 1
( )

S
cond

ς

ςG
  (19) 

Under the same definition, the linear/angular isotropy index 
is within the range [0,1], and the condition 1aS   or 1S ς  is 
called linear or angular isotropy. When the condition is 1aS   
and 1S ς  , it is called isotropy for the parallel six-axis 
accelerometer [32]. 

IV. RELATIONSHIP BETWEEN ISOTROPY AND GEOMETRIC 
PARAMETERS OF CIRCULAR HYPERBOLOIDS 

In the method of circular hyperboloids, the structure of the 
parallel six-axis accelerometer is constructed from circular 
hyperboloids [22,29]. In order to obtain the isotropic 
accelerometer, the geometric parameters of circular 
hyperboloids are constrained under isotropy conditions. 

For convenience, define the ratio of the waist radius n  . 

 1

2

a
n

a
   (20) 

where n  changes within the range 0 1n   , the value of n  
determines the family of circular hyperboloids. When 1n   , 
the two circular hyperboloids are parallel to each other, and can 
make the structure of accelerometer more compact. Moreover, 
only if these two circular hyperboloids are parallel to each other, 
the equal-leg modified GSP can be fabricated. 

In order to achieve isotropy, the parameters of the circular 
hyperboloids need to satisfy the prerequisites of isotropy [29]. 
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When the accelerometer achieves linear isotropy, the 
parameters must satisfy the conditions as follows: 
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In addition, the length of unit vector for generatrix 
1( )il mm‖‖  , which can be expressed as: 

 2 2 1i it u    (25) 
From Equations (20), (21), (23), and (25), it leads to 
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When the accelerometer achieves angular isotropy, the 
parameters must satisfy the conditions as follows [29]: 
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Substituting Equation (21), Equation (23), and Equation (25) 
into Equation (27) produces: 
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Inserting Equation (23) and Equation (25) into Equation (22), 
we have: 
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Substituting Equation (21), Equation (23), Equation (25) and 
Equations (29) and (30) into Equation (28), we can obtain: 
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Combining Equation (5) and Equation (6) produces: 
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Set the parameters   and n  , give the moments of inertia 
, ,x y zI I I  and mass  m  , then the surface equations of the 

circular hyperboloids can be determined. 

V. ISOTROPY VERIFICATION 

A. Steps of Verification  

In order to verify the validity of the isotropy condition, it is 
necessary to calculate the isotropy index. Moreover, different 
accelerometers located on the same circular hyperboloids have 
the same acceleration matrix. So long as the parameters of 
circular hyperboloids satisfy isotropy condition, the 
accelerometers constructed from the circular hyperboloids are 
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isotropy. 
The verification steps are given as follows: 
(1). Given the generalized mass and the determined 

parameters n  and   , the geometric parameters for target 
circular hyperboloids can be calculated under isotropy 
condition. 

(2). Calculate the acceleration matrix with the geometric 
parameters of target circular hyperboloids and Equation (13). 
Then, the isotropy index is computed by Equations (17) – (19). 

B. Verification for Equal-Leg Modified GSPs  

Equal-leg modified GSP is more suitable to construct the 
accelerometer for its uniform output. In order to calculate the 
isotropy index of the accelerometer based on equal-leg modified 
GSP, let 1n   . Additionally, we used the mass shaped cylinder 
with radius R  , height 3h R  and density of the cylindrical 

mass 38900 /kg m   . Set the radius of the mass R  as a 
variable, the isotropy indexes aS  and Sς   are related to the 
radius. 

In order to be easy to calculate isotropy indexes aS  and Sς  , 
let the radius R  in the range of 0.01 0.08m R m   and the 
step length 0.0001R m   .   was chosen arbitrarily within 
the range of  0 / 6    . We used the optimization tool to 
obtain the relations, which are shown in Figure 3. 

 
(a) 

 
(b) 

Fig. 3 Relationship between ,a bS S and R . (a) aS R ; and (b) 

S Rς . 

Similarly, let the angle   in the range of 0 / 6    and 
the step length / 3000    , radius R  is chosen arbitrarily. 
We used the optimization tool to obtain the relationship 

between the isotropy indexes and the angle. Furthermore, the 
relations are shown in Figure 4. 

 
(a) 

 
(b) 

Fig. 4 Relationship between ,a bS S  and  . (a) aS  ;and (b) 

S ς . 
 

Based on Figures 3 and Figures 4, we can draw conclusions 
as follows: 

1) With the change of the variable R  or   , the linear and 
angular isotropy index remain constant 1, which is isotropy for 
the parallel six-axis accelerometer. 

2) As a matter of fact, Figure 3 represents a series of circular 
hyperboloids with isotropic condition and Figure 4 represents a 
serious of isotropic accelerometer on determined circular 
hyperboloids.  

VI. EXAMPLE FOR ISOTROPIC ACCELEROMETER 

A. Parameters of circular hyperboloids  

An example is applied to illustrate the design process of an 
isotropic accelerometer. The steps are presented in detail as 
follows: 

1) Choose the ratio of the waist radius n  
The ratio of the waist radius   within the range 0 1n  . In 

order to establish the accelerometer based on equal-leg 
modified GSP, let 1n  . 

2) Give the angle   
The angel   is in the range 0 / 6   . Considering the 

interference between mass and other parts and installation of the 
accelerometer,   takes the maximum / 6 . 

3) Set the generalized mass 
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The parameters of the cylindrical mass include the radius 
30R mm , height 3h R , density of the mass 

38900 /kg m  , mass 2m R h , and moment of inertia 
2 / 2x y zI I I mR   . 

From Equations (19)–(32) and the relevant data, we can 
calculate the geometry parameters of the target circular 
hyperboloids: 

 1 2 1 215 , 18.4 ,a a mm z z mm     

 2 2 2
1 2 112.5c c mm   

Then, the surface equations of the target circular hyperboloids 
(as shown in Figure 5) can be determined: 

2 2 2
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D
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2 2 2

2
( 18.4): 1

225 112.5
x y z

D
 
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Fig. 5 Target circular hyperboloids. 

B. Structure Established from Circular Hyperboloids  

The example ( 0.03 , / 6R mm    ) is included in the 
isotropy verification range in section 5. Thus, the structures of 
the accelerometer generated from the target circular 
hyperboloids are isotropic. The goal of this section was to 
establish the structure of the accelerometer. 

In the Cartesian coordinate system, first, two planes are 
selected that are parallel with the XOY plane to intersect the 
circular hyperboloids, then the planes for the upper platform 
and lower platform are determined respectively [23]. In order to 
establish the accelerometer based on equal-leg modified GSP, 
the plane for the upper platform should coincide with the XOY 
plane. The plane for lower platform is determined by the height 

rh  , which is the height between the upper platform and lower 
platform. Two planes and circular hyperboloids intersect at four 
circulars, where the radiuses are 1 2 3, , ,r r r  and 4r . 

As the structure of accelerometer lies on circular 
hyperboloids, each group of legs coincides with the generatrices 
of the circular hyperboloid, respectively.   in Figure 6 can 
define the position of two initial legs in each circular 
hyperboloid, and its range is [0, / 6] . In order to avoid the 
interference in each leg,   takes the maximum. By rotating the 
two initial legs with the step 2 / 3  along the z-axis, other two 

groups of legs are obtained. And the structure of the 
accelerometer is fabricated and is shown in Figure 6. The 
structural parameters’ values are shown in Table 1. 

 
Fig. 6 Structure of the example. 

Table 1. Structural parameters’ values of the example. 
 

Parameters Value 

r1 30.000 mm 
r2 30.000 mm 
r3 31.500 mm 
r4 81.150 mm 
α π/6      rad 
hr 38.000 mm 

 

VII. SIMULATION EXPERIMENT 

A. Stiffness and Deformation  

According to the mechanics of materials, the relation between 
the forces and deformations on each leg can be expressed as: 

  f Κ l   (34) 
where K  is the diagonal stiffness matrix of the legs, which can 
be written as: 

 1 2 3 4 5 6( , , , , , )diag k k k k k kK   (35) 
Assuming the material and cross sectional area of each leg are 

the same, the stiffness coefficient ik  satisfies: 
 /i ik EA l   (36) 

where E  is the modulus of elasticity of the legs; A  is the cross 
sectional area of the legs; and ( 1,2,3,4,5,6)il i   is the length 
of each leg. 

The relation between the forces and the strain on the legs can 
be derived from Equations (34) – (36) as following: 

 EAf q   (37) 

where 1 2 3 4 5 6( , , , , , )Tq q q q q q q  is the vector composed of the 
strain of six legs. 

Substituting Equation (13) and Equation (37) into Equation 
(11), the relation between acceleration and strain on each leg is 
conducted: 

 x EA Gq   (38) 

B. Calibration Matrix  

In the practical measurement, the elastic structure of a 
six-axis accelerometer outputs the strain on the legs instead of 
the acceleration. Assuming a single direction acceleration 
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vector is loading on the accelerometer, the strain output from 
each leg contains the coupling strain between the axes. In order 
to decouple the coupling strain, we introduce the calibration 
matrix. The relationship between the input and output of the 
accelerometer can be expressed [32]: 

 ω βV   (39) 
where  
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is the acceleration vector for multi-times loading in a single  
direction. , ,xi yi zi    are the three linear acceleration 

components and , ,xi yi zi    are the three angular acceleration 
components. 
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 

 

 

is the calibration matrix of the accelerometer, the first three 
rows of the calibration matrix is the linear acceleration 
calibration matrix, and the last three rows of the calibration 
matrix is the angular acceleration calibration matrix. 

  V  is the strain on each leg corresponding to the multi-times 
loading acceleration vector. Rewriting Equation (39), the 
calibration matrix of the accelerometer can be expressed as: 

 1β ωV   (40) 
where if V  is not a square matrix, the inverse of V  is called its 
generalized inverse matrix. 

Calibration matrix β  reflects the relationship between the 
acceleration vector and strain, which are affected by the 
measuring accuracy and coupling error. 

C. Simulation Experiment  

The elastic structure of the accelerometer is the key to 
transform the acceleration into strain. Compared with the 
traditional spherical hinge, flexure hinge have the following 
main advantages: decreased assembly requirements, no friction, 
reduce weight, and no lubrication [37–39]. Therefore, we 
applied the flexure hinge to construct the solid model on the 
example’s structure for the accelerometer, where the leg’s cross 
sectional area 21.6 -5A e m , the diameter of flexure hinge 

3hd mm , and the length of the flexure hinge 4h mml . 
 

 
Fig. 7 The finite element model of the accelerometer. 

 
The finite element model is shown in Figure 7. The material 

of the mass was a copper alloy, with the density of 38900 /kg m . 
The material of the leg was an aluminum alloy, the density was 

32700 /kg m , the elastic modulus was 7.1E10Pa, and the 
Poisson’s ratio was 0.31. Additionally, the static characteristic 
simulation of the accelerometer was carried out by the finite 
element method. 

Setting the fixed constraint on the lower platform and loading 
the acceleration along each axis for multi-times respectively, 
then the acceleration for multi-times loading can be written as: 
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ω   (41) 

Setting the linear acceleration along each axis to 29.8 /m s , 
the angular acceleration along each axis to 2500 /rad s , then 

2
1 2 3 9.8 /x y zw w w m s   , 2

4 5 6 500 /x y z rad s     . 
The experimental strain on each leg can be obtained by a 
running simulation. The deformations of the six legs are shown 
in Figure 8. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 8 Deformation of six legs on multi-times loading along each axis 
respectively. (a) deformation of six legs under a linear acceleration 
vector along the x-axis; (b) deformation of six legs under a linear 
acceleration vector along the y-axis; (c) deformation of six legs under a 
linear acceleration vector along the z-axis; (d) deformation of six legs 
under an angular acceleration vector along the x-axis; (e) deformation 
of six legs under an angular acceleration vector along the y-axis; and 
(f) deformation of six legs under an angular acceleration vector along 
the z-axis. 
 

The strain matrix is obtained from the experiment: 
2.141 3.704 3.208 2.368 4.706 3.329
4.304 0.008 3.020 2.262 4.087 3.357

2.153 3.737 3.017 4.608 0.089 3.362
2.151 3.707 3.019 2.443 4.081 3.359
4.294 0.009 3.022 2.374 3.993 3.365

2.142 3.706 3.02
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 (42) 

D. Comparison  

In order to validate the structure and the results of 
experiment, we compared the experimental isotropy index with 
the theoretical isotropy index. 

The acceleration matrix of the accelerometer was obtained by 
the relevant parameters and Equation (13): 

 

1

0.335 0.670 0.335 0.335 0.670 0.335
0.580 0 0.580 0.580 0 0.580
0.474 0.474 0.474 0.474 0.474 0.474
15.782 15.784 31.565 15.782 15.784 31.565
27.337 27.336 0.001 27.337 27.336 0.001

22.319 22.319 22.
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 

 (43) 

According to the acceleration matrix of the accelerometer, 
the theoretical isotropy index can be calculated by Equations 
(44) – (46) respectively, which is shown in Table 2. 

 1 1 1( )T

aG G Gς   (44) 

 1
1

1
( )a

a

S
cond


G

  (45) 

 1
1

1
( )

S
cond


G

ς

ς

  (46) 

The calibration matrix of the experiment can be calculated by 
substituting Equation (41) and Equation (42) into Equation 
(40): 
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0.039 0.075 0.037 0.037 0.076 0.038
0.065 0.001 0.067 0.066 0.001 0.065
0.054 0.055 0.055 0.054 0.053 0.053

1.769 1.769 3.549 1.781 1.781 3.564
3.063 3.097 0.045 3.065 3.097 0.050
2.464 2.482 2.504 2
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 (47) 

The calibration matrix reflects the relationship between 
acceleration and strain, which has the same effect as the 
acceleration matrix. Hence, the experimental isotropy index can 
be yielded by the same definition, which is expressed as follows. 
The results are shown in Table 2. 
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Table 2. Theoretical and experimental results. 
 

No. isotropy index Sai Sεi 

1 0.999 1.000 

2 0.992 0.979 
 

where aiS  are the linear isotropy index, and iSς  are the 
angular isotropy index. The no. 1 index denotes the theoretical 
results; the no. 2 index denotes the results of the experiment. 

VIII. CONCLUSIONS 
The method of circular hyperboloids was used to design the 

isotropic accelerometer based on modified GSP. The results of 
isotropy verification and the comparison between the 
theoretical and experimental isotropy index proved that the 
method of circular hyperboloids could achieve isotropy. The 
main conclusions are as follows:  
1) In this paper, a novel research method, the method of 

circular hyperboloids, was applied to study the 
accelerometer. The static model of the accelerometer was 
established and the isotropy was defined. 

2) By calculating the isotropy index, the method of circular 
hyperboloids constructed isotropic accelerometer based on 
equal-leg modified GSP was proven to be reliable. 

3) An example was illustrated as to how an isotropic 
accelerometer was constructed using the method of circular 
hyperboloids.  

4) According to the theory of parallel mechanism and the 
stiffness on the leg, the relationship between acceleration 
and strain on each leg was derived. The solid model was 
constructed by the example’s structure. Using the finite 
element method, the static characteristic was simulated. 
The theoretical isotropy index and the experimental 

isotropy index were yielded, respectively. According to the 
comparison between the theoretical and experimental 
isotropy index, the method to fabricate the solid model was 
proven to be reliable.  
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