
Bounds on Complexity when Sorting Reals

Marcel Jǐrina,
Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věž́ı, Prague 8, 18207

Czech Republic

Received: March 13, 2020. Revised: May 28, 2020. Accepted: June 30, 2020. Published: July 2, 2020.

Abstract- We derive the upper bounds on the
complexity of the counting sort algorithm applied
to reals. We show that the algorithm has a time
complexity O(n) for n data items distributed uni-
formly or exponentially. The proof is based on
the fact that the use of comparison-type sorting
for small portion of a given data set is bounded
by a linear function of n. Some numerical demon-
strations are discussed.

Keywords- Linear time, Sorting reals, Time
complexity

I. Introduction

MANY sorting algorithms have existed since 1954
[8] and among them the bucket sort and counting

sort work with linear time complexity but for integer
sorting keys. Usual cost for linear time complexity is
linear space complexity, i.e. some array, ev. arrays are
needed.

Problem of fast sorting with noninteger (real, float)
sorting keys is dominated by the quicksort algorithm [3]
that exists in countless versions. The big advantage of
the quicksort is a small and constant space complexity.
There is also the proof that for rational numbers gener-
ally the best mean time complexity of the sorting based
on comparison is given by n log2 n.

However, a fast algorithm for sorting reals in a linear
time is not known. Here we prove linear time complexity
for the counting sort algorithm modified for sorting reals.

When ranking reals in the counting sort, it often hap-
pens that several items sorted fall into one cell. These
cases form groups. The correct sorting of items in a
group is solved by a comparison sort, especially the
quicksort.

We prove here the linear time complexity of this al-
gorithm for reals with uniform and exponential distribu-
tions. The proof is based on the fact of very fast con-
vergence of the number of groups to zero with their size.
That is why it is possible to bound from above the time
complexity of sorting all the groups by a constant mul-
tiplied by the total number of items sorted n.

At the same time, we will show how to use this algo-
rithm for heavy-tailed distributions including the Cauchy
distribution of items sorted.

II. Background

A. Problem formulation
Let there be a vector random variable Ψ =

{ψ1, ψ2, ..., ψn}, where ψi are independent and indenti-
cally distributed random variables with a given distribu-
tion.

Let x = {x1, x2, ..., xn} be a fixed sample (realization)
of Ψ.

The question is if x, considered a sequence, can be
sorted in a time proportional to n.

B. Sorting algorithms
B..1 Comparison sort

Definition 1 The comparison sort is a procedure that
uses the only operation

if xi > xj and i < j then t = xi, xi = xj , xj = t,
(1)

where t is a temporary variable.

Theorem 1 The best mean sorting time of the compar-
ison sort is proportional to

n ln2 n (2)

Proof see [1].

B..2 Counting sort

The counting sort is based on the idea to use inte-
ger keys directly as ranks of items sorted. It works by
creating an integer array of size S and using individual
bins to count the occurrences of items in the input. Each
item is then counted by incrementing the value of its cor-
responding bin in S. Afterwards, the counting array is
looped through to arrange all of the inputs in order.

The algorithm uses only simple loops of fixed length,
without recursion or subroutine calls.

This sorting algorithm is extremely fast and has a
very good asymptotic behavior as n increases. It also
can be modified to provide stable behavior [1].

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 276

B..3 Assignment sort

The simplest version of the counting sort uses as-
sumption that the minimal difference between any two
items is nonzero and known as ∆.

Algorithm 1 (The assignment sort, ev. the direct
counting sort.) Let for sample x:

1) there exist ∆ such that for any two xi, xj ∈ x, |xi−
xj | < ∆, and let integer S ≥ (xM − xm)/∆, where
xM = max(x1,2 , ..., xn), xm = min(x1,2 , ..., xn).

2) there be S integer variables (bins) c1, c2, ..., cS , ini-
tially ci = 0.

3) for xi, i = 1, 2, ..., n

ri = b1 + (S − 1)
xi − xm
xM − xm

c, (3)

and cri be incremented by one.

4) for ci, i = 2, 3, ..., S let ci = ci + ci−1, and c1 = 1.

5) for i = 1, 2, ..., n ycri = xi.

Then y = {y1, y2, ..., yn} is the sorted sequence x.

This algorithm is very fast with only n data moves,
i.e. one data move per item. Supposing ∆ is known,
then each data item is read only twice, once to give the
maximum and minimum, and then to get rank ri. Un-
fortunately, it is difficult to state the ∆, and, moreover,
in case of reals it can be extremely small.

B..4 The counting sort for reals

This algorithm allows that a single bin is assigned
to several items. These items are unsorted and appear
in the same order as they are in the original sequence
x. These groups of items have to be sorted. Because
individual items are reals, a comparison sort has to be
used for these groups.

Algorithm 2 (The counting sort for reals.) Let for
sample x:

1) there be n integer variables (bins) c1, c2, ..., cn, ini-
tially for each i ci = 0.

2) for i = 1, 2, ..., n rank ri is computed according to

ri = b1 + (n− 1)
xi − xm
xM − xm

c, (4)

where xM = max(x1,2 , ..., xn),
xm = min(x1,2 , ..., xn), and cri be incremented by
one.

3) for ci, i = 2, 3, ..., n let ci = ci + ci−1, and c1 = 1.

4) for i = 1, 2, ..., n, ycri = xi and cri be incremented
by one.

5) for i = 1, 2, ..., n − 1 and ci+1 − ci > 1 sort
yci , yci+1, ..., yci+1 using any comparison sort.

Then y = {y1, y2, ..., yn} is the sorted sequence x.

Note 1 We call a multiplicity the number of items that
have the same value of ri according to step 4, i.e. they
are assigned to the same bin. These items (a group) are
sorted by a comparison sort according to step 5). We
denote the multiplicity by k.

The Algorithm breaks down data to small and easy
to handle groups. Thus, it may remind the replicated
subtree problem, or the scaling down data [5], eventually
the k shortest paths problem [6].

III. Results

A. The computational complexity
In the Algorithm 2 there are several loops, all of them

of length n.
Step 5) is important. The loop here contains an in-

ner comparison sort that runs in cases of multiple items
having the same ri.

A..1 The uniform distribution

Supposing uniform distribution of xi, i = 1, 2, ..., n,
we can estimate the probability of zero, 1, 2, ... items
in a bin. This is given by binomial distribution and it
decreases rapidly with the size k of the group, i.e. with
the number of items assigned to a bin.

Theorem 2 Let xi, i = 1, 2, ..., n be independent and
uniformly distributed. Then, Algorithm 2 has time com-
plexity O(n).

Proof. In step 5), there are groups of length k equal to
two or more (multiplicity). These groups appear ran-
domly. Under assumption of the uniform distribution of
random variables xi this is the Bernoulli trial. Then the
probability of appearance of a group of multiplicity k (0,
1, 2, n) is given by

Pk =

(
n

k

)
pk(1− p)n−k (5)

The mean total number of items in bins with multiplicity
k is

nk = n

(
n

k

)
pk(1− p)n−k , (6)

where

p =
1

n
(7)

Ratio nk/k gives the number of groups with multiplicity
k. The worst case complexity for sorting them is propor-
tional to k2 (e.g. when using the bubble sort). The time
needed to sort all groups of size k is

nk
k
k2 = knk . (8)

The time needed to process all groups of all sizes is pro-
portional to

Ce =
∑
k>0

knk (9)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 277

(There is
∑

k≥0k = n.) Empty groups (k = 0) mean
no effort, in groups with multiplicity k = 1 the time
complexity is proportional to their number.

We show that cases of k equal to 2 and more represent
together time complexity proportional to n. There is

Ce2 =
n∑

k=2

knk.

After substitution of (6)

Ce2 =
n∑

k=2

knPk ,

Ce2 =
n∑

k=2

kn

(
n

k

)
pk(1− p)n−k .

Then

Ce2 =
n∑

k=2

kn

(
n

k

)
1

nk

(
1− 1

n

)n−k

.

It holds
1. (

n

k

)
≤ nk

k!
< (

n.e

k
)k

[9] (e=2.71828...)
2.

(1− 1

n
)n−k ≤ 1 (10)

for k = 1, 2, ..., n
We have

Ce2 ≤ n
∑

n
k=2k(

n.e

k
)k

1

nk
(1− 1

n
)n−k

= n
∑

n
k=2k

1−kek(1− 1

n
)n−k

≤ n
∑

n
k=2k

1−kek = nW .

Then we have to show that W =
∑n

k=2 k
1−kek is fi-

nite.We can see the series

{k1−kek} (11)

as a geometric series with variable quotient q = e
k

(k
k+1

)k ≤ e
2k

. There exists k0 > e/2 such that q0 = e
2k0

< 1. Then

R =

k0−1∑
k=2

k2−kek = const

and
k1−kek < k1−k0

0 ek0

for k > k0. Then the series

{k0(
e

k0
)k0qk−k0

0 } (12)

with constant quotient q0 and the first term

a1 = k0(
e

k0
)k0

is convergent and maximizes series (11). The maximizing
series

{a1qk0}

where k = 1, 2, ..., has the sum equal to

S = k0q0
k0

1

1− q0
(13)

and there is
Ce2 < (R+ S)n . (14)

for k = 1, 2, ..., n This finishes the proof.

Note 2 In the case of more effective sorting algorithm
for multiplicities with time complexity k log2 k in (9) the k
changes to log2 k and the same appears in numerator of (13)
in the form

S = log2 k0q0
k0

1

1− q0
(15)

A..2 Exponential distribution of items sorted

For the exponential distribution of xi, i = 1, 2, ..., n we
must use the Poisson binomial distribution [2], [4].

Theorem 3 Let sorting keys be exponentially distributed.
Then, Algorithm 2 has time complexity O(n).

Proof. As in the previous proof the step 5) is essential. Under
assuption of the exponential distribution of items sorted this
is the Bernoulli trial but for each k with diffrerent probability
[10]. Let pi be the probability of success in the ith trial.
Then, there is a formula for upper bound for probability mass
function Pk of groups of size k. The Chernoff bound of the
probability that a Poisson binomial distribution gets large is
given by [2]

Pr(S > k) ≤ exp

(
−kt+

n∑
i=1

ln(pi(e
t − 1) + 1)

)
, (16)

where t = ln(k/
∑n

i=1 pi). Substituting, we get

Pr(S > k) ≤ exp

(
−k ln

k

v

n∑
i=1

ln(pi(
k

v
− 1) + 1)

)
(17)

and

Pr(S > k) ≤ exp

(
k − v − k ln

k

v

)
(18)

with v =
∑n

i=1 pi. One can find that the last form the Cher-
noff bound (18) is independent of n. Under the assumption
that

∑n
i=1 pi = 1 there exists function of k

C∞(k) = exp(k(1− ln k))/e (19)

maximizing (17) independently of n.
The maximal number of groups of a given size k are groups

with k = 2. Items in groups of this size are either left as
they are or exchanged. This represents the time complexity
proportional to the total number of samples in groups of two
samples.

Groups with k ≥ 3 must be sorted. The complexity of
sorting a group of size k is proportional to k log2 k. The
probability that there are k items in a group is given by dif-
ference of (17), eventually (18) for k and k + 1 items. The
upper bound for the number of groups of size k can be es-
timated by this difference and by the total number of items
nC∞(3). Then, the complexity to sort all items in all groups
of size k is proportional to

nC∞(3)[C∞(k)− C∞(k + 1)]k log2 k . (20)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 278

For all groups of size k = 3 and more there is

nC∞(3)

n−1∑
k≥3

[C∞(k)− C∞(k + 1)]k log2 k . (21)

From now on we omit n. The ratio of (20) for k + 1 and k
diminishes fast for k > 9. Then we split (21) into the finite
term

C∞(3)

9∑
k=3

[C∞(k)− C∞(k + 1)]k log2 k (22)

and a series

{s(k)} = {C∞(3)[C∞(k)− C∞(k + 1)]k log2 k} (23)

that can be bounded by geometric series{
C∞(3)[C∞(9)− C∞(10)]9 log2 9qk−9

}
, (24)

where we denote the constant term

v9 = C∞(3)[C∞(9)− C∞(10)]9 log2 9

so that the geometric series has the form{
v9q

k−9
}
. (25)

We have to compare (23) and (25)

C∞(3)[C∞(k)− C∞(k + 1)]k log2 k < v9q
k−9 . (26)

It holds C∞(k)− C∞(k + 1) < C∞(k) and then

C∞(3)[C∞(k)− C∞(k + 1)]k log2 k < C∞(3)C∞(k)k log2 k

and then
C∞(3)C∞(k)k log2 k < v9q

k−9 .

It is

C∞(3)/(e.v9).exp(k(1− ln k)k log2 k < qk−9 (27)

Using the logarithm there is

ln(C∞(3)/(e.v9. ln 2)) +k−k ln k+ ln k+ ln ln k < (k−9) ln q

and we denote the left-hand side as Lh. For large k the dom-
inating term is −k ln k. On the right-hand side, the dominat-
ing term is k ln q. For q < 1 both sides diverge to −∞, the
Lh as fast as k ln k, the right-hand side linearly with k. From
it we decide that in (27) the left-hand side converges to zero
as fast as exp(−k ln k) and then faster than the right-hand
side that converges to zero as fast as exp(−k).

We can conclude that {qk−9} is the series with a finite
sum, which bounds from upper the sum of series {s(k)}, see
(23). Therefore, the complexity (21) is proportional to the to-
tal number n of items sorted. As all the loops of the algorithm
have time complexity O(n) and follow one after another, the
algorithm has the time complexity O(n). This finishes the
proof.

IV. Numerical demonstrations

A. The maximal multiplicity
Table 1 shows estimated maximal multiplicities km, i.e.

sizes of largest groups of items in dependence on the total
number of items n. To state numbers in the table we use
Chernoff bound in the form (19). The last column in Table
1 shows a simple formula roughly approximating km till n =
1015.

Table 1: The size of the largest bin.
n km b2 + log nc
10 3 3
100 4 4
1000 5 5
104 5 6
105 6 7
106 8 8
107 11 9
1010 14 12
1015 16 17
1030 27 32

B. Structure of the computational complexity

Table 2 shows time complexity for individual bin sizes k
from 1 to 10, and for sets of items according to the extend in
which sorting relates to them. There are three sets, a set of
items directly moved to their final positions, a set where items
are in pairs and approximately in half of cases their mutual
positions must be exchanged, and finally, sets of multiplicity
three and more that each must be sorted with the use of
comparison sort. We suppose sorting complexity k log2 k for
bin of size k.

Table 2: The computational complexity per one item
sorted.

Complexity Complexity Set
k per one item per one item type

and k given for the set
1 0.3204 0.3204 single items
2 0.4059 0.4059 pairs
3 0.3094 0.4729 multiplicity 3

and more
4 0.1219
5 0.03318
6 0.00695
7 0.00119
8 0.00017
9 2.18E-5
10 2.44E-6

Total 1.9923 1.9923 per one item

Note 3 In practice it can be faster to sort all groups of two
or more samples with the comparison sort.

C. Space complexity

The space complexity of Algorithm 2 is 2n, not counting
input data x and output y. It is also supposed that the algo-
rithm used for comparison sort of bins with multiplicities has
negligible space demand as the bubble sort or the quicksort.

D. Data alocation

Table 3 allows to quantify data allocation with the use of
the Chernoff bound. After initial assignment of items to bins
in step 2), there are 41.3% empty bins, 32% of items have
their own bin, 40.6% items share bin in pairs. For this 20.3%
bins are needed. Remaining 27.4% items share each a bin

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 279

with at least two other items. The number of items having
no bin (last column) equals to the number of empty bins.

Table 3: The use of bins, i.e. bin occupacy.
samples Cernoff Percenrage Percenrage
per bin* bound of samples of bins
empty 0 0.41279

1 1.0000 0.3204 0.3204
2 0.6796 0.4059 0.2030
4 0.2737 0.1952 0.0488
5 0.0785 0.0610 0.0122
6 0.0175 0.0143 0.0024
7 3.18E-03 2.69E-03 3.84E-04
8 4.90E-04 4.25E-04 5.31E-05
9 6.54E-05 5.77E-05 6.41E-06
10 7.69E-06 6.88E-06 6.88E-07
11 8.10E-07 8.10E-07 7.37E-08

E. Data moves
The first move for an item happens in step 4) of Algorithm

2. This is exactly n moves.
The other moves appear in sorting the groups of items.

There is a formula for the mean number of moves µ̄(k) in
dependence on the number k of items sorted when using the
quicksort, see [7] Corollary 5.

µ̄(k) =
2

3
(k + 1)Hk −

4k + 1

18
, (28)

where Hk is the kth harmonic number. In Table 4 the fre-
quency of appearance of bins of a particular size are taken
into account. Values in the Table are derived with the use of
the Chernoff bound, and then hold exactly for the exponen-
tial distribution of items sorted. The sum of the last column
is the number of moves 0.898n. This gives total 1.898n moves
when sorting n items with the use of Algorithm 2.

Table 4: The mean number of data moves in the quick-
sort for various data set size per one item sorted.

Quicksort Items Number Moves
k moves in a bin of bins per item
1 0.00 0.320 0.320 0
2 2.50 0.406 0.203 0.507
3 4.17 0.195 0.065 0.271
4 6.00 6.10E-02 1.52E-02 9.15E-02
5 7.97 1.43E-02 2.86E-03 2.28E-02
6 10.04 2.69E-03 4.49E-04 4.51E-03
7 12.22 4.25E-04 6.06E-05 7.41E-04
8 14.47 5.77E-05 7.21E-06 1.04E-04
9 16.80 6.88E-06 7.65E-07 1.29E-05
10 19.20 7.33E-07 7.33E-08 1.41E-06

F. Other distributions
We proved the linear sorting time complexity for uniform

and exponential distribution of sorting key. We use the find-
ing for uniform and exponential distributions that even there
are groups of items to be sorted with a comparison sort, the
computational complexity per one item can be bounded from

above. It can be supposed that a similar behavior appears
also for other light-tailed distributions. With some licence we
can rely on that the linear time complexity holds for many
light-tailed distributions.

For heavy-tailed distributions we use the fact that data
can be transformed with the arctg function. The arctg func-
tion applied to data with Cauchy distribution transforms
them into having the uniform distribution. For other heavy-
tailed distributions the resulting distribution may be rather
strange. Despite this fact, characteristics of the light-tailed
distributions may be kept and Algorithm 2 can be used with
success.

V. Conclusion

The essence of the algorithm studied here is start as a
counting sort, ev. as a bucket sort with the number of bins
or buckets equal to the number of items sorted. Items in
buckets with two or more items sort with a comparison sort.

We found that the number of items in the largest bin
grows very slowly with the total number of items sorted n. At
the same time, the mean number of such bins lessens rapidly
with their size. Overall computational complexity of sorting
all bins with two and more items can be bounded by a con-
stant multiplied by the total number of items sorted n. From
it follows that the total time complexity of the algorithm is
proportional to the total number of samples sorted n. There
is also 1.898n data moves. At the same time, the space needed
is equal to 2n, ev. 4n including input and output arrays. Re-
duction of the space complexity of the algorithm is subject
of futher research.

Acknowledgment

The work was supported (partly) by the long-term strate-
gic development financing of the Institute of Computer Sci-
ence (RVO:67985807) and in part by the Czech Ministry of
Education, Youth and Sports in project No. LM2015068 Co-
operation on experiments at the Fermi National Laboratory,
USA.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
“Introduction to Algorithms” (2nd ed.), MIT Press and
McGraw-Hill, 2001, Chap. 8.2 Counting Sort, pp. 168-
170, ISBN 0-262-03293-7.

[2] M. Fernandez, S. Williams, “Closed-Form Expression
for the Poisson-Binomial Probability Density Func-
tion”. IEEE Transactions on Aerospace and Elec-
tronic Systems. vol. 46 (2010), No. 2, pp. 803-817.
doi:10.1109/TAES.2010.5461658. Eventually available at
https : //en.wikipedia.org/wiki /Poisson binomial
distribution

[3] C. A. R. Hoare, “Quicksort” The Computer Journal
Vol. 5 1962, No. 1, pp. 10-16. Available at https :
//doi.org/10.1093/comjnl/5.1.10

[4] L. Le Cam, “An approximation theorem for the Poisson
binomial distribution.” Pacific J. Math. Vol. 10, 1960, No.
4, pp. 1181-1197.

[5] H. Liu, A. Gegov, F. Stahl, “J-measure Based Hy-
brid Pruning for Complexity Reduction in Classification
Rules”, WSEAS Transactions on Systems, pp.433-446 Is-
sue 9, Volume 12, September 2013.

[6] G. Liu, Z. Qiu, W. Chen, “An Iterative Algorithm
for Single-pair K Shortest Paths Computation” WSEAS
Transactions on Information Science and Applications,
pp.305-314, Volume 12, 2015.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 280

[7] C. Martnez, H. Prodinger, “Moves and displace-
ments of particular elements in Quicksort” The-
oretical Computer Science Volume 410, Issues
2123, 17 May 2009, Pages 2279-2284, available at
https://doi.org/10.1016/j.tcs.2009.01.006

[8] H. H. Seward, “Information sorting in the application of
electronic digital computers to business operations.” Re-
port No. r-232, Digital Computer Laboratory, MIT, Cam-
bridge, Mass., USA, 1954.

[9] P. Stanica, “Good lower and upper bounds
on binomial coefficients.” Journal of Inequali-
ties in Pure and Applied Mathematics, Vol. 2
(2001), No. 3, 5 pp. Eventually available at
https : /en.wikipedia.org/wiki/Binomial coefficient .

[10] T. H. Wang, “On the number of successes in independent
trials.” Statistica Sinica, Vo. 3 (1993), pp. 295-312.

Appendix 1: The Algorithm 2

void LS(double* arr, int* rank, long samples, double

keymin, double keymax) {

//uses IquickSort and double computation

//of position

long k,j,i,ix,kx;

double logdd;

int* rank1 = new int [samples+1];

logdd=1.0/(keymax-keymin);

for(k=0;k<=samples;k++) rank1[k]=0;

//FIRST loop to build histogram

for(k=0;k<samples;k++){

j=(long)fabs((double)(samples-1)*

(arr[k]-keymin)*logdd);

rank1[j+1]++;

}

//SECOND loop to build sums

for(k=1;k<=samples;k++) rank1[k]+=

rank1[k-1];

//THIRD loop fill-in rank

for(k=0;k<samples;k++) {

ix=(long)(fabs((double)(samples-1)*

(arr[k]-keymin)*logdd);

kx=rank1[ix];

rank[kx]=k;

rank1[ix]++;//bin for the next time

}

ix=0;kx=rank1[0];

//FOURTH loop sort groups by a comparison sort

for(k=0;k<samples-1;k++){

if(k>0) kx=rank1[k]+(rank1[k-1]==ix?0:1);

i=kx-ix;

if(i>1) IquickSort(arr,rank,ix,kx-1);

ix=kx;

}

} // There are indexes in the rank array such that

//arr[rank[i]] is arranged in ascending order.

//In the same way works the IquickSort

//(double* arr, long* rank, long from, long to).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.39 Volume 14, 2020

ISSN: 1998-4464 281

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

 This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Background
	Problem formulation
	Sorting algorithms
	Comparison sort
	Counting sort
	Assignment sort
	The counting sort for reals

	Results
	The computational complexity
	The uniform distribution
	Exponential distribution of items sorted

	Numerical demonstrations
	The maximal multiplicity
	Structure of the computational complexity
	Space complexity
	Data alocation
	Data moves
	Other distributions

	Conclusion

