
Optimum Flows in Directed Bipartite Dynamic Network. The Static

Approach.

Camelia Schiopu and Eleonor Ciurea*�

Transilvania University of Brasov, Brasov, Romania  

Received: April 8, 2020. Revised: July 10, 2020. Accepted: July 13, 2020. Published: July 14, 2020 .

Abstract- The theory of flows is one of the
most important parts of Combinatorial Optimiza-
tion and it has various applications. In this pa-
per we study optimum (maximum or minimum)
flows in directed bipartite dynamic network and
is an extension of article [9]. In practical situa-
tions, it is easy to see many time-varying opti-
mum problems. In these instances, to account
properly for the evolution of the underlying sys-
tem overtime, we need to use dynamic network
flow models. When the time is considered as a
variable discrete values, these problems can be
solved by constructing an equivalent, static time
expanded network. This is a static approach.

Keywords- static network flow, dynamic net-
work flow, bipartite network.

I. Introduction

THE optimum (maximum or minimum) flows prob-
lem seeks a feasible solution that sends the opti-

mum amount of flow from a specified source node to
another specified sink node. The general static network
flow models arises in a number of combinatorial appli-
cation as far reaching as machine scheduling, the assign-
ment of computer modules to computer processor, tanker
scheduling etc. [1], [2]. On the other hand, the bipartite
static network also arises in practical context such base-
ball elimination problem, network reliability testing etc.
and hence it is of interest to find fast flow algorithms for
this class of networks [3], [4], [5].

In some other applications, the time is an essential
ingredient. In these instances we need to use dynamic
network flow models [1], [6], [7], [2], [8].

In this paper, we present the optimum (maximum or
minimum) flow problem in bipartite dynamic networks
with static approach and is an extension of paper [9].
Further on, in Section 2, Section 3, and Section 4 are
presented some basic static and dynamic network nota-
tions, terminology and results which are necessarily in
Section 5, where we present optimum flow in directed
bipartite dynamic networks into a static approach. In
Section 6 two examples are given and in Section 7 are
presented some conclusions.

The problem of optimum flow in bipartite dynamic
networks is treated so far only only by the authors of
this paper.

II. Optimum flows in general static networks

The notions and the results presented in this section
are taked over from works [1], [10], [2].

We consider a connected, antisymmetric graph G =
(N,A) without loops with the set of nodes N = {1, . . . ,
i, . . . , j, . . . , n}, the set of arcs A = {a1, . . . , ak, . . . , am},
ak = (i, j), i, j ∈ N . Let S = (N,A, l, u, 1, n) be a static
network with the lower bound function l : A → N, the
upper bound (capacity) function u : A→ N, with N the
natural number set, 1 the source node and n the sink
node.

For a given pair of not necessarily disjoint subset X ⊂
N , Y ⊂ N we use the notation (X,Y )={(i, j)|(i, j) ∈
A, i ∈ X, j ∈ Y } and for a given function f : A → N we
use the notation f(X,Y ) =

∑
(X,Y ) f(i, j).

A flow vector f is a feasible flow vector in S if it
satisfies the following constraints:

f(i,N)− f(N, i) =

 v, if i = 1
0, if i 6= 1, n
−v, if i = n

(1a)

l(i, j) ≤ f(i, j) ≤ u(i, j), for all (i, j) ∈ A (1b)

with the value of the flow v ≥ 0 and f(i, j) = 0 for the
pairs (i, j) /∈ A

The optimum (maximum or minimum) flow problem
consist in determining a flow f for which v is optimized
(maximized or minimized).

We specify that if function f verifies (1a) then f is a
flow and if verifies and (1b) f is a feasible flow.

For maximum flow problem, a preflow f is a function
f : A→ N satisfying the next conditions:

f(N, i)− f(i,N) ≥ 0, i ∈ N − {1, n} (2a)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (2b)

The excess of each node i ∈ N − {1, n} for a preflow
f is

e(i) = f(N, i)− f(i,N) (3)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 309



and if e(i) > 0, i ∈ N − {1, n} then we say that node i
is an active node. Similarly, for minimum flow problem,
a preflow f is a function f : A → N satisfying the next
conditions:

f(i,N)− f(N, i) ≤ 0, i ∈ N − {1, n} (4a)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (4b)

The deficit of each node i ∈ N − {1, n} for a preflow
is

e(i) = f(i,N)− f(N, i) (5)

and if e(i) < 0, i ∈ N − {1, n} then we say that node i
is an active node.

For an optimum flow problem we refer to a node i
with e(i) = 0 as balanced. A preflow f satisfying the
condition e(i) = 0, i ∈ N − {1, n} is a flow. Thus, a flow
is a particular case of preflow.

A cut is a partition of nodes set N into proper subset
X and Y = N−X. We represent this cut using notation
[X,Y ]. An arc (i, j) with i ∈ X, j ∈ Y is a forward arc
of the cut and an arc (j, i) with i ∈ X and j ∈ Y is a
backward arc of the cut. Let (X,Y ) denote the set of
forward arcs and let (Y,X) denote the set of backward
arcs in the cut. We have [X,Y ] = (X,Y ) ∪ (Y,X). We
refer to a cut as a 1− n cut if 1 ∈ X and n ∈ Y .

Whereas the optimum flow problem with zero lower
bounds always has a feasible solution (since the zero flow
is feasible), the problem with positive lower bounds could
be infeasible. Any optimum flow algorithm for problems
with non-negative lower bounds has two phase:

(1) to determine a feasible flow if one exists;
(2) convert a feasible flow into an optimum flow.
We consider the network S′ = (N ′, A′, l′, u′, f ′) with

N ′ = N , A′ = A ∪ {(n, 1)}, l′(i, j) = l(i, j) (i, j) ∈
A, l′(n, 1) = 0, u′(i, j) = u(i, j), (i, j) ∈ A u′(n, 1) =
∞, f ′(i, j) = f(i, j), (i, j) ∈ A, f ′(n, 1) = v. Because
l′(n, 1) < u′(n, 1) and N ′ = N the relation l′(Y ′, X ′) ≤
u′(X ′, Y ′) is equally with the relation l(Y,X) ≤ u(X,Y ).
Thus, we transform the flow problem into a circulation
problem by adding the arc (n, 1) to network S. This arc
carries the flow send node 1 to node n back to node 1.
Clearly, the optimum flow problem admits a feasible flow
if and only if the circulation problem admits a feasible
flow.

The feasible circulation problem is to identify a flow
f ′ satisfying the following constraints:

f ′(i,N ′)− f ′(N ′, i) ≤ 0, i ∈ N ′ (6a)

l′(i, j) ≤ f ′(i, j) ≤ u′(i, j), (i, j) ∈ A′ (6b)

Theorem 1. Circulation Feasibility Conditions A circu-
lation problem with nonnegative lower bounds is feasible
if and only if for every set X of nodes l(Y,X) ≤ u(X,Y ),
Y = N −X.

For the maximum flow problem, we define the capac-
ity K[X,Y ] of the 1− n cut [X,Y ] as:

K[X,Y ] = u[X,Y ]− l[Y,X] (7)

and for the minimum flow problem, we define the capac-
ity k[X,Y ] of the 1− n cut [X,Y ] as:

k[X,Y ] = l[Y,X]− u[X,Y ] (8)

For the maximum flow problem we refer to a 1 − n cut
which has the minimum capacity among all 1 − n cuts
as a minimum cut and for the minimum flow problem
we refer a 1 − n cut which has the maximum capacity
among among all 1− n cuts as a maximum cut.

Theorem 2. Max-Flow Min-Cut Theorem If there exists
a feasible flow in the network S = (N,A, l, u, 1, n), the
value of the maximum flow from a source node 1 to a
sink node n is equal with the capacity of the minimum
1− n cut.

Theorem 3. Min-Flow Max-Cut Theorem If there exists
a feasible flow in the network S = (N,A, l, u, 1, n), the
value of the minimum flow from a source node 1 to a
sink node n is equal with the capacity of the maximum
1− n cut.

The concept of residual network plays a central role
in the development of all the optimum flow algorithms.
Residual capacity of an arc (i, j) for maximum flow prob-
lem is:

r(i, j) = u(i, j)− f(i, j) + f(j, i)− l(j, i) (9)

and for minimum flow problem is:

r(i, j) = u(j, i)− f(j, i) + f(i, j)− l(i, j) (10)

We refer to the network S̃ = (N, Ã, r, 1, n) with Ã =
Ã+ ∪ Ã−, Ã+ = {(i, j)|(i, j) ∈ A} and f(i, j) < u(i, j),
Ã− = {(j, i)|(i, j) ∈ A} and f(i, j) > l(i, j) as the resid-
ual network (with respect to the flow f).

The optimum flow algorithms works with only resid-
ual capacities. These algorithms end with optimal resid-
ual capacities. From these residual capacities we can
construct optimum flow. For maximum flow we have:

f(i, j) = l(i, j) +max{0, u(i, j)− r(i, j)−
−l(i, j)}, (i, j) ∈ A

(11)

and for the minimum flow we have:

f(i, j) = l(i, j) +max{0, r(i, j)− u(j, i)+

+l(j, i)}, (i, j) ∈ A
(12)

Clearly, the present results in this section are valid and
for bipartite networks.

The reader interested in further details is urged to
consult the works [1], [10], [2].

III. Optimum flows in general dynamic
networks

The notions and the results presented in this section
are take over from works [6], [7], [2], [8], [11], [12], [13].

Most optimum flow models considered in the litera-
ture are static, in which the lower bounds and the up-
per bounds of the arcs are assumed to be constant. In

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 310



practical situations, it is easy to see many time-varying
optimum flow problems.

Let D = (N,A,H, h, l, u, 1, n) be a general dynamic
network, where N = {1, . . . , i, . . . , j, . . . , n} is the set
of nodes, A = {a1, . . . , ak, . . . , am} is the set of arcs,
H = {0, 1, . . . , t, . . . , T} is the set of periods with T ∈ N,
h : A×H → N is the transit time function, l : A×H → N
is the time lower bound function, u : A×H → N is the
time upper bound function, 1 the source node and n the
sink node.

The optimum (maximum or minimum) dynamic flow
problem for T time periods is to determine a dynamic
flow function f : A × H → N, which should satisfy the
following conditions in dynamic network D:

T∑
t=0

(
∑
j

f(1, j; t)−
∑
k

∑
τ

f(k, 1; τ)) = vd (13a)

∑
j

f(i, j; t)−
∑
k

∑
τ

f(k, i; τ) = 0, i 6= 1, n, t ∈ H

(13b)

T∑
t=0

(
∑
j

f(n, j; t)−
∑
k

∑
τ

f(k, n; τ)) = −vd (13c)

l(i, j; t) ≤ f(i, j; t) ≤ u(i, j; t), (i, j) ∈ A, t ∈ H (14)

opt vd, (15)

where τ = t − h(k, i; t), vd =
T∑
t=0

v(t), v(t) is the

flow value at time t, f(i, j; t) = 0 for all t ∈
{T − h(i, j; t) + 1, . . . , T} and opt is max or min.

In the most general dynamic model, the parameter
h(i) = 1 is waiting time at node i and the parameters
l(i; t), u(i; t) are lower bound and upper bound for flow
f(i; t) that can wait at node i from time t at t+ 1. This
most general dynamic model is not discussed in this pa-
per.

Obviously, the problem of finding an optimum flow
in dynamic network D = (N,A,H, h, l, u, 1, n) is more
complex than the problem of finding an optimum flow in
static network S = (N,A, l, u, 1, n). Happily, this com-
plication can be resolved, through static approach, by
rephrasing the problem in dynamic network D into a
problem in static network R0 = (V0, E0, l0, u0) with mul-
tiple source nodes and multiple sink nodes. The network
R0 can be obtained by two methods:

1. using static shortcut path [1];
2. using dynamic shortcut path [6].

We present only second method [14].
Let d(1, i; t) be the length of the dynamic shortcut

path at time t from the source node 1 to the node i
and let d(i, n; t) be the length of the dynamic shortest
path at time t from the node i to the sink node n, with

respect to h in the dynamic network D. Let us consider
Hi = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − d(i, n; t)}, i ∈ N , and
Hi,j = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − h(i, j; t)− d(j, n; θ)},
(i, j) ∈ A. The multiple source, multiple sinks static
reduced expanded network R0 = (V0, E0, l0, u0) has V0 =
{it|i ∈ N, t ∈ Hi}, E0 = {(it, jθ)|(i, j) ∈ A, t ∈ Hi,j}
l0(it, jθ) = l(i, j; t), u0(it, jθ) = u(i, j; t), (it, jθ) ∈ E0.

The optimum flow problem for T time periods in
the dynamic network D formulated in conditions (13),
(14), (15) is equivalent with the optimum flow problem
in static reduced expanded network R0 as follows:

f0(it, V0)− f0(V0, it) =


vt, if it = 1t, t ∈ H1

0, if it 6= 1t, nt, t ∈ H1,

t ∈ Hn

−vt, if it = nt, t ∈ Hn

(16)

l0(it, jθ) ≤ f0(it, jθ) ≤ u0(it, jθ), (it, jθ) ∈ E0 (17)

opt
∑
H1

vd, (18)

If h, l, u are constant over time, then a dynamic net-
work D is said to be stationary. In this case, the dy-
namic distances d(1, i; t), d(i, n; t) become static dis-
tances d(1, i), d(i, n).

Many notions and results are presented in [1], [6], [7],
[2].

IV. Optimum flows in bipartite static
networks

In this section we consider that static network S =
(N,A, l, u, 1, n) is a bipartite static network. A bipartite
network has the set of nodes N partitioned into two sub-
sets N1 and N2, so that for each arc (i, j) ∈ A, either
i ∈ N1 and j ∈ N2 or i ∈ N2 and j ∈ N1. Let n1 = |N1|
and n2 = |N2|. Without any loss of generality, for the
maximum flow problem we assume that n1 ≤ n2 and
for the minimum flow problem that n2 ≤ n1. Also we
assume that 1 ∈ N2 and n ∈ N1. A bipartite network
is called unbalanced if n1 << n2 for the maximum flow
problem and n2 << n1 for the minimum flow problem.
Otherwise the bipartite network is called balanced.

In reference [4], [5] the authors show that time bounds
for several optimum flow algorithms automatically im-
proves when the algorithms are applied without modifi-
cation to unbalanced networks. A carefully analysis of
the running times of these algorithms reveals that the
worst case bounds depend on the number of arcs in the
longest node simple path in the network. We denote this
by L. For general network, L ≤ n − 1 and for a bipar-
tite network L ≤ 2n1 + 1 for maximum flow problem,
L ≤ 2n2 + 1 for minimum flow problem. The columns
3 and 5 of Table 1 summarizes these improvements for
several network flow algorithms.

The authors of references [3], [4] obtain further run-
ning time improvements by modifying the algorithms.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 311



Algorithm Running time, Running time, Running time Running time Running time

general network bipartite network modified version bipartite network modified version

(optimum) (maximum) (maximum) (minimum) (minimum)

Dinic n2m n2
1m does not apply n2

2m does not apply

Karazanov n3 n2
1n n1m + n3

1 n2
2n n2m + n3

2

FIFO preflow n3 n2
1n n1m + n3

1 n2
2n n2m + n3

2

Highest label n2√m n1n
√
m n1m n2n

√
m n2m

Excess scaling nm + n2 log ū n1m + n1n log ū n1m + n2
1 log ū n2m + n2n log ū n2m + n2

2 log ū

Table 1: Several optimum flows algorithms

This modifications applies only to preflow algorithms.
The columns 4 and 6 of Table 1 summarizes the im-
provements obtained using this approach. In Table 1
we use the notation ū. This notation have value ū =
max{u(i, j)|(i, j) ∈ A} [15].

The reader interested in further details is urged to
consult the papers [3], [4], [5].

V. Optimum flows in bipartite dynamic
networks

In this section the dynamic network D =
(N,A,H, h, l, u, 1, n) is bipartite.

We construct the static reduced expanded network
R0 = (V0, E0, l0, u0) with V0 = W1 ∪ W2, W1 =
{it|i ∈ N1, t ∈ Hi}, W2 = {it|i ∈ N2, t ∈ Hi}.

In paper [16] the next theorem is proved.

Theorem 4. If the dynamic network D =
(N,A,H,h,l = 0, u, 1, n) is bipartite, then the static
reduced expanded network R0 = (V0, E0, l0 = 0, u0) is
bipartite.

From this theorem results: if the dynamic network
D = (N,A,H, h, l > 0, u, 1, n) is bipartite, then the
static reduced expanded network R0 = (V0, E0, l0 >
0, u0) is bipartite.

Let w1, w2, e0 be w1 = |W1| w2 = |W2|, e0 = |E0|. If
n2 << n1 then obvious that w2 << w1 and if n1 << n2
then obvious that w1 << w2.

In the static bipartite network R0 we determine a
maximum flow f0 with a generalization of bipartite FIFO
preflow algorithm.

We recall that the FIFO preflow algorithm applied
into general static network S for a maximum flow f
might perform several saturating pushes followed either
by a nonsaturating push or relabeled operation. We re-
fer to this sequence of operations as a node examination.
The algorithm examines active nodes in the FIFO or-
der. The algorithm maintains the list Q of active nodes
as a queue. Consequently, the algorithm selects a node
i from the front of Q, performs pushes from this node,
and adds newly active nodes to the rear of Q. The al-
gorithm examines node i until either it becomes inactive
or it is relabeled. In the latter case, we add node i to the

rear of the queue Q. The algorithm terminates when the
queue Q of active nodes is empty. The reader interested
in further details is urged to consult the book [1].

The modified version of FIFO preflow algorithm for
maximum flow in bipartite static network S is called bi-
partite FIFO preflow algorithm. A bipush is a push over
two consecutive admissible arcs. It moves excess from a
node i ∈ N1 to another node k ∈ N1. This approach
means that the algorithm moves the flow over the path
P̃ = (i, j, k), j ∈ N2, and ensures that no node in N2

ever has any deficit. A push of α units from node i to
node j decreases both e(i) and r(i, j) by α units and
increases both e(j) and r(j, i) by α units. In the pa-
per [3] is presented the bipartite preflow for maximum
flow (BFIFOPM) algorithm. We remark the fact that
this algorithm runs on network S = (N,A, l = 0, u, 1, n).

In the paper [14] is presented the generalized of BFI-
FOPM algorithm for a network R0 = (V0, E0, l0, u0)
where l0 > 0, there are multiple source nodes
1t, t ∈ H1 and there are multiple sink nodes
nt, t ∈ Hn. This algorithm is presented be-
low.

1: ALGORITHM GBFIFOPM;
2: BEGIN
3: PREPROCESS;
4: while Q 6= ∅ do
5: select the node it from the front of Q;
6: BIPUSH/RELABEL(it);
7: end while;
8: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f0 is a feasible flow in R0; Q := ∅;
4: compute the exact distance labels d(it);
5: for t ∈ H1 do
6: f0(1t, jθ) := u0(1t, jθ) and adds node jθ to the rear

of Q for all (1t, jθ) ∈ E0

7: d(1t) := 2w1 + 1;
8: end for;
9: END;

1: PROCEDURE BIPUSH/RELABEL(it);
2: BEGIN

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 312



3: select the first arc (it, jθ) in E+
0 (it) with r0(it, jθ) >

0;
4: β := 1;
5: repeat
6: if (it, jθ) is admissible arc then
7: select the first arc (jθ, kτ ) in E+

0 (jθ) with
r0(jθ, kτ ) > 0;

8: if (jθ, kτ ) is admissible arc then
9: push α := min {e(it), r0(it, jθ), r0(jθ, kτ )}

units of flow over the arcs (it, jθ), (jθ, kτ );
10: if kτ /∈ Q then
11: adds node kτ to the rear of Q;
12: end if ;
13: else
14: if (jθ, kτ ) is not the last arc in E+

0 (jθ) with
r0(jθ, kτ ) > 0 then

15: select the next arc in E+
0 (jθ);

16: else
17: d(jθ) := min{d(kτ ) + 1|(jθ, kτ ) ∈ E+

0 (jθ),
r0(jθ, kτ ) > 0} ;

18: end if ;
19: end if ;
20: if e(it) > 0 then
21: if (it, jθ) is not the last arc in E+

0 (it) with
r0(it, jθ) > 0 then

22: select the next arc in E+
0 (it) ;

23: else
24: d(it) := min{d(jθ) + 1|(it, jθ) ∈ E+

0 (jθ),
r0(it, jθ) > 0};

25: β := 0;
26: end if ;
27: end if ;
28: end if ;
29: until e(it) = 0 or β = 0
30: if e(it) > 0 then
31: adds node it to the rear of Q;
32: end if ;
33: END;

We remark that any simple path P1tnθ in the resid-
ual network R̃0 = (V0, Ẽ0, r0) can have at most 2w1 + 1
arcs. Therefore we set d(1t) = 2w1 +1 in PROCEDURE
PREPROCES. Also, we specify that in the first phase
the feasible flow f0 is zero flow and in the second phase
the feasible flow f0 is the feasible flow f0 determined in
the first phase.

The correctness of the GBFIFOPM algorithm results
from correctness of the BFIFOPM algorithm. From pa-
per [14] we present following theorem.

Theorem 5. The GBFIFOPM algorithm has the com-
plexity O(n1mT

2+n31T
3).

Now, present the minimum flow problem in bipartite
dynamic network D = (N,A,H, h, l, u, 1, n).

The modified version of FIFO preflow algorithm
for minimum flow in bipartite static network S =
(N,A, l, u, 1, n) is called bipartite FIFO preflow for mini-
mum flow (BFIFOPm) algorithm. A bipull is a pull over
two consecutive admissible arcs. It moves deficit from a
node j ∈ N2 to another node k ∈ N2. This approach

means that the algorithm moves the flow over the back
path P̃ = (j, i, k), i ∈ N1, and ensures that no node in
N1 ever has any deficit. A pull of α units from node j to
node i decreases both e(i) and r(i, j) by α units and in-
creases both e(j) and r(j, i) by α units. In the paper [4]
is presented the BFIFOPm algorithm.

In the paper [9] is presented the generalized
of BFIFOPm algorithm for a network R0 =
(V0, E0, l0, u0). This algorithm is presented be-
low.

1: ALGORITHM GBFIFOPm;
2: BEGIN
3: PREPROCESS
4: while Q 6= ∅ do
5: select the node jθ from the front of Q;
6: BIPULL/RELABE(jθ);
7: end while
8: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f0 is a feasible flow in R0; Q := ∅;
4: compute the exact distance function d̂ in residual

network Ĝ;
5: for λ ∈ Hn do
6: f0(jθ, nλ) := l0(jθ, nλ) and adds node jθ to the

rear of Q for all (jθ, nλ) ∈ E0

7: d̂(nλ) := 2w2 + 1;
8: end for
9: END.

1: PROCEDURE BIPULL/RELABEL(jθ);
2: BEGIN
3: select the first arc (it, jθ) in E−0 (jθ) with r̂0(it, jθ) >

0;
4: β := 1;
5: repeat
6: if (it, jθ) is admissible arc then
7: select the first arc (kτ , it) in E−0 (it) with

r̂0(kτ , it) > 0;
8: if (kτ , it) is admissible arc then
9: pull α := min{−e(jθ), r̂0(it, jθ), r̂0(kτ , it)}

units of flow over the arcs (it, jθ), (kτ , it);
10: if kτ /∈ Q then
11: adds node kτ to the rear of Q;
12: end if ;
13: else
14: if (kτ , it) is not the last arc in E−0 (it) with

r̂0(kτ , it) > 0 then
15: select the next arc in E−0 (it)
16: else
17: d̂(it) := min{d(kτ ) + 1|(kτ , it) ∈ E−0 (it),

r̂0(kτ , it) > 0}
18: end if ;
19: end if ;
20: if e(jθ) > 0 then
21: if (it, jθ) is not the last arc in E−0 (jθ) with

r̂0(it, jθ) > 0 then
22: select the next arc in E−0 (jθ)
23: else
24: d̂(jθ) := min{d(it) + 1|(it, jθ) ∈ E−0 (jθ),

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 313



r̂0(it, jθ) > 0}
25: β := 0;
26: end if ;
27: end if ;
28: end if ;
29: until e(jθ) = 0 or β = 0
30: if e(jθ) > 0 then
31: adds node jθ to the rear of Q;
32: end if ;
33: END;

We remark that in this case, the correctness of the
GBFIFOPm algorithm results from correctness of the
BFIFOPm algorithm. From paper [9] we present follow-
ing theorem.

Theorem 6. The GBFIFOPm algorithm has the com-
plexity O(n2mT

2 + n32T
3).

For more information see [9].

VI. Examples

A. Maximum flow
In this case we consider a bipartite dynamic network

D with n1 < n2.

Fig. 1: The support digraph of network D =
(N,A, h, e, q)

The support digraph of bipartite dynamic network
is presented in Figure 1 and time horizon being set
T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The tran-
sit times h(i, j; t) = h(i, j), t ∈ H, the lower bounds
e(i, j; t) = e(i, j) and the upper bounds (capacities)
q(i, j; t) = q(i, j), t ∈ H for all arcs are indicate in Table
2.

We have N1 = {2, 3, 7} and N2 = {1, 4, 5, 6}.
Applying the GBFIFOPM algorithm in the first

phase and the second phase we obtain the flows f0(it, jθ),

(i, j) h(i, j) e(i, j) q(i, j)

(1, 2) 1 3 12

(1, 3) 1 5 10

(2, 4) 3 1 8

(2, 5) 1 1 3

(2, 6) 2 1 3

(3, 4) 3 0 4

(3, 6) 1 4 5

(4, 7) 1 1 12

(5, 3) 1 0 3

(5, 7) 1 1 4

(6, 7) 1 5 10

Table 2: The functions h, e, q

f∗0 (it, jθ) (the feasible flow, the maximum flow) which
are indicated in Figure 2. We have W1 ={21, 22, 23,
31, 32, 33, 73, 74, 75} and W2 = {10, 11, 12, 44, 52,
53, 54, 62, 63, 64}. A minimum (10, 11, 12)-(73, 74,
75) cut in static network R0 is [Y0, Ȳ0] = (Y0, Ȳ0) ∪
(Ȳ0, Y0) with Y0 = {10, 11, 12, 22, 23, 31, 32, 33} and
Ȳ0 = {21, 44, 52, 53, 54, 62, 63, 64,73,74,75}. Hence
[Y0, Ȳ0]={(10, 21), (22, 53), (22, 64), (23, 54), (31, 62),
(31,44), (32, 63)} ∪ {(52, 33)}. We have w̄0=f∗0 (Y0, Ȳ0)-
f∗0 (Ȳ0, Y0)=40-0=40=u0(Y0, Ȳ0). Hence f∗0 is a maxi-
mum flow.

B. Minimum flow

In this case we consider a bipartite dynamic network
D with n2 < n1.

Fig. 3: The support digraph of network D = (N,A, h, q)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 314



Fig. 2: The network R0 = (V0, E0, f0, f
∗
0 ).

The support digraph of the bipartite dynamic net-
work is presented in Figure 3 and time horizon being
set T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The tran-
sit times h(i, j; t) = h(i, j), t ∈ H, the lower bounds
e(i, j; t) = e(i, j) and the upper bounds (capacities)
q(i, j; t) = q(i, j), t ∈ H for all arcs are indicate in Table
3.

(i, j) h(i, j) e(i, j) q(i, j)

(1, 2) 1 5 8

(1, 3) 2 1 3

(1, 4) 1 2 5

(2, 5) 1 3 6

(2, 6) 2 2 3

(3, 6) 1 1 5

(4, 5) 2 1 3

(4, 6) 3 1 3

(5, 3) 1 2 3

(5, 7) 2 0 7

(6, 7) 1 3 9

Table 3: The functions h, e, q

We have N1 = {2, 3, 4, 7} and N2 = {1, 5, 6}.
Applying the GBFIFOPm algorithm in the first phase

and the second phase we obtain the flows f0(it, jθ),
f∗0 (it, jθ) (feasible flow, minimum flow) which are in-
dicated in Figure B.. We have W1={21, 22, 32, 33,
41, 74, 75} and W2={10, 11, 52, 53, 63, 64}. A max-
imum (10, 11)-(74, 75) cut in the static network R0 is[
Y0, Ȳ0

]
=(Y0, Ȳ0)

⋃
(Ȳ0, Y0) with Y0={10,11,21,22} and

Ȳ0={32,33,41,52,53,63,64,74,75}. Hence
[
Y0, Ȳ0

]
= {(10,

32),(10, 41),(11, 33),(21, 52),(21, 63),(22, 53),(22, 64)} ∪ ∅.
We have w̄0=f∗0 (Y0, Ȳ0) - f∗0 (Ȳ0, Y0)=14 − 0 = 14 and
l0(Y0, Ȳ0) − u0(Ȳ0, Y0) = 14 − 0 = 14. Hence, f∗0 is a
minimum flow.

VII. Conclusions

In this paper, we present the optimum (maximum or
minimum) flow problem in bipartite dynamic networks
with static approach. This problem has not been treated
so far. We demonstrate the fact that if the dynamic net-
work D = (N,A,H, h, l, u) is bipartite, then the static
reduced expanded network. R0 = (V0, E0, l0, u0) is bi-
partite. Therefore we solved the optimum flow problem
in bipartite dynamic network D by rephrasing into a
problem in bipartite static network R0. We have ex-
tended the bipartite FIFO preflow algorithm (Ahuja et
al., 1994) for the static reduced expanded network R0

which is a network with l0 > 0 and multiple sources and
multiple sinks. For the generalization bipartite FIFO
preflow algorithm we have presented the complexity.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 315



Fig. 4: The network R0 = (V0, E0, u0).

Many interesting flow problems in bipartite dynamic
network are still open: optimum flow problem in bi-
partite dynamic networks with dynamic approach, the
generalization other algorithms for optimum flow in bi-
partite static networks. Other research directions are
possible.

References

[1] Ahuja, R., Magnanti, T. and Orlin, J. (1993) Network
flows. Theory, algorithms and applications, Prentice
Hall, Inc., Englewood Clifss, New Jersey

[2] Ford, L. and Fulkerson, D. (1962) Flows in Networks,
Princenton University Press, Princenton, New Jersey.

[3] Ahuja, R., Orlin, J., Stein, C. and Tarjan, R. (1994)
Improved algorithms for bipartite network flows,
SIAM Journal of Computing, vol. 23, pp. 906-933.

[4] Ciurea, E., Georgescu, O. and Marinescu, D. (2008)
Improved algorithms for minimum flows in bipartite
networks, International Journal of Computers, vol.
2, no. 4, pp. 351–360.

[5] Gusfield, D., Martel, C. and Fernandez-Baca, D.
(1987) Fast algorithms for bipartite network flow,
SIAM Journal of Computing, vol. 16, pp. 237-251.

[6] Cai, X., Sha, D. and Wong, C. (2007) Time-varying
Network Optimization, Springer.

[7] Ciurea, E. (2000) An algorithm for minimal dynamic
flow, Korean Journal of Computational and Applied
Mathematics, vol. 7, no.2, pp. 259–270.

[8] Salehi, H. F., Khadayifar, S. and Raayatpanoh, M.A.
(2012) Minimum flow problem on network flows with
time-varying bounds, Applied Mathematical Mod-
elling, vol. 36, pp. 4414-4421.

[9] Schiopu, C. and Ciurea, E. (2020) The minimum
flows in bipartite dynamic networks. The static ap-
proach, International Conference on Mathematics
and Computers in Science and Engineering, IEEE
Xplore, 2020, Madrid, Spain.

[10] Ciurea, E. and Ciupală, L. (2004) Sequential and
parallel algorithms for minimum flows, Journal of
Applied Mathematics and Computing, vol. 15, no. 1-2

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 316



pp. 53–75.
[11] Schiopu, C. and Ciurea, E. (2017) Two flow prob-

lems in dynamic networks, International Journal of
Computers Communications & Control, vol. 12, no.
1, pp. 103-115.

[12] Skutella, M. (2009) An Introduction to Network
Flows Over Time, Research Trends in Combinatorial
Optimization, pp. 451-482.

[13] Wilkinson, W. (1971) An Algorithm for Universal
maximal Dynamic Flows in a Network, Oper. Res.,
vol. 19, pp. 1602–1612.

[14] Schiopu, C. and Ciurea, E. (2016) The maxi-

mum flow in bipartite dynamic networks with lower
bounds. The static approach, International Confer-
ence on Computers Communications and Control,
IEEE Xplore, Băile Felix - Oradea, pp. 10-15.

[15] Schiopu, C. (2014) The maximum flows in bipar-
tite dynamic networks, Bulletin of the Transilvania
University of Brasov, Series III: Mathematics, Infor-
matics, Physics, vol. 7(56), no. 2, pp. 193-202.

[16] Schiopu, C. (2016) The maximum flow in bipartite
dynamic networks. The static approach, Annals of
the University of Craiova, Mathematics and Com-
puter Science Series, vol. 43, no. 2, pp. 200-209.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.43 Volume 14, 2020

ISSN: 1998-4464 317

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 


	Introduction
	Optimum flows in general static networks
	Optimum flows in general dynamic networks
	Optimum flows in bipartite static networks
	Optimum flows in bipartite dynamic networks
	Examples
	Maximum flow
	Minimum flow

	Conclusions



