
 

 

 
Abstract—  In the domain of robotics and autonomous driving, 

the automatic path planning of vehicle collision-free motion is an 

essential task on the navigation level. It is found that the 

traditional path planning algorithm and the ployline path cannot 

fully meet the driving requirements of Ackerman chassis robot. In 

order to solve the autonomous navigation problem of Ackerman 

chassis mobile robot in structured environment, this paper 

presents a new improved algorithm. The method of configuration 

space can introduce the robot's own structural size parameters 

into the algorithm. Through convex polygon detection method, the 

local U-shaped area in the map is transformed into a closed area. 

The essence of these two strategies is to preprocess the map. The 

initial pheromone distribution is no longer globally uniform, but is 

distributed according to the terrain. The volatilization factor of 

pheromone is changed from static constant to dynamic one, which 

is combined with Poisson distribution law. This strategy makes 

the improved pheromone distribution law not only avoid the 

randomness and blindness in the initial stage of the algorithm, but 

also ensure the ant colony's exploration behavior and guiding role 

in the middle stage of the algorithm. Path smoothing is also a 

challenging task. This algorithm optimizes the path step by step 

by improving the evaluation function, removing redundant nodes 

and 2-turning algorithm. Thus, a collision free smooth path 

suitable for Ackerman robot is obtained. This paper combines a 

variety of algorithm improvement strategies, not only improving 

the performance of ant colony algorithm path exploration, but 

also planning a smooth curve path suitable rather than polyline 

for Ackerman mobile robot tracking. The algorithm is coded and 

simulated by MATLAB, and the feasibility and effectiveness of the 

algorithm are verified. This will provide an important basis for 

the subsequent algorithm migration and lay the foundation for the 

path tracking control of the Ackermann chassis robot. 
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I. INTRODUCTION 
UTONOMOUS robots and vehicles have been used to 
perform various missions, such as, warehouse logistics, 

pilotless driving, surveillance/reconnaissance, exploration of 
unknown area, and operation in hazardous environments. Path 
planning requires robots to use path planning algorithm to 
realize autonomous navigation of unmanned vehicles according 
to their own perception of the environment and their own 
positioning information. Autonomous navigation technology of 
driverless vehicle has become the focus of research institutions 
 

 

because of its broad application prospects. 
In the development of driverless vehicle path planning 

algorithms, scientists have put forward various algorithms, 
such as, Dijkstra algorithm [1], [2], A* algorithm [3], rapidly 
exploring random tree algorithm (RRT) [4], artificial potential 
field method, particle swarm optimization (PSO) [5], ant 
colony optimization(ACO) [6], [7] et al. In recent years, 
scientists have improved the path planning algorithms in 
different degrees to meet the needs of the actual situation in 
their respective fields.  

The ant colony optimization algorithm is an effective way to 
solve the problem of unmanned vehicle path planning [8]–[10]. 
On the basis of traditional ant colony algorithm, Hui yang, and 
Jie Qi, Xiamen University, presented an efficient double-layer 
ant colony optimization algorithm, called DL-ACO, for 
autonomous robot navigation. This DL-ACO consisted of two 
ant colony algorithms that run independently and successively. 
A parallel elite ant colony optimization method was proposed to 
generate an initial collision-free path in a complex map, and 
then, they applied a path improvement algorithm called turning 
point optimization algorithm, in which the initial path was 
optimized in terms of length, smoothness, and safety [11], [12]. 
The authors think that, in the real world, as time goes by, the 
pheromone on the path will gradually evaporate. And its 
volatilization is helpful for ants to explore other areas to find 
better path. Therefore, they improved the pheromone 
volatilization strategy and simulated the change of pheromone 
in time. On the other hand, the weighted penalty function was 
introduced. They divided the path into different levels of 
advantages and disadvantages, and adjusted the penalty 
function according to different levels of paths, so as to 
encourage ants to explore the worst path. Thus, the exploration 
ability of ant colony was improved. 

Juntao Cheng and Zhihuai Miao [13], State Key Laboratory 
of Robotics and Systems, Harbin, proposed an improved ant 
colony algorithm. They improved the positional distribution of 
the initial population and increased the adaptive evaporation 
factor and simulated annealing. It was found through 
experiments that the algorithm can effectively reduce the 
problem of search time [14]. 

Zhang Miao, National University of Defense Technology, 
proposed an improved ant colony algorithm in 3D environment. 
They rastered the map using bilinear interpolation method and 
translate the 3D terrain into 2D terrain according to the given 
slope threshold. And then they combined OpenMP parallel 
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programming technology to accelerate this algorithm by 
mining the concurrency of ant colony algorithm using the idea 
of parallel computing [15], [16]. 

 Ankita Khurana [17], Amity University Uttar Pradesh, has 
been committed to the ant colony algorithm path planning. 
Because every ant drops an amount of simulated pheromone at 
each node in which the ant has just covered up. The pheromone 
distribution law in the improved algorithm was modified, so 
that the ant colony can explore the path line including all the 
specific network nodes in the map [18]. 

Liang Kai [19], Kunming University of science and 
technology, improved the updating method of pheromone of ant 
colony by using the wolf colony assignment principle to avoid 
the ant colony algorithm falling into the local optimum and 
accelerate the convergence speed of the algorithm. And, it 
proposed a smoothing method of center node replacement. The 
purpose is to remove the sharp corner in the path and improve 
the smoothness of the path. However, this algorithm is suitable 
for indoor small mobile robot. It can probably not be transplant 
directly to mobile robot with Ackerman chassis.  

Marco Dorigo and Thomas Stützle [20], University Libre de 
Bruxelles (ULB), took advantage of ant colony optimization 
(ACO) algorithms in preserving high diversity, and intended to 
extend ACO algorithms to deal with multimodal optimization. 
Combined with current niching methods, an adaptive 
multimodal continuous ACO algorithm was introduced. An 
adaptive parameter adjustment was developed, which takes the 
difference among niches into consideration. They used the 
algorithm to solve problems with a large number of local 
optimal solutions. 

Michalis Mavrovouniotis, and Yang Shengxiang [21], De 
Montfort University, put forward an improved ant algorithm 
and used this algorithm in dynamic path planning. The 
algorithm was to increase the diversity via transferring 
knowledge from previous environments to the pheromone trails 
using the immigrant schemes. In their research, an ACO 
framework for dynamic environments was proposed. In the 
algorithm, different immigrant schemes, including random 
immigrants, elitism-based immigrants, and memory-based 
immigrants, were integrated into ACO algorithms for solving 
path planning problem. 

These algorithms can solve their own problems in specific 
fields. However, these algorithms cannot be directly 
transplanted to the Ackerman chassis robot navigation problem, 
which needs further improvement and optimization.  

In the research，it found that, for the large-scale Ackerman 
chassis robot, the traditional path planning algorithm has 
certain limitations. During narrow roads or corners, the 
Ackerman chassis unmanned vehicle frequently suffers from 
scraping of the body and obstacles under the guidance of 
conventional algorithms. On the one hand, it is due to the large 
size of the Ackerman chassis robot vehicle, which cannot be 
ignored relative to the path and obstacles; On the other hand, 
during the turn, the Ackerman chassis vehicle itself has 
Difference of Radius Between Inner Wheels (Difference of 
Radius Between Inner Wheels refers to the difference between 
the turning radius of the front inner wheel and the turning radius 

of the rear inner wheel when the vehicle turns. Due to the 
Difference of Radius Between Inner Wheels, when the vehicle 
turns, the motion trajectories of the front and rear wheels do not 
coincide. If only paying attention to the front wheels being able 
to pass and forget the Difference of Radius Between Inner 
Wheels while driving, it may cause the rear inner wheels to 
drive off the road or collide with other objects.). In order to 
meet the motion requirements of Ackerman chassis unmanned 
vehicle, this paper not only improves the search performance of 
the ant colony algorithm to a certain extent, but also designs the 
algorithm specifically for the unique structural characteristics 
and motion laws of Ackerman mobile robots. Through 
MATLAB simulation, the feasibility of the algorithm is verified. 
This algorithm can specifically provide a reasonable smooth 
path for Ackerman chassis robot path planning. 

II. ALGORITHM IMPROVEMENT STRATEGY 

A. Characteristics Analysis of Ackerman Chassis Vehicle 

Model 

In order to solve the autonomous navigation and path 
planning problems of Ackerman chassis robots, its structure 
need to be analyzed firstly. When the absolute size of the 
mobile robot is small enough, or when the size of mobile robot 
is much smaller than that of obstacles and road space, the 
mobile robot can be abstracted as a particle. Neglecting its 
dimensions can simplify the problem greatly. And the 
algorithm can use memory resources as much as possible to 
find the most efficient path. However, when the overall 
dimension of the mobile robot cannot be ignored, in actual 
operation, the planned road under the traditional algorithm may 
cause the car body and obstacles to collide. This could scratch 
or damage the mobile robot. In this case, the external dimension 
of the mobile robot needs to be introduced into the algorithm as 
an important parameter.  

In the Fig. 1, it shows the parameters of the Ackermann 
chassis and the parameters of the relationship between the 
vehicle and the road during the turn.  

 
Fig. 1 Modeling of Ackerman chassis vehicle and extraction of key 
parameters in turning process 

 
According to the vehicle construction modeling, R is the 

minimum turning radius of the vehicle. α and β is the yaw angle 
of the two front wheels of the vehicle. B is the distance of 
wheels. These parameters play an important role when the 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.49 Volume 14, 2020

ISSN: 1998-4464 362



 

 

Ackerman chassis vehicle moves or turns.  

B. The Principle of Obstacle Expansion Strategy 

Grid map is a common method to build map environment in 
robot path planning [22], [23]. The map of ant colony algorithm 
is constructed by grid map. In this method, the map is 
segmented by a square grid of equal size and the matrix model 
is established [24]–[26]. In order to consider the dimensions of 
the Ackerman chassis vehicle, based on grid map, this paper 
adopts the method of configuration space. The essence of 
configuration space is the reconstruction of the map. However, 
the method used in this paper is not to construct a 
reconstruction obstacle through the collision detection method 
of a disk robot, but to directly expand the obstacle with specific 
size. Specially, for Ackerman chassis robot, it is necessary to 
expand 1/2 of the vehicle body width on the basis of obstacles. 
Because if the grid cell size is relatively large and the area of the 
obstacle expanding outward is less than one grid cell, then the 
grid cell can only be determined as the expansion area. This 
may result in areas that could otherwise pass through not being 
able to pass through. If the grid cell is too small, the 
computation will increase geometrically. This requires that the 
map construction and grid division must be reasonable. 
Considering both of the map construction and configuration 
space, the map is divided with 1/2 car body as the grid cell. 

Then, this makes it possible to consider the impact of body 
width on path planning by configuration space. As shown in the 
Fig. 2 below is the new map generated by the above strategy.  

 
Fig. 2 Schematic diagram of configuration space 

 
This strategy needs to detect the grid cells one by one. If the 

detected grid cell color is black, it means that it is an obstacle 
area, then, the accessible area of the eight grid areas adjacent to 
the grid cell will be set as the obstacle extended area. The 
corresponding position of the obstacle extended area in the map 
matrix model is expressed as 0.5. The extended obstacle area in 
the figure is represented by gray. In this way, the inaccessible 
area includes two parts, obstacle area and extended obstacle 
area, which are represented by black grid cells and gray grid 
cells respectively.  

Through this strategy, although the vehicle is still regarded as 

a particle in the algorithm, the vehicle width factor in path 
planning can be considered in the algorithm. As shown in Fig. 2, 
reasonably build maps for Ackerman robots through meshing 
and construction space. 

C. Local Map Reconstruction Based on the Convex 

Polygon Detection 

Compared with the configuration space, similarly, the 
significance of the convex polygon detection algorithm lies in 
the map reconstruction in the early stage of the algorithm [27],  
[28]. As shown in the Fig. 3, the obstacles connected by the red 
polyline form different shapes and sizes of U-shaped semi 
closed areas. The experimental results show that there is a 
certain degree of blindness in ant's exploration of path in the 
early stage during the algorithm processing. A large number of 
ants would fall into these U-shaped areas, which may lead to 
the failure of the ants' search. This will greatly reduce the 
efficiency of the algorithm.  

Therefore, a convex polygon detection algorithm is 
proposed. When the algorithm detects that obstacles form a 
U-shaped area, it determines whether the target is in the 
U-shaped area. As long as the end point is not in the U-shaped 
area, it will connect the head and the tail of the red polyline with 
green lines to form a closed area. When the grid has not less 
than half of the area in the enclosed area, it is marked purple. 
The corresponding position in matrix model is changed to 1. 
This algorithm makes the U-shaped region have a rejection 
effect on ants. To some extent, it solves the problem that ants 
find their way into the dead end because of the U-shaped area.  

 
Fig. 3 Concave obstacle detection and local map reconstruction 

 
The above two strategies can be regarded as the map 

preprocessing before the algorithm starts. In essence, it realizes 
the purposeful modification and reconstruction of the existing 
map. 

D. Improvement of Initial Pheromone Distribution 

Initial pheromone distribution is the distribution rule of 
pheromones in the map at the beginning of map construction. In 
traditional ant colony algorithm, the distribution of initial 
pheromone is fixed and equal everywhere in the whole map 
[29]–[31]. This leads to the blindness and randomness of the 
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traditional ant colony algorithm in the early stage of path 
search, and it leads to the low efficiency of ant search in the 
early stage of the algorithm. Since pheromones play a guiding 
role in ant path search, this paper improves the distribution of 
initial pheromones.  

As shown in the Fig. 4, firstly, it should connect the starting 
point and the target point of the ant colony.  

 
Fig. 4 Initial pheromone distribution gradient map 

 
The straight line L is the shortest path that can be achieved 

theoretically when there is no obstacle in the map. Then, based 
on the line, the direction perpendicular to the line is the 
direction of pheromone gradient. So, the closer the grid cell on 
the map is to the line, the higher the initial pheromone 
concentration is, and the farther away from the line, the lower 
the initial pheromone concentration is. In this way, it can make 
the ants search near the line L as much as possible in the early 
stage of path search, instead of searching the far path. The 
simulation result shows that, the rational distribution element of 
the initial pheromone can play a better role in guiding ants. Of 
course, the reason for this design is that the function of 
large-scale Ackerman chassis unmanned vehicle is generally 
used for cargo transportation in large warehouse, and its map 
structure is relatively simple, rather than complex maze 
structure map. Thus, to some extent, it can avoid the blindness 
and randomness of the traditional ant colony algorithm in the 
early stage of path search. 

E. Design of Volatilization Factor of Dynamic Pheromone 

Pheromones left in the path of ants will volatilize with time. 
Volatilization factor is used to measure the volatilization rate of 
residual pheromones on the pathway. The pheromone content 
on the path consists of two parts [32], [33]: one part includes 
the rest of the pheromone left by the ants before, the other part 
is the pheromone secreted by the current ant in the path. 
Therefore, for the volatilization of pheromone, an index, 
pheromone volatilization factor, is introduced to measure the 
volatilization rate and residue of pheromone.  

In traditional ant colony algorithm, the pheromone volatility 
factor is usually a fixed constant [34], [35]. In this paper, the 
dynamic pheromone volatilization factor (D-Rho) is used in the 
algorithm. In order to find out the change rule of dynamic 
pheromone volatilization factor, by exploration, we decided to 
make the dynamic pheromone volatilization factor satisfy 
Poisson distribution law in the whole process. D-Rho is 
improved according to the following equation: 

𝜌(𝑥 = 𝑘)  = A
λ𝑘

𝑘!
𝑒−λ + 𝐵, 𝑘 = 0,1,2…        

 (1) 
The core of the (1) is the Poisson distribution. On this basis, 

(1) is reconstructed according to the role of the pheromone in 
the algorithm, so that it can meet the needs of the algorithm. In 
the equation (1), ρ is the value of pheromone volatilization 
factor. x obeys the Poisson distribution with parameter λ(λ>0). 
And, according to the experiment, the value of λ is obtained. In 
this paper, λ takes the value 10. k equals the number of ant 
colony iterations N. A is the proportional coefficient. B 
(0<B<1) is the offset. 

Experiments show that when the volatilization factor is large, 
it is conducive to the convergence of the algorithm, and when 
the volatilization factor is small, it is conducive to the behavior 
of ant colony exploration. The Poisson distribution variant 
constructed by the above (1) can reasonably utilize this 
characteristic of the algorithm. As shown in the Fig. 5 below, 
the horizontal axis is the number of the iteration, and the 
vertical axis is the pheromone volatilization factor. The yellow 
curve is the curve of Poisson distribution after upward 
translation. Red curve is (1) corresponding curve. The dynamic 
distribution of pheromone volatilization factors is shown in the 
Fig. 5 (A = -5). In the early and late stages of the algorithm, the 
pheromone volatilization factor remained at a relatively high 
level, while in the middle of the algorithm progressing, the 
curve exhibited a trough state. The pheromone volatilization 
factor has a significant tendency to decrease first and then rise.  

The reason for this design is that the pheromone 
volatilization factor of traditional ant colony algorithm is 
constant. If the pheromone volatility factor is set too large, the 
ants may lose their ability to explore paths and the algorithm 
will be premature. However, if the value of pheromone 
volatilization factor is set too small, it may increase the 
blindness of the algorithm and make the algorithm not 
convergent. Pheromone is the substance left by ants in the path. 
It is of great significance to guide ant path exploration behavior. 
However, the pheromone remaining on the path will evaporate 
over time. Pheromone volatilization factor is an index used to 
measure the speed of pheromone volatilization. When the 
pheromone volatilization factor is too large, it means that the 
pheromone on the path volatilizes faster. After a period of time, 
there are fewer pheromones remaining on the path. The 
guidance effect of pheromone on ants will be weakened, and 
the ability of ants to randomly explore paths will be improved. 
When the pheromone volatilization factor is too small, it means 
that the pheromone volatilization on the path is relatively slow. 
After a period of time, there are more pheromones remaining on 
the path, and the pheromone's guiding effect on the ant will 
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become stronger. The ant is more likely to first explore the path 
of the previous ant under the pheromone's guidance, and the 
algorithm converges quickly. 

In the algorithm proposed in this paper, the dynamic 
pheromone volatilization factor will automatically adjust the 
value of the pheromone volatility factor during the algorithm. 
In the algorithm proposed in this paper, the D-Rho will 
automatically adjust the value of the pheromone volatility 
factor during the algorithm. The value of D-Rho in the early 
stage of the algorithm is relatively high. At the same time, 
under the influence of the initial pheromone, the blindness of 
the algorithm is reduced to a certain extent, and the guidance 
ability of the algorithm to ants is enhanced. In the middle of the 
algorithm, reducing the value of D-Rho appropriately can 
improve the ability of ants to explore new paths to some extent. 
The value of  D-Rho of the algorithm rises up in the later 
period, which is beneficial to the convergence of the algorithm. 
This strategy can also be reflected to a certain extent in 
subsequent simulations. 

 
Fig. 5 Variation of dynamic pheromone volatilization factors in based 
on Poisson distribution 

F. The Next Node Selection Scheme Improvement 

In traditional ant colony algorithm, roulette is the method 
that each ant colony chooses the next node [36], [37]. The 
probability of selecting each node is determined by the 
pheromone content of each node. The equation is as follows 
(2): 

𝑝𝑖𝑗
𝑘 =  {

 
[𝜏𝑖𝑗(𝑡)]

𝛼∙[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼∙[𝜂𝑖𝑗]

𝛽
𝑘∈{𝑁−𝑡𝑎𝑏𝑢𝑘}

 ,     𝑗 ∈  {𝑁 − 𝑡𝑎𝑏𝑢𝑘}

0,                            𝑂𝑡ℎ𝑒𝑟𝑠

}  

 (2) 
In the equation (2), pij is the probability of selecting the node. 

τij(t)  is the pheromone concentration of the node. ηij  is a 
heuristic information factor. α and β is the weight coefficient.  

In this way, the algorithm will directly select a node with a 
high pheromone concentration as the next node with greater 
probability. So, it brings a problem. Assume that the node with 
the highest pheromone concentration is away from the end 
point of the target point among all the nodes that the ant may 
select next. However, according to the roulette algorithm, the 
probability of selecting this point is the largest. It increases the 

possibility of ants "going back". A number of redundant nodes 
may appear in the planned path, thereby increasing the length of 
the path.  

 
Fig. 6 Classification method of child nodes to be selected 

 
In response to this problem, this paper makes improvements 

to the choice of the next node. As shown in the Fig. 6, Pn is the 
current node, P(n-1) is the parent node of Pn. The red grid cells 
area indicated by the black arrow is the area where the next 
node P(n+1) may be selected. Here, all possible next nodes (the 
seven red grid cells in the Fig. 6) are divided into two 
categories: The first type (Make a vector α⃗⃗  from Pn to the target, 
the angle between the vector indicated by the black arrow and α⃗⃗  
is not more than 90 degree. That is, the dark red area in the Fig. 
6 is the node pointing to the target point. The second type (the 
angle between the vectors indicated by the black arrow and  α⃗⃗  is 
more than 90 degree. That is, the Light red area in the Fig. 6 is 
the node that faces away from the target point. The first type of 
nodes has a higher priority than the second type of nodes. The 
next node will be selected firstly in the nodes of the first type, 
the method is still roulette method. The second type of nodes 
will be selected only when the nodes in the direction of the 
target point in the taboo table have been selected. The improved 
algorithm can effectively prevent ants from taking unnecessary 
paths and reduce redundant nodes.  

G. Path Evaluation Function Reconstruction 

The traditional ant colony algorithm evaluation function is 
directly measured by the length of the path [38]–[40]. However, 
after a lot of experiments, it finds that the path smoothness of 
the ant colony algorithm is poor, and there are many inflection 
points and redundant nodes [41], [42]. Because of the existence 
of these redundant nodes, when the mobile robot tracks the 
established trajectory, it will constantly adjust its direction and 
posture as the trajectory changes. Even in some nodes the robot 
need to do the action of in-situ rotation. But the Ackerman 
chassis robot cannot rotate in place due to the particularity of its 
chassis structure. It has a minimum turning radius limit. In 
addition, the frequent occurrence of local zigzag paths in the 
route not only increases the path length, but more importantly 
brings great challenges to the vehicle's motion control. Such a 
path is not realistic for it. And this greatly increases the energy 
consumption and time cost of the mobile robot during actual 
motion. So, the cost function (3) is reconstructed in this article. 
𝐹(𝑛) = 𝐴 × 𝑃𝑘𝑚(𝑛) + 𝐵 ∗ 𝑇(𝑛)          
 (3) 
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In the equation: F(n) is the evaluation of the entire path cost, 
which is used to comprehensively measure the path cost. Path 
cost is measured by two metrics. The first indicator is Pkm, 
which represents the cost of travel for each ant that successfully 
reaches the target point. For each step of ants in horizontal or 
vertical direction, Pkm increases by one unit length, and for 
each step in oblique direction, Pkm increases by 1.4 unit length. 
The first measure is established by the proportionality between 
path length and cost. This is also the only indicator of 
traditional ant colony algorithm to measure the path cost. The 
second indicator is T(n), which is the cost of turning in the path. 
On the one hand, considering the particularity of the structure 
of the Ackerman chassis vehicle, it has a minimum turning 
radius and cannot make in-situ steering. A path with sharp 
angles does not fully satisfy the actual situation of this type of 
vehicle. On the other hand, consider the further smoothing of 
the paths involved in the chapters III of this paper. This 
increases the path cost, control cost and time cost to a certain 
extent. Therefore, it is necessary to take this index into the 
entire path planning cost. For each inflection point in the path, 
T(n) is increased by one. A and B are the weights of the two 
indexes respectively. This paper uses these two indicators to 
comprehensively measure the cost of the path, so as to achieve 
a reasonable and comprehensive evaluation of the path. Taking 
the inflection point of the path into the evaluation function can 
reduce unnecessary redundant points and corner points in the 
path, and to a certain extent obtain the effect of preliminary 
smooth path. 

III. PATH SMOOTHING METHOD 

A. Deletion of Redundant Nodes on the Path 

The first step of the path Smoothing Algorithms is redundant 
node removal. The strategy first judges each node of the 
initially determined path. The node Pn is selected as the current 
node, P(n-1) is the parent node of Pn  and P(n+1) is the child node of 
Pn. Then, it will determine whether the parent node of the 
current node is in a straight line with the child node. If the three 
points are not in a straight line, it means that the node Pn is an 
inflection point. Then further determine whether there is an 
obstacle between the parent node and the child node of Pn. The 
specific operating principle is shown in the following Fig. 7.  
The black polyline is the current path, and Pn is the path node. 
Since the coordinates of each point are known, connect the 
parent node of Pn to the child node and make a straight line L. 
Therefore, the analytical equation of the straight line L can be 
obtained from their coordinates: 
𝑘 =  

(𝑦𝑛+1−𝑦𝑛−1)

(𝑥𝑛+1−𝑥𝑛−1)
                  

 (4) 
𝑦 = 𝑘(𝑥 − 𝑥𝑛−1) + 𝑦𝑛−1               
 (5) 

If line P1P3
̅̅ ̅̅ ̅ does not intersect the obstacle, P2 is considered as 

redundant node and can be removed from the path list. It can 
get the second figure. Then, calculate each node in the path in 
turn to get the new path. The purpose of this method is to 
remove redundant nodes from the path list, and at the same 

time, it can achieve preliminary smoothing of the path. 

 
Fig. 7 Redundant node removal and local new path generation 

B. Turning Algorithm for Ackerman Vehicles 

Based on the redundant node removal strategy to obtain a 
smoother path, this part will use the 2-turninging algorithm to 
completely turn the polyline path into a smooth curve, which 
can be applied to the track route of Ackerman robot tracking.  

At present, the path smoothing methods mainly include: 
polynomial least squares fitting, curve fitting (such as Bezier 
curve, B-spline curve) and the like. When smoothing the 
collision avoidance path of the mobile robot in the Ackerman 
chassis, the following factors must be considered: the minimum 
turning diameter of the vehicle (as shown in the Fig. 1), the 
deviation between the smoothed path and the initial path (the 
deviation should be as small as possible), and the smoothed 
path cannot intersect the obstacle areas.  

In theory, the minimum turning radius of a vehicle in an 
Ackermann chassis is only related to its own mechanical 
structure. In this paper, the turning radius of the two headings is 
selected as the minimum turning radius R of the robot. On the 
one hand, the reason is to ensure the turning efficiency. The 
larger the turning radius, the more time and distance it takes. 
Moreover, the larger the turning radius, the larger the maximum 
turning offset. On the other hand, when the radius of the turn is 
too large, it is possible to cause the robot to collide with the 
obstacle. 

The main idea of the 2-turning method is to use two 
circumscribed circles to smooth two adjacent ployline paths. As 
shown in the Fig. 8 below, the path,L1 and L2, form a corner at 
the junction. The direction of the blue arrow is the direction of 
the vehicle driving. O1 and O2 are the centers of two 
circumscribed circles of line L1 and line L2 respectively. S1 
and S3 are the tangent points of two circumscribed circles and 
the original path (L1 and L2) respectively. S2 is the tangent 
point of two circumscribed circles. The two red arcs in the Fig. 
8 are the turning path.  

The turning process is divided into two steps, the first 
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heading change is called collision avoidance turning path, and 
the second heading change is called resuming path. α and β are 
yaw angle and return angle respectively. The 2-turning method 
uses the turning law of the Ackerman chassis of the mobile 
robot for smoothing. In this way, the polyline path is 
completely changed into a smooth path. 

 
Fig. 8 The mathematical principle of the 2-turning path 
smoothing algorithm 

IV. DISCUSSION 

A. Algorithm Performance Analysis and Path Smoothness 

Comparison 

Based on the above strategy of remove redundant nodes, Fig. 
9 shows the processing effect of this strategy. In the Fig. 9, the 
purple point is the starting point, the red point is the target 
point, and the green point is the node in the path list. The 
ployline is the path planned by the two algorithms. Comparing 
the two figures, Fig. 9(a) contains a large number of 
intermediate nodes. Fig. 9(b) shows the new path after 
removing redundant nodes. 

Three different typical redundant nodes are represented in 
the three red circles. The first type of redundant node is P2 in the 
Fig. 9(a) It is generated by the inherent attributes of the map 
used by the ant colony algorithm. Because the map is 
rasterized, and each grid cell represents a node. It means that, in 
traditional ant colony algorithm, the path planned must move 
from node P1 to node P3 through intermediate node P2. 
However, it is clear that there is no barrier between P1 and P3, 
and P2 is a redundant node that can be removed. Therefore, as 
shown in Fig. 9(b), during the path post processing, P2 is 
deleted from the path node list. 

 
Fig. 9 Schematic diagram of three types of redundant nodes and their 
processing methods. 

As shown in the second red circle, it is the second type of 
redundant node. The reason for the second type of redundant 
node is caused by the traditional algorithm itself. Especially, as 
the map grows, the grid cells in the map increase too. It will 
inevitably produce such redundant nodes. Obviously, there are 
no obstacles from P4 to P9. Therefore, P5-P8 is deleted by the 
redundant node strategy, and a passable path is directly formed 
between P4 and P9. In fact, it can be seen that a small (5 nodes) 
partial path re-planning is done here.  

The last red circle represents the third type of redundant 
node. The reason for this kind of node is also based on the 
inherent properties of the raster map. The difference between 
the first two redundant nodes is that the five nodes of P11-P15 are 
located on the shortest path between P10 and P16. However, in 
order to simplify the nodes in the path list as much as possible, 
P11-P15 is still considered as redundant nodes removed from the 
path list. The aim is to simplify the output and feedback of 
unnecessary commands between the unmanned vehicle control 
system and the executive components.  

As shown in the Fig. 9 above, the implementation of the 
redundant node removal strategy reduces the number of nodes 
in the path node list from 33 to 12. Not only the smoothness of 
the path is improved, but also the redundant commands of the 
control system and the unnecessary actions of the chassis are 
reduced. In addition, it can simplify the system's control 
process for unmanned vehicles and reduces unnecessary 
vehicle attitude adjustments. For example, P2 between P1 and P3 
is a redundant node. After removing P2, the vehicle can 
maintain a fixed course and directly drive from P1 to P3. 
Otherwise, the vehicle needs to drive from P1 to P2 first, and 
then drive from P2 to P3 by readjusting the heading angle. This 
not only increases the control cost, but also increases the path 
length and time cost. As the size of the map increases, 
redundant nodes inevitably appear in the path. When there are 
many redundant nodes in the path, this strategy will further 
demonstrate its advantages. 

B. Comprehensive Analysis of Algorithm Performance 

In order to further verify whether the proposed algorithm can 
meet Ackerman chassis vehicle trajectory tracking 
requirements. This paper adds a vehicle kinematics model 
based on the vehicle model established in Chapter II. 
According to the relationship between the grid and the vehicle 
size, the wheelbase of the vehicle is set to 2m, and the width of 
the vehicle is set to 1m. In the simulation process, the vehicle 
travels at a constant speed of 0.3 m/s at a low speed. Because 
there is a linear relationship between the steering wheel angle 
and the front wheel angle of the vehicle, in the experiment we 
simplified the model and directly controlled the front wheel 
angle through the algorithm. In addition, the maximum angle of 
the front wheels of general small Ackerman chassis vehicles is 
30-40°, so we sets the maximum turning angle to 40°.To 
simplify the model, in the simulation process, we only consider 
the longitudinal control of the vehicle and ignore the lateral 
motion control and lateral disturbance. 

In this section, the performance of the traditional ant colony 
algorithm and the algorithm provided in the paper was 
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compared. The language of the MATLAB is used for 
simulation. The simulations are implemented on PC that has a 
Intel Duo Core i5-4210M CPU @ 2.60GHz and 4GB of RAM 
under Windows 7. The control parameters of the algorithm in 
this paper are set the following as: The number of the 
generation are N = 150, the number of the ants are M = 500 in 
each generation, α = 1, β = 0.3. The reasonable values of N and 
M have an important influence on the running result of the 
algorithm. In order to ensure the optimal running result of the 
algorithm, the values of N and M must not be too small. If the 
values of N and M are too small, the algorithm will be 
premature. If the values of N and M are too large, it will 
increase the amount of calculation and greatly reduce the 
efficiency of the algorithm, so it is necessary to make a balance 
between the two. In addition, if M is too small, it may cause the 
current generation of ants to fail in pathfinding, and the 
resulting path is not optimal. Therefore, it is necessary to ensure 
that there are a sufficient number of ants in each generation. 
After a lot of experiments and attempts, it is found that    
N=(150-160) and M=(500-600) can meet the algorithm 
requirements. α is the pheromone importance factor, and β is 
the heuristic function importance factor. The two factors both 
affect the ant's path exploration behavior. As the value of α 
increases, the result converges faster, but if α is set too large, it 
is easy to weaken the random searchability and easily fall into 
the local optimum. As the value of β increases, the ants have 
more exploration ability, but when the β value is too large, the 
results may not converge. Synthesizing the influence of various 
factors on the results, set α=1, β=0.3. 

As shown in the Fig. 10 below, the map of the gird-based 
environment is 21×21. Smooth red curve is the result of path 
planning based on the algorithm of this paper. In order to make 
the running result clearer, the red circle in the Fig. 10 shows a 
partial enlarged view of the turning path indicated by the arrow. 
Each curve is a smooth curve. 

 
Fig. 10 Simulation results based on MATLAB 

 
Under the map environment of Fig. 10, as shown in the 

figure below, it is the algorithm convergence curve based on the 
traditional ant colony algorithm and the algorithm of this paper.  

  The abscissa in the Fig. 11 is the number of ant colony 
iterations N = 150. The left ordinate indicates the shortest path 
length of each generation of ants. The right ordinate is the value 
of the pheromone volatilization factor during the operation of 

the algorithm. The purple ployline in the Fig. 11(a), is the 
convergence curve by the traditional ant colony algorithm. The 
blue ployline is the convergence curve based on the improved 
ant colony algorithm. The yellow curve and the blue curve 
correspond to the least squares fit curves of the two polylines, 
respectively. The red scatter indicates the value of the 
pheromone volatilization factor for each generation in the 
algorithm. 

 

 
Fig. 11 Convergence curve comparison between traditional ant colony 
algorithm and improved ant colony algorithm. 

 
In the Fig. 11, we divide the algorithm running process into 

three stages: the stage of fast convergence (the first stage), the 
stage of continue to explore (the middle stage), and the stage of 
final convergence (the final stage). It can be found that by 
comparing the Fig. 11(a) and Fig. 11(b): In the first stage, the 
value of dynamic pheromone volatilization factor is higher than 
the value of static pheromone volatilization factor. This is 
conducive to the rapid convergence of the algorithm. And the 
blue curve drops faster than the yellow curve due to the effect 
of improving the initial pheromone distribution and the 
dynamic pheromone volatilization factor strategy.  

Then, the performance of the curve in the second and third 
stage can illustrate that, obviously, the purple ployline 
fluctuates less in the second phase than the blue ployline. Even 
in the third stage, the purple ployline almost becomes a 
horizontal straight line. This means that in the middle and late 
stages of the traditional ant colony algorithm, ants are always 
on a repetitive path and lose the ability to explore new roads. 
This is because that the pheromone content on the path plays an 
important role in guiding the ants to find the way, and the 
pheromone volatilization factor in the traditional ant colony 
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algorithm is a global constant. The accumulation of residual 
pheromones on the same path will always cause this 
phenomenon in traditional ant colony algorithms. By 
contraries, the blue ployline not only has a good convergence 
effect. But also, in the second and the final stages, the blue 
ployline fluctuation display that the ants still have good 
exploration ability. On the other hand, the improved algorithm 
has a wider second stage and the ants explore time of the path is 
longer in the second stage. Therefore, to a great extent, the 
application of improved initial pheromone distribution strategy 
and dynamic pheromone volatilization factor strategy improves 
global search ability and global search efficiency. By 
comparing the two algorithms, the improved ant colony 
algorithm has better ability of path exploration, and its benefits 
are more obvious than the traditional ant colony algorithm.  

In order to further analyze the performance of the algorithm 
proposed in this paper, it is compared with the conventional 
ACO and the elite ant colony algorithm. Three maps are used 
here. The Map 1 is the Fig. 10. The Map 2 and Map3 is the Fig. 
12 and Fig. 13 which are 40×40. In the Map 2 and Map3, the 
number of the generations are N = 200, the number of the ants 
are M = 1000 in each generation.  

 
Fig. 12 The simulation of Map 2.  
 

 
Fig. 13 The simulation of Map 3.  

 
 
 
 
 

Table 1 Comparison results of three algorithms 
 Conventional ant 

colony algorithm 

Elite ant colony 

algorithm 

The algorithm 

improved in the 

paper 

 Path 
length 

Search 
time 

Path 
length 

Search 
time 

Path 
length 

Search 
time 

Map 1 78.2 302 50.5 269 37.9 103 
Map 2 157.3 2429 87.4 1581 58.9 964 
Map 3 216.9 2653 133.7 1835 98.2 1207 

 
In the Table 1, compared with the traditional ant colony 

algorithm, the improved two algorithms are performs better. 
Compared with the elite ant colony algorithm, the algorithm 
proposed in this paper has some improvement in path length 
and search time. More importantly, the path of the algorithm 
proposed in this paper is smooth and more suitable for the safe 
navigation of the Ackerman chassis unmanned vehicle. 

Intuitively, the algorithm combines the obstacle expansion 
strategy, convex polygon detection method and 2-turning 
smoothing algorithm described above. Compared with the 
polyline path of the traditional ant colony algorithm, the 
algorithm proposed in this paper can more reasonably plan a 
smooth path that satisfies the characteristics of the Ackermann 
chassis. Under the combination of the guidance of the path and 
the positioning of its own coordinates, the algorithm can guide 
the robot to correctly track the path and reach the destination 
without collision. This algorithm will provide important basis 
and support for the autonomous navigation of the Ackerman 
chassis robot.  

V. CONCLUSION 
In order to plan the path for the Ackerman chassis robot, this 

paper combines the structural characteristics and motion law of 
the Ackerman mobile robot to improve the defects of the 
traditional ant colony algorithm. This paper considers the 
structural size of the mobile robot into the algorithm through 
the obstacle expansion strategy. It avoids unnecessary collision 
of mobile robot due to its own width size during actual 
operation. Then, in order to improve the efficiency of the ant 
colony algorithm, the algorithm is improved in many aspects. 
The application of the convex polygon detection is essentially a 
purposeful reconstruction of the initial map. The use of this 
strategy to a certain extent prevents a large number of ants from 
falling into a U-shaped dead end, thereby improving the 
efficiency of the algorithm. The reasonable distribution of 
initial pheromones has a good guiding effect on ants in the early 
stage of the algorithm, thus to a certain extent avoiding the 
blindness and randomness of the traditional ant colony 
algorithm in the early stage of path search. The improvement of 
dynamic pheromone volatilization factor avoids the premature 
phenomenon of traditional ant colony algorithm, so that the 
algorithm can maintain good path exploration ability in the 
middle and late stages. In order to make the generated path as 
smooth as possible, we first redesigned the evaluation function, 
taking the turning of the path into the evaluation function at a 
certain cost. Then the redundant nodes are used to remove 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.49 Volume 14, 2020

ISSN: 1998-4464 369



 

 

further smooth paths, and finally the 2-turninging algorithm is 
used to obtain a smooth path suitable for Ackerman chassis 
vehicles. A smooth path is available for the Ackermann mobile 
robot. The feasibility and effectiveness of the algorithm are 
verified by MATLAB platform simulation, which will provide 
an important basis for the subsequent algorithm migration, and 
lay a solid foundation for the path tracking control of Ackerman 
chassis robot.  

In addition, the advantage of the algorithm proposed in this 
paper for path tracking is that it improves the tracking 
efficiency of Ackerman chassis vehicles and reduces the 
uncertainty of control during vehicle driving. Generally, the 
turning and obstacle avoidance of Ackerman vehicles require 
sensors to monitor the distance between the vehicle and the 
obstacles in real time, and the control system frequently issues 
commands to adjust the vehicle attitude based on the detection 
results of the sensors. The 2-turninging algorithm proposed in 
this paper has planned a path suitable for Ackerman chassis 
vehicles in advance where the vehicle needs to turn or avoid 
obstacles. Obstacle avoidance and return movements can be 
achieved by adjusting the front wheel heading angle at a 
specific angle twice, which avoids redundant operation of the 
control system. So it can improve the efficiency of vehicle 
trajectory tracking. However, there are some defects. Facing a 
bigger map, it will take a long time to search the optimal path. 
In the future, we need to reduce search time. 
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