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Abstract- Randomness of data or signals has
been applied and studied in various theoretical
and industrial fields. There are many ways to de-
fine and measure randomness. The most popular
one probably is the statistical testing for random-
ness. Among the approaches adopted, Runs Test
is a highly used technique in testing the random-
ness. In this article, we demonstrate the inef-
ficient aspects of Runs Test and put forward a
new approach, or pattern-vector-based statistic,
based on pattern vectors that could effectively
enhance the precision of testing randomness. A
random binary sequence is supposedly to have
less or no patterns. Based on this, we put for-
ward our randomness-testing statistic. We also
run an experiment to demonstrate how to apply
this statistic and compare the efficiency or failure
rate with Runs Test in dealing with a set of ran-
domly generated input sequences. Moreover, we
devise a statistically-justifiable measure of ran-
domness for any given binary sequence. In the
end, we demonstrate a way to combine this new
device with Kalman filters to enhance the data
assimilation.

Keywords- randomness, pattern vectors, inner
products, Kalman Filter

I. Introduction

Randomness of a sequence generated from an experi-
ment is a vital and open question. Its openness lies in the
need of full comprehension and definition of ”random-
ness”. Nonetheless, the practical usages arising from var-
ious applications [2] - for example, testing the fairness of
a lottery machine, a slot machine, a dice, a peck of poker,
etc. - spurs the development of finding suitable measures
for randomness. There are many theoretical measure-
ments and statistical measurements of randomness [3].
In physics, the usual one is the concept of entropy[4, 5].
For the statistical ones, a convenient and widely-used ap-
proach is the Runs Test, which is largely regarded as the
standard statistical test for randomness of sequences in

the textbooks [1]. In this article, we demonstrate that
Runs Test indeed is quite inaccurate and too simplistic
in randomness testing. We put forward a new approach
based on pattern recognitions (vectors) to capture the
randomness of a sequence. On the other hand, inner
products [7, 8] or semi-inner products [6] are usually used
to delve into the relationship between two set of data. In
this article, we choose some patterns to induce pattern
vectors to capture the similarities between the input vec-
tor (sequence) and the pattern vectors. Then we devise
a statistic to measure the randomness via the concept of
variance between the degrees of similarities.

II. Runs Test

The statistical inference regarding the randomness of
a sequence is:
H0: the experimental binary sequence generated is ran-
dom.
H1: the experimental binary sequence generated is not
random.
Here we review and rephrase some terminologies and for-
mulas for Runs Test of randomness [1, 9]. For consistent
computation in this article, we use n−1 (rather than n0)
and n1 to denote the usual meaning of the number of
occurrence of 0 and 1 (or positive/negative signs) in a
binary sequence, respectively. We use Runs to denote
Runs Test statistic and x to denote the number of runs
in a sequence. Then the distribution of Runs Test statis-
tic Runs goes as follows: P (Runs = x|H0) =

2 ·

 n−1 − 1
x
2 − 1

·

 n1 − 1
x
2 − 1


 n−1 + n1

n−1


, if x is even;

 n−1 − 1
x+1
2

·

 n1 − 1
x−1
2

+

 n1 − 1
x+1
2

·

 n−1 − 1
x−1
2


 n−1 + n1

n−1


,

if x is odd.

In the latter chapter, we will compare the efficiency
of Runs Test via this formula with our pattern-vector-
based statistic. Before that, let us build a sound theory
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regarding non-numerical data in order to accommodate
our construction of models.

III. Formalization of Set-Based Inner
Product

Since binary sequences normally doesn’t have numer-
ical meaning, for examples, a sequence of head-and-tail
tosses of a coin, and connect more to nominal values,
we formalize a system that could accommodate nomi-
nal values via set-based mechanisms. We embed a copy
of numerical inner product with integer coefficients into
Cantorian set theory. By doing so, we could analyse non-
numerical data by numerical tools, like Euclidean inner
product.

Therefore, in this section, we give an approach to
embed the concept of inner product into Cantorian set
theory. Though it is also possible to formalize them in
multi-set theory, it would be cumbersome in dealing the
concept of negative multiplicities. Hence, we resort to
the original Cantorian set theory to build up a formal-
ized version of inner product. The reason for us to embed
numerical inner product into sets is to link the intrin-
sic properties shared by both numerical data and non-
numerical data, which is usually treated qualitatively,
rather than quantitatively. Let U = {a1, a2, ..., an} de-
note a set of target set (universe), where n = |U |. U
is not restricted to any numerical set. It could be any
data type, for example, characters, letters, numbers, sen-
tences, etc. In order to accommodate the multiplicity
of a set A, we define a function mA : U → Z and
embed each multi-set A into Cantorian set via A ≡
n⋃

p=1

(

mA(ap)⋃
i=0

{(ap, i)}) or

A ≡
mA(a1)⋃

i=0

{(a1, i)}
mA(a2)⋃

i=0

{(a2, i)}...
mA(a1)⋃

i=0

{(an, i)}.

Let MSU denote the set of all the multi-sets defined
over U . Let A,B,C ∈ MSU be arbitrary. In the fol-
lowing, we equip all the operations for the structure
(MSU ,⊗,×,⊕,−,	, ∅,Z⊗, 〈, 〉). Observe that the scales
for sets in MSU are integers, which is sufficient in con-
structing our model.

The empty set in MSU is identified by

∅ =
n⋃

j=1

{(aj , 0)}.

Definition III..1.

A⊕B :=
n⋃

p=1

mA(ap)+mA(bp)⋃
i=0

{(ap, i).

The product of two sets A and B in MSU is identified
as follows:

Definition III..2.

A×B :=
n⋃

p=1

n⋃
p=1

mA(ap)⋃
i=0

mA(aq)⋃
j=0

{((ap, i), (aq, j))}.

We extend the usual multiplicity to negative integers
for MSU as follows.

Definition III..3. (Black Set) −A :=
n⋃

p=1

−mA(ap)⋃
i=0

{(ap, i)}.

The interpretation of this set could be plausibly re-
garded as a black hole in set, in which the elements are
hidden.

Definition III..4. A	B := A⊕ (−B).

Definition III..5. k⊗A :=
n⋃

p=1

(

k·mA(ap)⋃
i=0

{(ap, i)}) for all

k ∈ N.

Claim 1. Suppose Ã = n⊗A. Then mÃ(ai) = k·mA(ai)
and mA⊕B(ai) = mA(ai) +mB(bi) for all 1 ≤ i ≤ m.

Proof.

In the following, we define the counterpart of set-
based inner product.

Definition III..6. (set-based product) Define

〈A,B〉 :=
n∑

p=1

|{((ap, i), (ap, j)) : ((ap, i), (ap, j)) ∈ A×B}|.

This definition simulates the numerical product via
set Cantorian direct product.

Claim 2.

〈A,B〉 =
n∑

i=1

mA(ai) ·mB(ai).

Proof. By observing Definition III..6, the number of the
direct product is exactly the multiplication of the multi-
plicities of set A and B.

Lemma III..1. 〈, 〉 is an integer inner product onMSU .

Proof. For the positive definiteness and symmetry prop-
erties, both follow immediately from Claim 2. Here we
show the linearity property. Let u, v ∈ Z be arbitrary.

Then 〈u ⊗ A ⊕ v ⊗ B,C〉 =
n∑

i=1

mD(ai) ·mA(ci), where

D = u ⊗ A ⊕ v ⊗ B. Then by Claim 1, mD(ai) =
u ·mA(ai) + v ·mB(ai), we have

〈u⊗A⊕ v ⊗B,C〉

=
n∑

i=1

(u ·mA(ai) + v ·mB(ai)) ·mC(ai)

= u ·
n∑

i=1

mA(ai) ·mC(ai) + v ·
n∑

i=1

mB(ai) ·mC(ai)

= u · 〈A,C〉+ v · 〈B,C〉.
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To be precise, we are talking about the isomorphic-
structure sense of inner product, where numerical prod-
uct · is identified with scale product of set, or ⊗ and
numerical + is identified with scale addition of set, or
⊕. Since we have constructed the theoretical parts of
our model construction, we could safely use all the usual
sense of numerical inner products in this article. These
is no need to complicate our model by using all the lan-
guages constructed in this section.

IV. Pattern-Vector-Based Measurement of
Randomness

In this section, we introduce our method in testing
randomness. The method will be named pattern-vector-
based statistic.

A. Introduction: Pattern-Vector-Based Statistic

Let ~a ∈ {−1, 1}n denote an arbitrary (input) vector
with length n ∈ N which indicates the number of ex-
periments. Let P = {~P1, ~P2, ..., ~Pm} ⊆ {−1, 1}n be a
set of pattern vectors. In this article, unless otherwise
specified, we interchangeably use patterns (sub-vectors)
and pattern vectors (repeating sub-vectors till the length
of experiment). For example (−1, 1) is a pattern, and
(−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1) is
a pattern vector, based on the pattern (−1, 1) up to the
length of experiment 17. Let Pij denote the jth element

in the pattern vector ~Pi. Let P denote the matrix [Pij ],
where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let Kt denote the
transpose of matrix K. Since we have justified inner
product for applying in non-numerical data in Section
III., we could construct a concrete model in this section
via inner product. Let 〈, 〉E denote the Euclidean dot
inner product. Now we define the characterization of an
input vector ~a via the pattern vectors P. We call there
characterizations the coefficients of ~a via pattern P (or
CFP(~a)). Our method could be summarised in the fol-
lowing figure: The whole inference processes could be
demonstrated in Figure 1. In the figure A is the ma-

Fig. 1: pattern-vector-based Statistic

trix form of veca and P is the matrix form of P. SV ar
and AP tHPAt is the derived result and will be detailed
in the following. Let us briefly take a look at this di-
agram. First of all, when an input vector (sequence) ~a
is received, its relation (coefficients) with other chosen

pattern vectors P = {~P1, ~P2, ..., ~Pm} is constructed and
recorded in a coefficient vector CFP(~a) and then the vari-
ance of CFP(~a) is computed via a function SV ar. The
basic idea is if ~a is a random sequence, then it tends to

have less or no preference over the choices of any partic-
ular pattern vectors. It then implies that the variance
of coefficient vector or the variance of CFP(~a) tends to
be smaller. Hence, a criterion to reject H0 is when the
variance is large. We have constructed our modelling for
testing randomness. In the following, we detail all the
terminologies and methods mentioned here.

B. Details and Properties Derivations
Definition IV..1. Define CFP : {−1, 1} → Zm by

CFP(~a) = (〈~a, ~P1〉E , 〈~a, ~P2〉E , ..., 〈~a, ~Pm〉E) ≡ (C1, C2, ..., Cm),

where Ck := 〈~a, ~Pk〉 =
n∑

i=1

ai · Pki for all 1 ≤ k ≤ m.

Definition IV..2. SV ar(~a;P) :=

∑m
k=1(Ck − C̄)2

m− 1
,

where C̄ =
∑m

k=1 Ck

m

Theorem IV..1. SV ar(~a;P) = AP tHPAt, where H =

1
m

−1
m2−m ... −1

m2−m
−1

m2−m
1
m ... −1

m2−m

. . ... .

. . ... .

. . ... .
−1

m2−m
−1

m2−m ... 1
m

 and A = [a1, a2, ..., an]

(i.e., ~a in a matrix form).

Proof. SV ar(~a;P) =

∑m
k=1(Ck − C̄)2

m− 1
=

1

m− 1
·

[
m∑

k=1

C2
k −

(
∑m

k=1 Ck)2

m
]. Since

(

m∑
k=1

Ck)2 = (AP tÎ)(AP tÎ)t = AP t(Î Ît)PAt

and
m∑

k=1

C2
k = (AP t)(AP t)t = AP tIPAt,

SV ar(~a;P) = 1
m−1 · [AP tIPAt − AP t(Î Ît)PAt

m ] =

AP t[ 1
m−1 ·I−

Î Ît

(m−1)·m ]PAt, where I is a m by m identity

matrix and Î =


1
1
.
.
.
1

 . Let H = 1
m−1 · I −

Î Ît

(m−1)·m . The

result follows immediately.

In the following, we demonstrate how to compute the
results in Figure 1

C. Patterns and Pattern Vectors
The patterns we choose are the periodic functions.

We use h to denote the variables of length of periodic
functions. For each given h, one has 2h patterns. In
Table 1, we give some examples for the patterns (or sub-
vectors).
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h Patterns (sub-vectors)

1 (1),(-1)
2 (-1,-1),(-1,1),(1,-1),(1,1)
3 (-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1),(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)

Table 1: Patterns up to h = 3

If one chooses the number q as the maximum length for
the range of h, then the total chosen patten vectors would
be 21 + 22 + ...+ 2q = 2q+1 − 2. Suppose the number of
experiments is n = 25, then correspondingly, we form the
following pattern vectors (see Table 2) based on patterns
chosen.

D. Computational Demonstration
Suppose the input vector (sequence) is

~a = (1, 1, 1,−1, 1,−1,−1, 1,− 1, 1,−1,−1,−1, 1,

,−1,−1, 1,−1, 1, 1, 1,−1,−1)

Then ~a • ~P1 = −1 and by the same analogies for other
~a • ~PJ , one has

CFP(~a) = (−1, 1, 1, 1,−1,−1, 1,−7, 5,−3, 3,−5, 7,−1).

By computing the variance of the vector CFP(~a), one
gets SV ar(~a;P) = 13.3846.

V. Experimental Results

Based on our theories and models, we run an exper-
iment to yield an efficiency of our statistic. Then we
compare our efficiency with the one of Runs Test. The
result shows our approach could hugely enhance the pre-
diction of randomness given the input binary sequences
are really random.

A. Random Inputs and Pattern Vectors
We use n−1 and n1 to denote the fixed appeared

number of −1 and 1, respectively. Let N = n−1 +
n1 be the total length of the experiment. In this
experiment, we adopt n−1 = 10, n1 = 11 and
N = 21. We adopt R-language command “sample(c(-
1,1),replace=TRUE,size=N)” to generate all the 10000
samples. All the results are stored in a matrix named
MRS. However, only some of the randomly generated
samples whose length consist of n−1 = 10 and n1 = 11.
We single out these which satisfy n−1 = 10 and n1 = 11
and store these data in a sub-matrix QRS (qualified ran-
dom samples). We choose q = 4 and have 30 patterns
(or sub-vectors). Then we use these patterns to induce
corresponding pattern vectors, and store these vectors in
a 30 by 21 matrix Pat.

B. Experimental Space and Inferences
We use “expand.grid(rep(list(c(-1,1)),N))” to gen-

erate all the experimental samples and store them in

a matrix named S. However, not all the samples are
valid as we have to restrict them to the samples with
n−1 = 10 and n1 = 11. After filtering out the unquali-
fied samples, the remaining ones are stored in a matrix
named SS. Then we calculate the range of our statistic
which computes the variances of elements between SS
and Pat. The range of our statistic is stored in a matrix
named RangePat. Based on this, we calculate the criti-
cal point with significant level σ = 0.01. So far, we have
constructed the distribution of our pattern-vector-based
statistic.

Fig. 2: Distribution of Pattern-Vector-Based Statistic

The critical point is then computed as 32.91954 as
shown in Figure 2. Any input vector with higher value
than this critical point should be regarded as an evidence
to reject H0.

If the statement that H0: the experimental sequence
is random is true, then by our statistic, there are 12
rejected cases out of |QRS| = 1670. The failure rate
(or 12

1670 ), which is defined to be the number of wrongly-
rejected samples with respect to total valid samples is
0.007186. In comparison, the critical points, computed
via formula in Section II. for Runs Test are 4 and 16,
based the same significant level. However, the failure
rate (or 56

1670 ) of Runs Test is 0.033533, which is even
higher than its significant level α = 0.01 as shown in
Figure 3. This means pattern-vector-based statistic is
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Patterns Pattern Vectors (repeated full vectors)

(1) ~P1 ≡(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

(-1) ~P2 ≡(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)

(-1,-1) ~P3 ≡(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)

(-1,1) ~P4 ≡(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1)

(1,-1) ~P5 ≡(1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)

(1,1) ~P6 ≡(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

(-1,-1,-1) ~P7 ≡(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)

(-1,-1,1) ~P8 ≡(-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1)

(-1,1,-1) ~P9 ≡(-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1)

(-1,1,1) ~P10 ≡(-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1)

(1,-1,-1) ~P11 ≡(1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1)

(1,-1,1) ~P12 ≡(1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1)

(1,1,-1) ~P13 ≡(1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1,1,-1,1)

(1,1,1) ~P14 ≡(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Table 2: Pattern Vectors based on Patterns up to n = 25

4.66 times better than the Runs Test.

Fig. 3: Run Test Results

C. A New Measurement of Randomness
Since our method is statically justified, we could then

define a measure that could be used to measure the ran-
domness. We define the degree of randomness via a func-
tion Deg : {0, 1}n → [0, 1] which is defined by

Definition V..1. Deg(~a) := P (PV B ≤ V ar(~a)|H0),
where PV B is our pattern-vector-based statistic.

VI. Application

In this section, we will demonstrate how to combine
Kalman ([10, 11, 12]) Filters with our measurement of

randomness in dealing with multiple (simultaneous) sen-
sors for the same target. Let xt denote a (real) state
vector with n state (random) variables. Let St denote
the state transition matrix at (time) t. Let It denote the
input dynamical matrix. Let ct denote the control input
vector. Let mt denote the measurement vector. Let Mt

denote the measurement matrix. Let nxt , and nmt denote
state noise and measurement noise vector at t, respec-
tively. Let Σx

t , and Σm
t denote process noise matrix and

measurement noise matrix at t, respectively. Let x̂−t and
x̂+t denote the priori and posteriori estimate vector of
Xt. A typical formulation of linear stochastic discrete
time system goes as follows (here we omit all the typical
assumptions):

1) xt = Stxt−1 + Itct−1 + nxt , where nxt ∼ N (0,Σx
t );

2) mt = Mtxt + nmt , where nmt ∼ N (0,Σm
t );

3) (state prediction) x̂−t = Stx̂
+
t−1 + Itct−1;

4) (error covariance prediction) P̂−
t = StP̂

+
t−1S

T
t + Σx

t ,

where P̂−
t = E[(xt − x̂−t )(xt − x̂−t )T ].

5) (Kalman gain) Kt = P̂−
t M

T
t (MtP̂

−
t M

T
t + Σm

t )−1.

6) (state update) x̂+t = x̂−t +Kt(mt −Mtx̂
−
t ).

7) (error covariance update) P̂+
t = (I − KtMt)P̂

−
t ,

where I is the identity matrix.

Let us abuse the matrix notations and summarize the
above results in the following:

1) (priori estimation)

[
x̂−t
P̂−
t

]
=
[
St St(·)ST

t

] [x̂+t−1

p̂+t−1

]
+[

Itct−1

Σx
t

]

2) (Kalman gain) Kt = P̂−
t M

T
t (MtP̂

−
t M

T
t + Σm

t )−1.
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3) (posteriori estimation)

[
x̂+t
p̂+t

]
=[

I −KtMt I −KtMt

] [x̂−t
p̂−t

]
+
[
Kt Kt

] [mt

0

]
Now let us make the following assumptions regarding all
the parameters:

1) n = 2;

2) St = S =

[
1 0.5

0.6 1

]
, It =

[
0 0.7

0.2 1

]
,Mt = M =[

1 0
0 1

]
,Σx

t = Σx =

[
0.4 0.2
0.1 0.3

]
,Σm

t = Σm =[
0.1 0.5
0.1 0.2

]
, ct−1 = c =

[
0
0

]
;

3) x0 = x̂+0 =

[
0
0

]
, P̂+

0 =

[
0 0
0 0

]
;

Then the above equations could be simplified as follows:

1) (state prediction) x̂−t = Sx̂+t−1;

2) (error covariance prediction) P̂−
t = SP̂+

t−1S
T + Σx.

3) (Kalman gain) Kt = P̂−
t (P̂−

t + Σm)−1.

4) (state update) x̂+t = x̂−t +Kt(mt − x̂−t )

5) (error covariance update ) P̂+
t = (I −Kt)P̂

−
t .

In order to visualize the above relations, we abuse the
matrix notations as follows:

1) (prediction)

[
x̂−t
P̂−
t

]
=
[
S S(·)ST

] [x̂+t−1

P̂+
t−1

]
+

[
0

Σx

]
2) (Kalman gain) Kt = P̂−

t (P̂−
t + Σm)−1

3) (update)

[
x̂+t
P̂+
t

]
=

[
I −Kt I −Kt

] [ x̂−t
P̂−
t

]
+[

Kt Kt

] [mt

0

]
Based on these relations, we start to implement them via
R programs.

Since all the simulations will need a huge amount of
programs, we specify the processes and leave the inter-
ested readers to fill the gaps. Suppose we sample 20
points (i.e.,20 sequential samples) from the bivariate nor-
mal distributions shown in Table 3. The second column
shows the sampled process noise vectors {nxt |1 ≤ t ≤ 20}.
The third column shows the first batch of sampled mea-
surement noise vectors {nmt |1 ≤ t ≤ 20} and the fourth
column shows the second batch of sampled measurement
noise vectors {nmt |1 ≤ t ≤ 20}.

Then from {nxt |1 ≤ t ≤ 20}, initial state vector in
3) and the recursive process in 1) (or xt = Sxt−1 + nxt ),
we could simulate (or obtain) the actual state vectors
xt, i.e., {xt|1 ≤ t ≤ 20}. This, coupling with 2) (or
mt = xt + nmt ) and {nmt |1 ≤ t ≤ 20} would result in

{mt|1 ≤ t ≤ 20}, the (simulated) actual measurements.

Let us use {m(1)
t |1 ≤ t ≤ 20} and {m(2)

t |1 ≤ t ≤ 20}
to denote the actual measurement for batch one and
batch two, respectively. If one looks at state update
mechanism, he finds that mt could be the weighted
average of several finite batches of measurements (or
sensors or observations). The weights could be de-
cided via our measurement of randomness. We calcu-
late {xt − x̂t|1 ≤ t ≤ 20} and {mk

t − m̂k
t |1 ≤ t ≤ 20},

i.e., {mk
t − x̂−t } in our case. One could expect that

the higher the relation between the two set of vectors
is, the higher weight should put upon the measurement
(or sensors). Such relation is revealed via inner product
{〈xt − x̂t,mk

t − x̂−1
t 〉|1 ≤ t ≤ 20}. Next, we convert this

set into a sequence to 0 and 1, in which the value 0 is
assigned whenever 〈xt − x̂t,mk

t − x̂−1
t 〉 ≤ 0 and 1, oth-

erwise. We use δkt to denote this value. Henceforth, we
have an ordered set δk = (δk1 , δ

k
2 , ..., δ

k
t , ..., δ

k
20). Based on

the method we use, we could then measure the random-
ness of δk via Deg(δk) in Section V..1. We could then
assimilate the measurements via v batches or sensors for

the same target by mt =
v∑

k=1

Deg(δk)
v∑

j=1

Deg(δj)

·mk
t .

Now let us pose for while to analyse the Kalman fil-
ter. First of all, the white noise is assumed for nxt and
nmt . It is hard to argue as nxt is accompanied with the
dynamical equations and that is hard to detect, since
we need to rely on measurement. Then the main fac-
tor that could justification the setting will heavily rely
on nmt . However, this assumption could easily be ex-
amined by the real measurement. This is one problem
that covariance Cov(nmt ) normally is hard to assume or
calculate. In this section, we try to find a method that
could preliminarily evaluate the effect of state estimation
given the real measurement, rather than resorting to the
simulated data, i.e., mt will be measured directly.

VII. Conclusion

In this article, we have devised a new statistic named
pattern-vector-based (PVB) statistic that, empirically,
turns out to have higher predictive precision in test-
ing the randomness of a sequence, in comparison with
the usual Runs Test. The result might own to the fact
that Runs Test doesn’t really consider the interaction be-
tween different patterns and the studied input sequence.
Our experimental results show that PVB could promote
the accuracy from 4 to 5 times when compared with
Runs Test. Based on this, we also design a statistically-
justified measurement of randomness of binary sequence,
which could then be coupled with Kalman Filters in deal-
ing with data assimilation. Though we could enhance the
precision in testing the randomness, the cost could not
be ignored - the choices of patterns and pattern vectors
would consume a lot of computational resources. An al-
ternative is to pick up only those patterns that are much
representative - for example, independence - rather than
inclusively contain all the patterns based on length.
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times N (0,Σx) N (0,Σm) : 1 N (0,Σm) : 2

1 ( -0.847 , -0.461 ) ( 0.690 , -0.061 ) ( -0.251 , 0.495 )
2 ( 0.380 , -0.049 ) ( 0.976 , -0.176 ) ( 0.645 , 0.760 )
3 ( -0.027 , 0.047 ) ( -0.253 , 0.527 ) ( -0.321 , -0.853 )
4 ( -1.304 , -0.140 ) ( -0.178 , -1.037 ) ( -1.304 , 0.255 )
5 ( -0.150 , -0.620 ) ( -0.451 , -0.134 ) ( 0.343 , -0.248 )
6 ( 0.811 , -1.051 ) ( 0.760 , 0.259 ) ( 0.634 , 0.321 )
7 ( -0.110 , -0.101 ) ( 0.582 , 0.045 ) ( -0.866 , -0.750 )
8 ( 0.053 , -0.881 ) ( -0.211 , -0.706 ) ( 0.548 , -0.208 )
9 ( 0.389 , -0.199 ) ( 0.308 , -0.675 ) ( -0.020 , -0.254 )
10 ( -0.307 , 0.490 ) ( 0.047 , 0.276 ) ( -1.294 , 0.541 )
11 ( -1.192 , 0.006 ) ( -0.665 , -0.242 ) ( 0.223 , -0.381 )
12 ( -0.991 , -0.241 ) ( 0.566 , 0.838 ) ( -0.900 , -0.062 )
13 ( -0.361 , -0.429 ) ( -0.784 , -0.750 ) ( 0.764 , 0.149 )
14 ( 0.014 , 0.223 ) ( -0.176 , 0.428 ) ( -0.947 , -1.205 )
15 ( -0.585 , -0.104 ) ( 0.856 , -0.182 ) ( 0.288 , 0.170 )
16 ( 0.095 , 0.370 ) ( 0.119 , -0.405 ) ( 0.725 , 0.637 )
17 ( 0.521 , 0.064 ) ( -0.055 , 0.035 ) ( 0.772 , 1.019 )
18 ( 0.020 , -0.495 ) ( 1.174 , 0.395 ) ( 0.354 , 0.485 )
19 ( -0.752 , -0.574 ) ( 0.725 , 0.246 ) ( 0.102 , 0.060 )
20 ( -0.235 , 0.456 ) ( 0.433 , 0.510 ) ( -0.448 , -0.783 )

Table 3: sampled data from bivariate normal distributions
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