
 

 

 
Abstract—This paper is devoted to the numerical 

information flows and adaptive decompositions of the 

general Haar functions connected with them.  The aim of 

this paper is to propose an adaptive wavelet decomposition 

using an adaptive compression algorithm for a flow of 

numerical information of length M with complexity 

𝑶(𝑴) and with a given precision of 𝜀> 0. The numerical 

flows are associated with irregular spline grids. This paper 

discusses the calibration relations, the embedding of the 

general Haar spaces and their wavelet decompositions. 

The structure of the decomposition/ reconstruction 

algorithms are done. The cases of the finite and the infinite 

flows are considered. The paper discusses various methods 

of adaptive Haar approximations for the flow of function 

values. Assuming that the values of the first derivative of 

the approximated function is known (exactly or 

approximately), the complexity of using an adaptive grid is 

estimated for a priori specified approximation accuracy. 

The number of K knots in the adaptive grid determine the 

required amount of memory for storage of the 

compression results. The number of M knots of the initial 

grid characterizes the number of operations required to 

obtain the adaptive compression. In the case of access to 

the derivative values (or their approximations) the 

number of digital operations is proportional to the number 

M. If it does not have access to the last ones then the 

number of required operations has the order of M2 (in the 

general case). If additionally, the approximated flow is 

convex, then the number of required operations has the 

order of M log2M. In all cases the result requires the 

computer memory amount to be of the order of K. 
 

Keywords— calibration relations, generalized Haar 

spaces, irregular grids, wavelet decomposition 

 
 

 

I.  INTRODUCTION 
The processing of numerical information flows of the large M 
length is relevant now and will be relevant in the future. For a 
long time, there was a need to use an irregular grid for the 
wavelet decomposition. The flow of the initial data is often 
associated with an irregular initial grid (in the cases 
inconsistent intervals of measurement for any physical 
characteristics obtained by analog devices). It must be taken 
into account that the initial flow can have transitions from fast 
to slow changes and vice versa (see [1] – [39]). 
      As it is known, a result of the wavelet decomposition of 
the initial flow is two flows: one of them carries the main 
information (the so-called main flow), and the second contains 
clarifying information (the wavelet flow). The main flow is 
used first. This flow must satisfy conflicting requirements. On 
the one hand, it should have a small volume. On the other 
hand, it must qualitatively display the content of the initial 
flow. It is most convenient to associate the main flow with the 
grid, obtained by the enlargement of the initial grid. 

The splines are a widespread apparatus for processing 
numerical information flows. In this regard, we mention the 
development of splines that satisfy additional conditions. 
Various types of splines are considered, including sign-
defined splines, the splines preserving the prescribed shape, 
and adaptive splines, etc. (see [7], [8], [15], [26], [27], [29]). 
The splines are widely used to extract basic information from 
noisy flows in wavelet decompositions.  

Paper [2] discusses the computer complexity for the 
interpolation of 𝑛 data by the splines of order 𝑚 with the 
result 𝑚2𝑛/4 arithmetical operations. The complexity of the 
compression of numerical flows is a basic problem for signal 
processing. The standard compression of flow in classical 
wavelet algorithms is performed by removing the components 
with odd knots (see [10]). In this case, there is no reason to 
hope for a qualitative approximation of the initial flow.  The 
method [3] (named MARS) for flexible regression analysis of 
multivariate data is presented. The complexity of the model 
building algorithm depends significantly on the nature of the 
input data. Paper [4] is devoted to B-spline complexity in the 
case of a uniform grid. The complexity of the approximation 
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is proportional to the number of data.  A fast polynomial 
spline with prescribed properties is represented in paper [24]. 
In the paper, authors show that the complexity of calculating 
the unknown derivatives is a linear function of the length of 
the initial data flow. Usage of the cubic splines as the 
apparatus for the application for the construction of the 
adaptive linear filter is discussed in paper [28]. An application 
of parallel technology CUDA, with the usage of B-splines is 
demonstrated in paper [34]. The authors of all enumerated 
papers have a tendency to optimize spline processing.  

Well-known publications do not consider the complexity of 
constructing adaptive wavelet decomposition algorithms for 
numerical information flows. In the framework of the classical 
approach to the wavelet expansion of Haar approximations, 
the investigations were carried out in [10]. The work [10] 
introduces irregular grids for Haar wavelets. The 
aforementioned work considered an irregular initial grid with 
the quantity of knots M = 2s. The enlarged grid obtained by 
deleting knots with odd numbers. The quantity of knots of the 
enlarged grid was K = 2s−1. However, adaptability and high-
quality compression with this approach should not be counted 
on. 

     The aim of this paper is to propose an adaptive wavelet 
decomposition using an adaptive compression algorithm for a 
flow of numerical information of length M with complexity 
𝑂(𝑀) and with a given precision of 𝜀> 0.  

The natural source of optimization is the adaptive 
processing for the initial data flow. Two things are important: 
the processing speed of such flows and the K length of the 
compression result. An additional condition is the possibility 
of restoring the initial flow with a given precision of 𝜀> 0 
from the obtained compressed flow. Such property is named 
𝜀-compression. The most natural are adaptive algorithms that 
take into account the rate of initial flow change. The optimal 
(best) adaptive algorithm takes 𝑂(𝑀2)   arithmetical 
operations   (for more exact result see XII section). If the 
initial flow is convex then the algorithm exists with 
𝑂(𝑀 log2 𝑀)   arithmetical operations (see Section XIII).  If 
the initial flow consists of the values of a function and its 
derivative (or derivative approximation) at the knots of a 
certain grid, then adaptive 𝜀-compression using 𝑂(𝑀)  
arithmetic operations is possible (see sections II, III, IV). 
Although the 𝜀-compressed flow will no longer be optimal, 
the recipient of the 𝜀-comp-ressed flow can reconstruct the 
initial flow with 𝜀>0 precision.  

In the wavelet expansion the mentioned 𝜀-compressed flow 
(called in this case the main flow) and a refinement (so-called 
wavelet) flow are formed. The wavelet flow has large volume. 
It is stored at the source (sender) and can be issued to the 
receiver in whole or in part on demand. The wavelet flow, 
together with the main flow, allows the receiver to reconstruct 
the initial flow exactly. This is the value of the wavelet 
decomposition. However, with the classical approach, the 
construction of an adaptive wavelet decomposition is not 
possible. The nonclassical approach developed in this work 
leads to both adaptive 𝜀-compression and adaptive wavelets 
(see V -- XI sections). 

The proposed work was performed in the framework of the 
nonclassical theory of wavelets (see [19], [30], [37] – [39]). 

Here the initial grid is irregular, the quantity of its knots is 
arbitrary, and the main grid can be any subset of the initial 
grid. The enlargement of the grid is carried out gradually by 
removing one knot after another. This can be useful when 
implementing an adaptive algorithm for processing the initial 
flow, coming in real time. 

First, we consider the auxiliary function f defined at the 
knots of a grid called the initial grid. It is shown that this grid 
can be enlarged in such a way that certain properties will be 
satisfied, depending on the function f and the number ε > 0. 
The resulting grid is called an adaptive grid. It is shown that 
the computational complexity of constructing this grid is 
directly proportional to the number of knots in the initial grid. 
Adaptive approximation (adaptive compression) is closely 
related to the selection of the adaptive spline grid. The last one 
may be defined by the values of the function itself, and also 
by the values of its derivative. 

We estimate the complexity of the algorithm for 
approximating functions of classes C1 using the interpolation 
by general Haars’ functions, both on a uniform and (generally 
speaking) non-uniform adaptive grid. Assuming that the 
values of the first derivative of the approximated function is 
known (exactly or approximately), the complexity of using an 
adaptive grid is estimated for a priori specified approximation 
accuracy. It is established that the complexity is directly 
proportional to the number of knots in the initial grid. The 
number of K knots in this grid determines the required amount 
of memory for the storage of compression results, and the 
number of M knots of the initial grid characterizes the number 
of operations required to obtain adaptive compression. Due to 
the fact that the implementation of a uniform grid contained in 
the initial grid is not always possible, a pseudo-uniform grid is 
introduced. The numbers of knots of adaptive and pseudo-
uniform grids are compared to the same approximation, and 
the asymptotic behavior of their relationship is established. If 
the values of the derivative of the approximated function are 
not known, another algorithm for constructing an adaptive 
grid is proposed, the complexity of which is proportional to 
M2, where M is the number of knots of the initial grid. Finally, 
if the approximated function is convex, then a method is 
proposed whose complexity is M log2 M. 

II.  SOME AUXILIARY ASSERTIONS 
A. Adaptive grid 

Consider a positive continuous function f(t), 

𝑓 ∈ 𝐶[𝑎, 𝑏],       𝑓(𝑡) > 0         ∀𝑡 ∈ [𝑎, 𝑏].                   (1) 
Let ε be a positive value. We discuss a grid 
 𝑋̃(𝑓, 𝜀):         𝑎 = 𝑥̃0 < 𝑥̃1 < ⋯ < 𝑥̃𝐾 ≤ 𝑥̃𝐾+1 = 𝑏       (2) 
such that 

𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠) = 𝜀      ∀𝑠 ∈ {0,1, … , 𝐾 − 1}     (3) 

 𝑚𝑎𝑥
𝑡∈[𝑥̃𝐾,𝑥̃𝐾+1]

𝑓(𝑡)(𝑥̃𝐾+1 − 𝑥̃𝐾) ≤ 𝜀.                (4) 

Grid (2)–(4) is named an adaptive grid for the function f. 
The next assertion holds. 
Lemma 1. If relations (1) are right, then for arbitrary 

 𝜀 ∈ (0, 𝜀0),              𝜀0 = (𝑏 − 𝑎) 𝑚𝑎𝑥
𝑡∈[𝑎,𝑏]

𝑓(𝑡),             (5) 
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a natural number K = K(f,ε) and a grid  

 𝑋̃(𝑓, 𝜀) = {𝑥̃𝑖(𝑓, 𝜀)}𝑖𝜖{0,1,…,𝐾,𝐾+1} 
exist such that the properties (3)–(4) are fulfilled. The number 

K(f,ε) is unique. 
Proof. The lemma is proved by mathematical induction 

over the number of knots. 
I. The induction base is set as follows. Let the variable τ 

increase from a = 𝑥̃0 to b. Then, in view of the assumptions (1) 
the function 𝜑0(𝜏) = 𝑚𝑎𝑥

𝑡∈[𝑥̃0,𝜏]
𝑓(𝑡)(𝜏 − 𝑥̃0) is strictly 

increasing. When changing τ from 0x  to b the function φ0(τ) 

increases from 0 to 𝑚𝑎𝑥
𝑡∈[𝑎,𝑏]

𝑓(𝑡)(𝑏 − 𝑎). By condition (5) the 

unique point τ1 ∈ [a,b] exists that 𝑚𝑎𝑥
𝑡∈[𝑎,𝜏1]

𝑓(𝑡)(𝜏1 − 𝑎) = 𝜀. By 

definition we put 1 1x  . The induction base is set. 

II. We suppose that knots 𝑥̃1, 𝑥̃2, … , 𝑥̃𝑠 of the grid X have 
been defined. If 𝑥̃𝑠 = 𝑏, then we put K = s − 1. In this case the 
construction of the grid 𝑋̃(𝑓, 𝜀) is completed. Otherwise, 
𝑥̃𝑠 < 𝑏 the construction of the grid continues. 

Consider a function 𝜑𝑠(𝜏) = 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝜏]

𝑓(𝑡)(𝜏 − 𝑥̃𝑠). If τ 

changes from 𝑥̃𝑠  to b then the function φs(τ) increases from 
𝑚𝑠 = 𝑚𝑎𝑥

𝑡∈[𝑥̃𝑠,𝑏]
𝑓(𝑡)(𝑏 − 𝑥̃𝑠). If ε < ms then τs+1 < b exists such 

that 𝜑𝑠(𝜏𝑠+1) = 𝜀. In this case we put 𝑥̃𝑠+1 = 𝜏𝑠+1. If ε ≥ ms 

then we put K = s − 1 and 𝑥̃𝑠+1 = 𝑏. Taking into account the 
𝑟𝑒𝑙𝑎tion   

 

𝑥̃𝑠+1 − 𝑥̃𝑠= 𝜀

𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)
≥

𝜀

𝑚𝑎𝑥
𝑡∈[𝑎,𝑏]𝑡∈[𝑎,𝑏]

𝑓(𝑡)
 , 

we conclude that the mentioned process is finite. 
Induction has finished. It is evident that properties (3) – (4) 

are fulfilled. 
The grid 𝑋̃is called an adaptive grid. 
It is possible to discuss an initial fine grid 
 𝛯:           … < ξ

−2
<  𝜉−1 < 𝜉0 < 𝜉1 < 𝜉2< …, 

and consider the function f(t) defined on a grid segment 
⟦𝑎, 𝑏⟧ = {𝑎 = 𝜉0,  𝜉1, … , 𝜉𝑀+1 = 𝑏}. There is analog of the 

Lemma 1, in which 𝑋̃ ⊂ ⟦𝑎, 𝑏⟧. 

It is evident that the next assertions are true. 
Lemma 2. If conditions (1)– (4) are true and ε → +0 then 

the integer function K(f,ε) increases. The next relations 

𝑙𝑖𝑚
𝜀→0

𝑚𝑎𝑥
𝑠∈{0,1,…,𝐾}

(𝑥̃𝑠+1 − 𝑥̃𝑠) = 0,   𝑙𝑖𝑚
𝜀→0

𝐾(𝑓, 𝜀) = +∞ are right. 

   Lemma 3. Under conditions (1)– (4) the relation 
𝑙𝑖𝑚

𝜀′→0𝜀′→0
𝐾(𝑓, 𝜀′)𝜀 ′ = ∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎
≤ 𝐾(𝑓, 𝜀) + 1              (6) is 

fulfilled. 
 Summing (3) – (4), we have 

 𝐾𝜀 = ∑ 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾−1
𝑠=0 ≤ 

 ≤ ∑ 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾
𝑠=0 ≤ (𝐾 + 1)𝜀.      (7) 

 

B. Digital complexity 

It is easy to see that the proof of Lemma 1 is actually an 
algorithm for construction of the grid X . Consider the 
question of the complexity of the calculations in this 
algorithm. 

Let Nadd = Nadd(f) and Nmul = Nmul(f) be a number of additive 
and a number of multiplicative operations accordingly, as well 
as N(f) and Ncomp = Ncomp(f) be a number of calculations of the 
function f(t) and a number of comparisons.  

Lemma 4. The algorithm for the construction of the 

adaptive grid X as the next properties 

𝑁(𝑓) = 𝑁𝑎𝑑𝑑 = 𝑁𝑚𝑢𝑙 = 𝐾 + 𝑀 + 2,   

                          𝑁𝑐𝑜𝑚𝑝 = 2(𝐾 + 𝑀 + 2).                           (8) 

Proof. The resulting grid has the form  , :X X f   

𝑎 = 𝑥̃0 = 𝜉0 < 𝑥̃1 = 𝜉𝑝1
< ⋯ 

 … < 𝑥̃𝐾 = 𝜉𝑝𝐾
< 𝑥̃𝐾+1 = 𝜉𝑝𝐾+1 = 𝑏,       (9) 

where pK+1 = M + 1. At the s-th step of this algorithm, we 
move from the knot 𝑥̃𝑠 o the knot 𝑥̃𝑠+1. 

Suppose that 𝑥̃𝑠 = 𝜉𝑝𝑠
, 𝑥̃𝑠+1 = 𝜉𝑝𝑠+1

.  It is not difficult to 
see that with the mentioned transition it is required 1) to 
calculate ps+1 − ps + 1 times the function f(t) (at points ξps+1, 
ξps+2,..., ξps+1+1), 2) find the maximum of two numbers 
ps+1−ps+1 times (by searching maxima maxf(t)), 3) execute 
ps+1 − ps + 1 additive operations, 4) execute ps+1 −ps +1 
multiplicative operations, 5) compare the result with ε also 
ps+1 − ps + 1 times. Since s should be changed from 0 to K, 
then the total number of N(f) calculations of the function f is 

 𝑁(𝑓) = ∑ (𝑝𝑠+1 − 𝑝𝑠 + 1)𝐾
𝑠=0 = 𝐾 + 1 + 𝑝𝐾+1 − 𝑝0. 

Since, in accordance with (2) and (9), 0 1 0, 1,
K

p p M


    
then as a result, we get N(f) = K + M + 2. The same way we 
find the number Nadd additive and the number Nmul 

multiplicative operations, as well as the number Ncomp 

comparisons. So we get (8). This completes the proof. 

C. Pseudo-equidistant grid 

Let Jm be a set {0,1,2,...,m}. Subset 

 𝑋̄:      𝑎 = 𝑥̄0 < 𝑥̄1 < ⋯ < 𝑥̄𝑁+1 = 𝑏          (10) 

of the grid segment ⟦𝑎, 𝑏⟧ is called pseudo-equidistant grid 

with grid width h > 0, if the next relations hold 
 𝑥̄𝑗+1 − 𝑥̄𝑗 − 𝜏 ≤ ℎ < 𝑥̄𝑗+1 − 𝑥̄𝑗 + 𝜏,   𝑗 ∈ 𝐽𝑁,        (11) 

where 𝜏 = 𝑚𝑎𝑥
𝑗∈𝐽𝑀

(𝜉𝑗+1 − 𝜉𝑗). 

Suppose that the condition 
 τ ≤ h < b − a. (12) 
is fulfilled. 

Let q be a real value. The expression q   means an integer 

number k1 with the property 0 ≤ q − k1 < 1. Analogously q    
means an integer k2 with the property 0 ≤ k2 − q < 1. 
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By definition we put 𝑁 = ⌊
𝑏−𝑎

ℎ
⌋. For j ∈ JN  we find s ∈ JM  

such that the inequality 
 ξs ≤ jh < ξs+1 (13) 
is right. By supposition (12) the unique number s = s(j) exists. 
Let us discuss 

 𝑥̄𝑗 = 𝜉𝑠(𝑗)   ∀𝑗 ∈ 𝐽𝑁.                          (14) 

Lemma 5. The next relation holds 

 ℎ − 𝜏 < 𝑥̄𝑗+1 − 𝑥̄𝑗 ≤ ℎ + 𝜏.                 (15) 

    Proof. We assume that 𝜉𝑠 ≤ 𝑗ℎ < 𝜉𝑠+1
, 𝜉𝑝 ≤ (𝑗 +  1)ℎ <

𝜉𝑝+1
. By supposition (12) we have s < p.If we put 𝜂 = 𝜉𝑠+1

− 𝑗ℎ,    𝛿 =  (𝑗 +  1)ℎ − 𝜉𝑝 then we  have 

𝜉𝑠+1
= 𝑗ℎ + 𝜂, 𝜉𝑝 =  (𝑗 +  1)ℎ − 𝛿.                    (16) 

By (16) we deduce 
0 <  𝜂 ≤ 𝜉𝑠+1

− 𝜉𝑠, 0 ≤ 𝛿 <  𝜉𝑝+1
− 𝜉𝑝.                 (17) 

According to formulas (13) – (14) we define  

 𝑥̄𝑗 = 𝜉𝑠 ,    𝑥̄𝑗+1 =   𝜉𝑝. 

Taking into account formula (15), we have 𝜉𝑠 = 𝜉𝑠+1 −
(𝜉𝑠+1 − 𝜉𝑠)  = 𝑗ℎ + 𝜂 −  (𝜉𝑠+1

− 𝜉𝑠).  𝑇hus we deduce              
          𝑥̄𝑗+1 − 𝑥̄𝑗 = 𝜉𝑝 − 𝜉𝑠  = (𝑗 + 1)ℎ − 𝛿 − 𝑗ℎ + 𝜂 −        
                 (𝜉𝑠+1 − 𝜉𝑠)  = ℎ − 𝛿 − 𝜂 + (𝜉𝑠+1 −

𝜉𝑠).             (18) 
By relations (18) and (17) we obtain (15). This completes the 
proof. 

Relation (11) follows from (15), therefore the obtained grid 
is pseudo-equidistant. 

Remark 1. If the initial grid is equidistant, 𝜉𝑠 = 𝑠𝜏, 
 𝜏 =

𝑏−𝑎

𝑀̄+1
,  𝑠 = 0,1, … , 𝑀̄  then inequality(13) has the form 

 1 .s jh s     The last one is equivalent to the 

relation 𝑠 <
𝑗ℎ

𝜏
< (𝑠 + 1). Therefore we can put 𝑠 = ⌊𝑗

ℎ

𝜏
⌋. 

Thus we have 𝑥̄𝑗 = 𝜉
⌊𝑗

ℎ

𝜏
⌋
. Let ε > 0 be a positive value. We 

suppose that 

 𝑁 = ⌊
‖𝑓‖𝐶[𝑎,𝑏](𝑏−𝑎)

𝜀
⌋ > 3.                    (19) 

Then 
 

‖𝑓‖𝐶[𝑎,𝑏](𝑏−𝑎)

𝜀
− 1 < 𝑁 ≤

‖𝑓‖𝐶[𝑎,𝑏](𝑏−𝑎)

𝜀
.     (20) 

 The last inequality is equivalent to the relation  
 

 ‖𝑓‖𝐶[𝑎,𝑏](𝑏 − 𝑎) − 𝜀 < 𝑁𝜀 ≤ ‖𝑓‖𝐶[𝑎,𝑏](𝑏 − 𝑎).        (21) 
We suppose that 

 𝑏−𝑎

𝑁+1
> 2𝜏.                                            (22) 

Choosing the value h according to the formula 
 ℎ =

𝑏−𝑎

𝑁+1
− 𝜏,                                        (23) 

We see that by condition (19) relation (12) is fulfilled. By 
(20) and (23) we have 

 
 

,
1 /  

C a b
N f b a     and 

 ℎ + 𝜏 <
𝑏−𝑎

‖𝑓‖𝐶[𝑎,𝑏](𝑏−𝑎)/𝜀
=

𝜀

‖𝑓‖𝐶[𝑎,𝑏]
.              (24) 

By (24) we have 
 ‖𝑓‖𝐶[𝑎,𝑏](𝑥̄𝑠+1 − 𝑥̄𝑠) ≤ ‖𝑓‖𝐶[𝑎,𝑏](𝑥̄𝑠+1 − 𝑥̄𝑠 + 𝜏) ≤ 

 ≤ ‖𝑓‖𝐶[𝑎,𝑏](ℎ + 𝜏) ≤ 𝜀. 
Thus 

 𝑚𝑎𝑥
𝑡∈[𝑥̄𝑠,𝑥̄𝑠+1]

𝑓(𝑡)(𝑥̄𝑠+1 − 𝑥̄𝑠) ≤ 𝜀     ∀𝑠 ∈ 𝐽𝑁.           (25) 

 The previous arguments prove the following statement. 

Theorem 1. If relations (19), (22) are right then the 

pseudo-equidistant grid (10) exists and properties (21), (25) 

are fulfilled. 

D. Some assertions 

Lemma 6. If conditions (1) – (4), (19) – (23) are right then 

the next inequality is fulfilled: 
  

∑ 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1−𝑥̃𝑠)𝐾
𝑠=0 −𝜀

(𝑏−𝑎)‖𝑓‖𝐶[𝑎,𝑏](𝑏−𝑎)‖𝑓‖𝐶[𝑎,𝑏]
≤  

≤
𝐾(𝑓, 𝜀)𝐾(𝑓, 𝜀)

𝑁(𝑓, 𝜀)𝑁(𝑓, 𝜀)

≤

∑ 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾
𝑠=0

(𝑏 − 𝑎)‖𝑓‖𝐶[𝑎,𝑏] − 𝜀(𝑏 − 𝑎)‖𝑓‖𝐶[𝑎,𝑏] − 𝜀
               (26) 

Proof. By (7) we have 
 ∑ 𝑚𝑎𝑥

𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]
𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠) − 𝜀𝐾

𝑠=0 ≤ 

 ≤ 𝐾𝜀 = ∑ 𝑚𝑎𝑥
𝑡∈[𝑥̃𝑠,𝑥̃𝑠+1]

𝑓(𝑡)(𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾−1
𝑠=0 .        (27) 

Using relations (19) – (22), we deduce 
(𝑏 − 𝑎) 𝑚𝑎𝑥

𝑡∈[𝑎,𝑏]
𝑓(𝑡) − 𝜀 ≤ 𝑁𝜀 ≤ (𝑏 − 𝑎) 𝑚𝑎𝑥

𝑡∈[𝑎,𝑏]
𝑓(𝑡).       (28) 

By (27) – (28) we obtain (26). 
Theorem 2. If the conditions of Lemma 5 are true then the 

relation    

𝑙𝑖𝑚
𝜀→+0

𝐾(𝑓, 𝜀)𝐾(𝑓, 𝜀)

𝑁(𝑓, 𝜀)𝑁(𝑓, 𝜀)
 =

1
𝑏 − 𝑎 ∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎

‖𝑓‖𝐶[𝑎,𝑏]
                        (29) 

is right. 

Proof. Passaging to the limit in (26) under condition ε → 
+0, we obtain relation (29). 

III. ON THE QUANTITY OF THE KNOTS FOR THE ADAPTIVE GRID    
 
Consider a grid 

𝑋̂:          𝑎 = 𝑥̂0 < 𝑥̂1 < ⋯ < 𝑥̂𝐾 ≤ 𝑥̂𝐾+1 = 𝑏.        (30) 
Suppose u ∈ C[a,b]. Let u  be a piecewise linear function 

 𝑢̃(𝑡) = 𝑢(𝑥̂𝑖) +
𝑢(𝑥̂𝑖−1)−𝑢(𝑥̂𝑖)

𝑥𝑖+1−𝑥̂𝑖
(𝑡 − 𝑥̂𝑖),    𝑡 ∈ [𝑥̂𝑖 , 𝑥̂𝑖+1]. 

The next assertion is evident. 
Lemma 7. Suppose 𝑡 ∈ [𝑥̂𝑖 , 𝑥̂𝑖+1].  If  𝑢 ∈ 𝐶1[𝑥̂𝑖 , 𝑥̂𝑖+1] then 

the inequality 
 |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ (𝑥̂𝑖+1 − 𝑥̂𝑖) 𝑚𝑎𝑥

𝜉∈[𝑥𝑖,𝑥̂𝑖+1]
|𝑢′(𝜉)𝑢′(𝜉)| 
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is fulfilled. 
Theorem 3. Let u ∈ C1[a,b]. Suppose the condition 

 𝑢′(𝑡) ≠ 0         ∀𝑡 ∈ [𝑎, 𝑏]                   (31) 

is true. If for η > 0 the grid (30) coincides with the grid 

𝑋̃(|𝑢′|, 𝜂)  then 

 1) the quantity 𝐾𝑢
′ (𝜂) = 𝐾(|𝑢’|, 𝜂) of knots satisfies the 

relations  

lim
𝜂′→+0

𝐾(|𝑢′|, 𝜂′) = ∫ |𝑢′(𝑡)|𝑑𝑡
𝑏

𝑎

≤ 𝐾(|𝑢′|, 𝜂′) + 1         (32) 

2) the inequality 

 |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ 𝜂        ∀𝑡 ∈ [𝑎, 𝑏]                               (33) 

is fulfilled. 

Proof. Assuming 𝑋̂ = 𝑋̃(|𝑢’|, 𝜂), we apply Lemma 3. As a 
result we have relation (32). Inequality (33) follows from 
Lemma 7 and formulas (3) – (4) for f = |u’| and ε = η. 

      IV. ON THE QUANTITY OF THE KNOTS IN THE 

CASE OF AN EQUIDISTANT GRID 

By the value η > 0 we construct an equidistant grid 
𝑋̄(|𝑢’|, 𝜂) with the step h = (b − a)/N(|u’|,η), where 
N(|u’|,η) is the quantity of knots for the mentioned grid. 
Theorem 4. Consider u ∈ C1[a,b], η > 0. If the grid ˆ  X

coincides with the grid 𝑋̄(|𝑢’|, 𝜂) then 
 1) the number 𝑁𝑢

′ (𝜂) = 𝑁(|𝑢’|, 𝜂) of knots satisfies to the 

relation 

 𝑁(|𝑢′|, 𝜂) = (𝑏 − 𝑎) 𝑚𝑎𝑥
𝑡∈[𝑎,𝑏]

|𝑢′(𝑡)|/𝜂,        (34) 

2) the inequality 
  |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ 𝜂        ∀𝑡 ∈ [𝑎, 𝑏]                            (35) 

is true. 
Proof. Setting 𝑋̂ = 𝑋̄(|𝑢’|, 𝜂), we apply formula (19). As a 

result we obtain relation (34). Inequality (35) follows from 
definition of the grid 𝑋̂(|𝑢’|, 𝜂) (Lemma 7 and formulas (19) – 
(22), (25) for f = |u’| and ε = η). 

V. COORDINATE SPLINES OF THE ZERO ORDER  

Let (α,β) be an interval of the  𝑅1. Consider a grid 

 𝛯 ∶       …  <  𝜉−2 <  𝜉−1 <  𝜉0 <  𝜉1 <  𝜉2 …        (36) 

with the properties 𝑙𝑖𝑚
𝑗→−∞

𝜉𝑗  =  𝛼, 𝑙𝑖𝑚
𝑗→+∞

𝜉𝑗  =  𝛽.  

Let ωj(t) be a function defined by the relation 

 𝜔𝑗(𝑡) = {
1 𝑓𝑜𝑟 𝑡 ∈ [𝜉𝑗 , 𝜉𝑗+1)

0 𝑓𝑜𝑟 𝑡 ∉ [𝜉𝑗 , 𝜉𝑗+1).
                      (37) 

It is evident that the system of functions {𝜔𝑗(𝑡)}
𝑗𝜖𝑍

is a linear 

independent system. The functions 𝜔𝑗(𝑡) are called  a 

coordinate splines of the zero order. If the grid (36) is 
equidistant (and consequently, α = −∞, β = +∞) then the 
functions ωj defined above are the Haar functions. 

By definition, put 𝑆𝑗 =  [𝜉𝑗 , 𝜉𝑗+1]. It is clear to see that suppωj 

= Sj. If t ∈ (α,β) then the linear combination 𝑢(𝑡) =

∑ 𝑐𝑗𝜔𝑗(𝑡) 𝑗 ∈𝑍 is sensible because for fixed 𝑡 ∈ [𝜉𝑖 , 𝜉𝑖+1) the 
sum has only one nonzero summand, 𝑢(𝑡)  = 𝑐𝑖𝜔𝑖(𝑡). 
Consider the linear space S0(Ξ) defined by the relation 

𝑆0(𝛯) = 𝐶𝑙𝑝{𝑢̃(𝑡)|𝑢̃(𝑡) = ∑ 𝑐𝑗𝜔𝑗(𝑡)  𝑗 ∈𝑍 𝑡 ∈ (𝛼, 𝛽)}, ∀𝑐𝑗 ∈

ℎ1 ; here a symbol Clp designates the closure in the point-wise 
topology. The space S0(Ξ) is called the spline space of the zero 

order for the grid Ξ. The elements of this space are named the 

splines of the zero order. It is evident that the setting of the 
grid defines the space S0(Ξ) uniquely. We observe that the 
splines are defined for t ∈ (α,β).  

           VI. GRID ENLARGEMENT AND EMBEDDING OF 
THE SPACES 

Let k be a fixed number, k ∈ Z. We discuss the numbers  

𝜉𝑗 = 𝜉𝑗   𝑓𝑜𝑟  𝑗 ≤ 𝑘,   𝑎𝑛𝑑   

   𝜉𝑗 = 𝜉𝑗+1 𝑓𝑜𝑟  𝑗 ≥ 𝑘 +  1,                               (38) 

𝜂 = 𝜉𝑘+1. 
By (38) we introduce a new grid    

𝛯̃ ∶ …  <  𝜉−2 <  𝜉−1 <  𝜉0 <  𝜉1 <  𝜉2 … 
Let 𝜔̃𝑗(𝑡) be a piecewise constant function defined by the 
relation 

 𝜔̃𝑗(𝑡) = {
1 𝑓𝑜𝑟 𝑡 ∈ [𝜉𝑗 , 𝜉𝑗+1)

0 𝑓𝑜𝑟 𝑡 ∉  [𝜉𝑗 , 𝜉𝑗+1).
                      (39) 

It is clear that [𝜉𝑘 , 𝜉𝑘+1) = 𝜉𝑘 , 𝜉𝑘+1
) ∪

𝜉𝑘+1
, 𝜉𝑘+2

). [𝜉𝑘 , 𝜉𝑘+1)  =  𝜉𝑘 , 𝜉𝑘+1
)  ∪ 𝜉𝑘+1

, 𝜉𝑘+2
).Taking 

into account definition (37) and (39), we have calibration 
relations 

𝜔̃𝑘(𝑡)  = 𝜔𝑘(𝑡)  + 𝜔𝑘+1
(𝑡),                                                     (40) 

 

The calibration relations can be written in the general form 
   𝜔̃𝑖 =  ∑ 𝑝𝑖𝑗𝜔𝑗𝑗∈𝑍  ,                               (42) 

where 𝑝𝑠𝑗 = 𝛿𝑠,𝑗
𝑓𝑜𝑟 𝑠 ≤ 𝑘 −  1, 𝑝𝑠𝑗 = 𝛿𝑘,𝑗 + 𝛿𝑘,𝑗−1for s k

𝑝𝑠𝑗 = 𝛿𝑠,𝑗−1
𝑓𝑜𝑟𝑠 ≥ 𝑘 +  1, for all 𝑠, 𝑗 ∈ 𝑍.  

Here δi,j is the Kronecker symbol. Let 𝔓 be a matrix (𝑝𝑖𝑗)𝑖,𝑗∈𝑍.  
By definition put 𝑆̃𝑗 = [𝜉𝑗 , 𝜉𝑗+1]. 𝑆̃𝑗 = [𝜉𝑗 , 𝜉𝑗+1].  Consider a 
linear space 
  𝑆0(𝛯̃)𝐶𝑙𝑝 = 𝑢̃(𝑡)|𝑢̃(𝑡) = ∑ 𝑐𝑗𝑗∈𝑍 𝜔̃𝑗(𝑡)∀𝑐𝑗 ∈ 𝑅1, 𝑡 ∈ (𝛼, 𝛽). 

Theorem 5. The space 𝑆0(𝛯̃) is the subspace of the space 

𝑆0(𝛯). 

  Proof. The proof follows from formula (42).  
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VII.    BIORTHOGONAL SYSTEMS OF FUNCTIONALS 

In the space 𝑆0(𝛯)𝑆0(𝛯) we consider the linear functionals 
𝑔𝑖  and 𝑔̃𝑖  defined by the formulas  

⟨𝑔𝑖 , 𝑢⟩  = 𝑢(𝜉𝑖), ⟨𝑔̃𝑖 , 𝑢⟩  = 𝑢(𝜉𝑖) ∀𝑢 ∈ 𝑆0(𝛯) ∀𝑖 ∈ 𝑍. 
Theorem 6. The next assertions are right: 
1) the system {𝑔𝑖}𝑖∈𝑍  of the functionals are biorthogonal to 

the system  {𝜔𝑗}
𝑗∈𝑍

 such that 

 ⟨𝑔𝑖 , 𝜔𝑗⟩  = 𝛿𝑖.𝑗           ∀𝑖, 𝑗 ∈ 𝑍,        (43) 

 the system 
i i Z

g


 of the functionals is prolongation of the 

functional system, which is biorthogonal to the system 
{𝜔̃𝑗}

𝑗∈𝑍

such that 

 ⟨𝑔̃𝑖 , 𝜔̃𝑗⟩  = 𝛿𝑖.𝑗        ∀𝑖, 𝑗 ∈ 𝑍,                 (44) 

2) the functionals 
i

g  satisfy relations 

⟨𝑔̃𝑖 , 𝑢⟩ = {
⟨𝑔𝑖 , 𝑢⟩ 𝑓𝑜𝑟𝑖 ≤ 𝑘

⟨𝑔𝑖+1, 𝑢⟩ 𝑓𝑜𝑟 𝑖 > 𝑘
     ∀𝑢 ∈ 𝑆0(𝛯).             (45) 

Proof. Using formula (37), we have 

⟨𝑔𝑖 , 𝜔𝑗⟩ = 𝜔𝑗(𝜉𝑖) = {
1 𝑓𝑜𝑟𝑖 = 𝑗

0 𝑓𝑜𝑟 𝑖 ≠ 𝑗.
           

 
Thus formula (43) is right. By formula (39) we obtain 

⟨𝑔̃𝑖 , 𝜔̃𝑗⟩ = 𝜔̃𝑗(𝜉𝑖) = {
1 𝑓𝑜𝑟 𝑖 = 𝑗

0 𝑓𝑜𝑟 𝑖 ≠ 𝑗.
           

Now we see that relation (44) is fulfilled.  

Taking into account relations (38) we deduce 

⟨𝑔̃𝑖 , 𝑢⟩ = 𝑢(𝜉𝑖) = 𝑢(𝜉𝑖) = ⟨𝑔𝑖 , 𝑢⟩ 𝑓𝑜𝑟 𝑖 ≤ 𝑘, 

⟨𝑔̃𝑖 , 𝑢⟩ = 𝑢(𝜉𝑖) = 𝑢(𝜉𝑖+1) = ⟨𝑔𝑖+1, 𝑢⟩ 𝑓𝑜𝑟 𝑖 > 𝑘. 

It follows that formula (45) is correct. This completes the 
proof. 

          VIII. WAVELET DECOMPOSITION. FORMULAS OF 
RECONSTRUCTION 

Consider an operator P for the projection of the space 𝑆0(𝛯) 

on the subspace 𝑆0(𝛯̃), 

𝑃𝑢 =     ∑⟨𝑔̃𝑗 , 𝑢⟩

𝑗∈ℤ

 𝜔̃𝑗                   ∀𝑢 ∈ 𝑆0(𝛯).                 (46) 

We also discuss the operator Q = I − P, where I is the identical 
operator. The space 𝑊0 = 𝑊0(𝛯, 𝛯̃)  = 𝑄𝑆0(𝛯) is called the 

wavelet space of zero order. By (46) we have the direct 
decomposition 

                      𝑆0(𝛯)  = 𝑆0(𝛯̃)  +   𝑊0(𝛯, 𝛯̃),                   (47) 

that is the spline-wavelet decomposition of the space S0(Ξ). 
The space 𝑆0(𝛯̃) is called the main space in decomposition 
(47). Consider the representation of element u ∈ 𝑆0(𝛯) on the 
basis {ωi}i∈Z of the space 𝑆0(𝛯), 

𝑢 =   ∑ 𝑐𝑖𝜔𝑖𝑖∈ℤ ,         𝑐𝑖 =  ⟨𝑔𝑖 , 𝑢⟩.              (48) 
We suppose that the coefficients ai and bi’ in representations 

𝑃𝑢 =  ∑ 𝑎𝑖𝜔̃𝑖𝑖∈ℤ ,      𝑄𝑢 =   ∑ 𝑏𝑖 ′𝑖′𝜔𝑖 ′𝑖′𝑖∈ℤ ,      (49) 
where 𝑎𝑖 = ⟨𝑔̃𝑗 , 𝑢⟩, 𝑏𝑖′𝑖′ = ⟨𝑔𝑖′𝑖′, 𝑄𝑢⟩ are known. According to 
formulas (42), (47) and (49) we have the representation 

𝑢 =  ∑ 𝑎𝑖𝜔̃𝑖

𝑖∈ℤ

+ ∑ 𝑏𝑖 ′𝑖′𝜔𝑖 ′𝑖′

𝑖∈ℤ

 = 

 =   ∑ (∑ 𝑎𝑖𝑝𝑖,𝑖′𝑖,𝑖′ + 𝑏𝑖′𝑖′

𝑖∈ℤ

)   𝜔𝑖′𝑖′(∑ 𝑎𝑖𝑝𝑖,𝑖′𝑖,𝑖′         

𝑖∈ℤ𝑖′∈ℤ𝑖′∈ℤ

+ 𝑏𝑖′𝑖′)  𝜔𝑖′𝑖′ .                                                                                (50) 
By equating the right parts for relations (48) and (50) and 
taking into account the linear independence of the coordinate 
functions {𝜔𝑖}𝑖∈𝑍we have 

𝑐𝑗 =   ∑ 𝑎𝑖𝑝𝑖,𝑗𝑖∈𝑍  + 𝑏𝑗 ∀𝑗 ∈ ℤ.    (51) 
Relations (51) are called reconstruction formulas. 

Consider vectors 𝒂 = (. . . , 𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2, . . . ), 𝒃 =

(. . . , 𝑏−2, 𝑏−1, 𝑏0, 𝑏1, . . . ), 𝒄 = (. . . , 𝑐−2, 𝑐−1, 𝑐0, 𝑐1, 𝑐2, . . . ). 
 

By formula (51) we have 

                               𝒄 = 𝔓𝑇𝒂 + 𝒃.                                     (52) 

Vector c is called the initial flow, the vectors a and b are 
named the main flow and wavelet flow respectively. 

Lemma 8. In the spline-wavelet decomposition (47) of the 

space 𝑆0(𝛯) the reconstruction formulas have the form 

 𝑐𝑗 = {
𝑎𝑗 + 𝑏𝑗 𝑓𝑜𝑟𝑗 ≤ 𝑘,

𝑎𝑗−1 + 𝑏𝑗 𝑓𝑜𝑟 𝑗 ≥ 𝑘 + 1.
                            (53) 

Proof. The usage of formulas (42), (52) gives relations (53). 

        IX.   DECOMPOSITION FORMULAS 

Here we suppose that the coefficients ck in the 
decomposition of the element u ∈ S0(Ξ) are known, 𝑢 =
∑ 𝑐𝑖𝜔𝑖𝑖 . Taking into account the evident equalities 𝑎𝑖 =

⟨𝑔̃𝑗 , 𝑢⟩ and 𝑢 =   ∑ 𝑐𝑠𝜔𝑠𝑠∈ℤ , we have 

𝑎𝑖 =     ∑ 𝑐𝑠⟨𝑔̃𝑖 , 𝜔̃𝑠⟩

𝑠∈ℤ

 .                                                        (54) 
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By formula (51) we deduce 𝑏𝑗 =  𝑐𝑗   − ∑ 𝑝𝑖,𝑗 ∑ 𝑐𝑠⟨𝑔̃𝑖 , 𝜔̃𝑠⟩𝑠𝑖 .   

Using (54) and applying the notation 𝑞𝑖,𝑠 = ⟨𝑔̃𝑖 , 𝜔𝑠⟩, we have 
the decomposition formulas 

𝑎𝑖 =   ∑ 𝑐𝑠𝑞𝑖,𝑠

𝑠∈ℤ

, 𝑏𝑗 =  𝑐𝑗   − ∑ 𝑐𝑠 ∑ 𝑝𝑖,𝑗𝑞𝑖,𝑠

𝑠𝑠

.                 (55) 

By a matrix 𝔔 = (𝑞𝑖,𝑠), 𝔔 = (𝑞𝑖,𝑠), we rewrite formulas (55) 
in the form  

              𝒂 = 𝔔𝒄,                  𝒃 = 𝒄 − 𝔓𝑇𝔔𝒄.                     (56) 

Theorem 7. The next formulas are right: 

 

𝑞𝑖,𝑖 =  1    𝑓𝑜𝑟  𝑖 ≤ 𝑘,        𝑞𝑖,𝑖+1
=  1 𝑓𝑜𝑟 𝑖 >  𝑘,               (57) 

𝑞𝑖,𝑠 =  0 𝑖𝑛    𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠.                     (58) 

Proof. By Theorem 4 and formulas (40) – (41), we have 

⟨𝑔̃𝑖 , 𝜔𝑠⟩ = 𝛿𝑖,𝑠𝑓𝑜𝑟 𝑖 ≤ 𝑘, ⟨𝑔̃𝑖 , 𝜔𝑠⟩ = 𝛿𝑖+1,𝑠 𝑓𝑜𝑟  𝑖 >  𝑘.  (59) 

Relation (59) is equivalent to formulas (57) – (58). This 
completes the proof. 
Let A be a matrix with elements aij. By definition put [𝐴]𝑖𝑗 =

𝑎𝑖𝑗 .  By (40) – (42) we have          [𝔓𝑇𝔔]𝑖𝑗 = ∑ 𝛿𝑠,𝑖𝑞𝑠𝑗 +𝑠≤𝑘−1

(𝛿𝑘,𝑖 + 𝛿𝑘,𝑖−1)𝑞𝑘𝑗 +  ∑ 𝛿𝑠,𝑖−1𝑞𝑠𝑗 .𝑠≥𝑘+1
  Taking into account 

formulas (57) – (58) we obtain     [𝔓𝑇𝔔]𝑖𝑗 =

  {

𝛿𝑖,𝑗𝑓𝑜𝑟𝑖 ≤ 𝑘

𝛿𝑘,𝑗𝑓𝑜𝑟𝑖 = 𝑘 +  1

𝛿𝑖,𝑗    𝑓𝑜𝑟𝑖 >  𝑘 +  1
                                                           (60)  

for all j ∈ Z. By (60) we have 

[𝐼 − 𝔓𝑇𝔔]𝑘+1,𝑘 =  −1,  [𝐼 − 𝔓𝑇𝔔]𝑘+1,𝑘+1 =  +1. (61) 

[𝐼 − 𝔓𝑇𝔔]𝑖,𝑗 =  0   𝑓𝑜𝑟  (𝑖, 𝑗)  ∈  {(𝑖 ′, 𝑗′𝑖′, 𝑗′)|𝑖′, 𝑗′ ∈ 𝑍}

                      \{(𝑘, 𝑘 +  1), (𝑘 +  1, 𝑘 +  1)}.             (62)
 

Theorem 8. The decomposition formulas for the spline 

wavelet decomposition (56) have the form 

          𝑎𝑖 = {
𝑐𝑖           𝑓𝑜𝑟   𝑖 ≤ 𝑘,

𝑐𝑖+1 𝑓𝑜𝑟 𝑗 ≥ 𝑘 + 1.
                                    (63) 

𝑏𝑗 =  0  𝑓𝑜𝑟  𝑗 ≠ 𝑘 +  1,        𝑏𝑘+1
= 𝑐𝑘+1

− 𝑐𝑘 .     (64) 

Proof. By representations (56) and (60) – (62) we simply 
deduce relations (63) – (64). 

X.  SPLINE-WAVELET DECOMPOSITION OF FINITE FLOW 

For a natural number m by definition put 𝐽𝑚 =  {0,1, . . . , 𝑚}. 
Let M be the natural, M ≥ 3. We denote a = ξ0, b = ξM+1. 
Consider set ⟦𝑎, 𝑏⟧ =  {𝜉𝑖}𝑖 ∈ 𝐽𝑀+1

. The set ⟦𝑎, 𝑏⟧ is named a 

grid segment. Consider the coordinate splines {𝜔𝑗(𝑡)}
𝑗

∈

𝐽𝑀+1
. The linear hull of these splines is denoted 𝐶⟦𝑎, 𝑏⟧. 

Using the evident relations 𝜔𝑗(𝜉𝑠)  = 𝛿𝑠,𝑗 , 𝑠 ∈ 𝐽𝑀+1, we 
discuss the linear functionals defined by the formula
⟨𝑔(𝑖), 𝑢⟩  = 𝑢(𝜉𝑖)      ∀𝑢 ∈ 𝐶⟦𝑎, 𝑏⟧.                             (65)    

We have relations ⟨𝑔(𝑖), 𝜔𝑗⟩  = 𝛿𝑖,𝑗∀𝑖, 𝑗 ∈ 𝐽𝑀+1
.  Let k be a 

natural number satisfying the condition 0 ≤ k ≤ M − 1. As 
before we delete the knot η = ξk+1 from the grid ⟦𝑎, 𝑏⟧. As a 
result we obtain the grid 𝜉𝑗 = 𝜉𝑗   𝑓𝑜𝑟   0 ≤ 𝑗 ≤ 𝑘, and 𝜉𝑗 =

𝜉𝑗+1𝑓𝑜𝑟𝑘 +  1 ≤ 𝑗 ≤ 𝑀 +  1, and 𝛯̂ ∶ 𝑎 = 𝜉0 <  𝜉1 <  …  <

𝜉𝑀 = 𝑏. Consider functions  ˆ
j

t defined by the relations 

   𝜔̂𝑗(𝑡)  =  1    𝑓𝑜𝑟      𝑡 ∈  𝜉𝑗 , 𝜉𝑗+1), 

𝜔̂𝑗(𝑡) =  0      𝑓𝑜𝑟       𝑡 ∉ 𝜉𝑗 , 𝜉𝑗+1),                                        (66) 

where 0 ≤ j ≤ M. For all t ∈ [ξ0,ξM+2) we have 

𝜔̂𝑘(𝑡)  = 𝜔𝑘(𝑡) + 𝜔𝑘+1(𝑡).                                                   (67) 

By (66) we obtain 

𝜔̂𝑗(𝑡)  = 𝜔𝑗(𝑡)  𝑓𝑜𝑟     0 ≤ 𝑗 ≤ 𝑘 −  1, 

𝜔̂𝑗(𝑡)  = 𝜔𝑗+1(𝑡)    𝑓𝑜𝑟       𝑘 + 1 ≤ 𝑗 ≤ 𝑀,           (68) 

where t ∈ [ξ0,ξM+2). Formulas (67) – (68) are calibration 
relations. Now we see that in the case of a finite grid the 
discussion repeats the arguments of the case of the infinite 
grid. Therefore we would like to formulate the final results of 
our discussion. Let c  be an initial flow, â be a main flow and 
b  be a wavelet flow, where 𝒂̂ = (𝑎̂0, 𝑎̂1, 𝑎̂2, … , 𝑎̂𝑀), 𝒃̄ =

(𝑏̄0, 𝑏̄1, 𝑏̄2, … , 𝑏̄𝑀, 𝑏̄𝑀+1), 
𝒄̄ =  (𝑐̄0, 𝑐̄1, 𝑐̄2, . . . , 𝑐̄𝑀, 𝑐̄𝑀+1). 

Consider the rectangular matrix P̂ of the size (𝑀 +  1)  ×

 (𝑀 +  2), which has a form 𝔓̂ = (𝑝̂𝑖,𝑗)𝑖∈𝐽𝑀 ,𝑗∈𝐽𝑀+1
,where 

𝑝̂𝑖,𝑗 = 1  𝑓𝑜𝑟 𝑖 ∈ 𝐽𝑘,         𝑝̂𝑖−1,𝑖 = 1    𝑓𝑜𝑟  𝑖 ∈ 𝐽𝑀+1\𝐽𝑘,     (69) 
𝑝̂𝑖,𝑗 =  0  𝑓𝑜𝑟   (𝑖, 𝑗)  ∈  {(𝑖′, 𝑗′)|𝑖′ ∈ 𝐽𝑀, 𝑗′ ∈ 𝐽𝑀+1

} 
\({(𝑖′, 𝑗′)|𝑖′ = 𝑗′, 𝑗′ ∈ 𝐽𝑘} ∪ 

∪ {(𝑖′, 𝑗′)|𝑖′ = 𝑗′ −  1, 𝑗′ ∈ 𝐽𝑀+1
\𝐽𝑘}).                                   (70) 

Let 𝔔̄ also be a rectangular matrix of size (M +1)×(M +2) 
such that 𝔔̄ =  (𝑞̄𝑖,𝑗)𝑖∈𝐽𝑀,𝑗∈𝐽𝑀+1

,where 

𝑞̄𝑖,𝑖 =  1  𝑓𝑜𝑟 𝑖 ∈ 𝐽𝑘,   𝑞̄𝑖,𝑖+1 =  1  𝑓𝑜𝑟𝑖 ∈ 𝐽𝑀\𝐽𝑘,       (71) 

𝑞̄𝑖,𝑗 =  0 𝑓𝑜𝑟(𝑖, 𝑗)  ∈  {(𝑖′, 𝑗′)|𝑖′ ∈ 𝐽𝑀, 𝑗′ ∈ 𝐽𝑀+1
} 

\ ({(𝑖′, 𝑗′)|𝑖′ = 𝑗′, 𝑗′ ∈ 𝐽𝑘} ∪ 
 ∪ {(𝑖′, 𝑗′)|𝑗′ = 𝑖′ +  1, 𝑖′ ∈ 𝐽𝑀\𝐽𝑘}).      (72) 

In the discussed case we obtain the decomposition formulas 

   𝒂̂  = 𝔔̄𝐜̄,            𝒃̄ = 𝐜̄ − 𝔓̂𝑇𝔔̄𝐜̄̄,                         (73) 
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and the reconstruction formulas 

  𝐜̄̄ = 𝔓̂𝑇𝒂̂  + 𝒃̄.                          (74) 

It is clear to see that ˆ T
P Q is the square matrix of the size 

(M + 2) × (M + 2). By (69) – (72) we have [𝔓̂𝑇𝔔̄]𝑖,𝑖 =
 1   𝑓𝑜𝑟      𝑖 ∈ 𝐽𝑀+1\{𝑘 + 1} and 

 [𝔓̂𝑇𝔔̄]𝑘+1,𝑘 =  1.                                 (75) 

Other values [𝔓̂𝑇𝔔̄]𝑖𝑗 equal zero, i.e.[𝔓̂𝑇𝔔̄]𝑖𝑗 =

 0    𝑓𝑜𝑟(𝑖, 𝑗)  ∈  {𝑖′, 𝑗′ ∈ 𝐽𝑀+1
} 

 \ {𝑖′ = 𝑗′, 𝑗′ ∈ 𝐽𝑀+1
}  ∪  {(𝑘 +  1, 𝑘)}.            (76) 

By (75) – (76) we obtain 

[𝐼 − 𝔓̂𝑇𝔔̄]𝑘+1,𝑘 = −1, [𝐼 − 𝔓̂𝑇𝔔̄]𝑘+1,𝑘+1 =  +1, (77) 

[𝐼 − 𝔓̂𝑇𝔔̄]𝑘+1,𝑘 = 0 𝑓𝑜𝑟  (𝑖, 𝑗)

∈ {𝑖 ′, 𝑗 ′ ∈ 𝐽𝑀+1
}

\{(𝑘 + 1, 𝑘), (𝑘 + 1, 𝑘 + 1)}.               (78) 

Theorem 9. If 0 ≤ k ≤ M − 1 then 1) the decomposition 

formulas can be written in the form 

𝑎̂𝑖 = 𝑐̄𝑖   𝑓𝑜𝑟  𝑖 ∈ 𝐽𝑘 ,   𝑎̂𝑖 = 𝑐̄𝑖+1  𝑓𝑜𝑟  𝑖 ∈ 𝐽𝑀\𝐽𝑘 ,    (79) 

𝑏̄𝑖 = 0  𝑓𝑜𝑟  𝑖 ∈ 𝐽𝑀+1\{𝑘 + 1}, 𝑏̄𝑘+1 = 𝑐̄𝑘+1 − 𝑐̄𝑘 , (80) 

2) the reconstruction formulas can be represented in form 

𝒄̄𝒊 = {
𝑎𝑖 + 𝑏𝑖     𝑓𝑜𝑟            𝑖 ∈ 𝐽𝑘 

𝑎𝑖−1 + 𝑏𝑖  𝑓𝑜𝑟  𝑖 ∈ 𝐽𝑀+1\𝐽𝑘.
                                         (81) 

Proof. According to formulas (69) – (70), the rectangular 
matrix P has units in the places (i,i) for i = 0,1,...,k, and also in 
the places (i,i + 1) for 𝑖 = 𝑘, 𝑘 +  1, . . . , 𝑀.The remaining 
elements are zero. According to formulas (71) – (72), the 
matrix Q has units in places (i,i) for  0,1,..., ,i k and also in 
places (i,i + 1) for 𝑖 = 𝑘 +  1, . . . , 𝑀.The remaining elements 
are zero. After transposing the matrix P and multiplying it by 
the matrix Q, we obtain a matrix that has units in places (i,i) 
for 𝑖 =  0,1, . . . , 𝑘, 𝑘 +  2, . . . , 𝑀 +  1. In addition, there is a 
unit in the place (k+1,k). The remaining elements are equal to 
zero (see formulas (75) – (76)). Due to this, subtraction of this 
product from the identity matrix leads to a matrix with only 
two nonzero elements. In the place of (k + 1,k) it is the value 
−1, and in place of (k + 1,k + 1) it is placed +1 (see formulas 
(77)). These considerations lead to relations (79) – (81). This 
completes the proof. 

           XI.   ILLUSTRATIVE EXAMPLE 

In the illustrative example below, we used the following 
data: 𝑚 = 6, 𝑘 =  3, 𝛯 = {𝜉𝑖}𝑖=0,1,...,7

, 𝜉𝑖 = 0.2𝑖,  𝑐𝑖 = 𝑠𝑖𝑛(𝜉𝑖) ,

𝑖 =  0,1, . . . ,7. 
The results are presented in Table No. 1. The first column 

contains the numbers of the components of the flows (vectors) 
appearing in the remaining columns. The components of the 
initial flow c is shown in the second column of the table. The 
main flow components fill the third column. The components 
of the wavelet flow b  are done in the fourth column. This 
ends the decomposition.The fifth column contains the result 
of the reconstruction. This result is given as a flow cc . 
 

 

 

Table 1. Computational results. 

i 𝑐̄𝑖 
 
𝑎̂𝑖 =  [𝑄̄𝑐̄]𝑖 

𝑏̅𝑖 = 
=[𝐼 − 𝑃̂𝑇𝑄̄𝑐̄]𝑖 

[𝑐𝑐]̅̅ ̅̅ 𝑖= 
=  [𝑃̂𝑇𝑎̂]𝑖 + 𝑏̄𝑖 

0 0.0000 0.0000 0.0000 0.0000 

1 0.1987 0.1987 0.0000 0.1987 

2 0.3894 0.3894 0.0000 0.3894 

3 0.5646 0.5646 0.0000 0.5646 

4 0.7173 0.8415 0.1527 0.7173 

5 0.8415 0.9320 0.0000 0.8415 

6 0.9320 0.9854 0.0000 0.9320 

7 0.9854 
 

0.0000 0.9854 

 
Remarks to Table 1. 

1. The wavelet flow, together with the main flow, allows 
the receiver to reconstruct the initial flow exactly. This 
is the value of the wavelet decomposition. This 
property is clearly seen in Table 1. In it, the fifth 
column completely coincides with the second, which is 
consistent with the theoretical results obtained in this 
work. 

2. The program is written in the Maple-17 system (see 
[40]). The calculation were carried out on an HP 27-
p251ur monoblock, Digits=10. 

                 XII.      THE NUMBER OF OPERATIONS 
First, we consider the adaptive grid construction algorithms 

described in the proof of Lemma 1. 
Theorem 10. If the conditions of Theorem 3 are fulfilled 

then for f = u’  hold the next relations 

𝑁(𝑓) = 𝑁𝑎𝑑𝑑(𝑓) = 𝑁𝑚𝑢𝑙(𝑓) = 𝐾𝑢
′ (𝜂)  + 𝑀 +  2,

                  𝑁𝑐𝑜𝑚𝑝(𝑓) =  2𝑁𝑚𝑢𝑙(𝑓).                            (82)
 

The proof of formulas (82) follows from Lemma 4 and 
Theorem 3. 
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Note that in order to apply this theorem it is required to 
know the corresponding derivative functions (at least 
approximately). Now we discuss another approach. 

Consider the fine equidistant grid segment ⟦𝑎, 𝑏⟧ =

 {𝑎 = 𝜉0, 𝜉1, . . . , 𝜉𝑀+1
= 𝑏}, where𝜉𝑖 = 𝑖ℎ,ℎ =  (𝑏 − 𝑎)/

(𝑀 +  1). It is easy to see that the proof of Lemma 1 can be 
carried out so that the grid 𝑋̃ is a subset of the set Ξ. In this 
case, the proof of Lemma 1 can be considered as an algorithm 
for constructing the grid 𝑋̃. The number of operations in this 
algorithm is of the order of M. This algorithm can be applied 
to approximate the function u in the same way as was done in 
the previous theorems. But for this you need to know the 
derivatives of the function u. Now we consider the 
construction of the approximation of this function in a 
situation in which the mentioned derivatives are not known. 
We discuss the function 

𝛷(𝜉, 𝑥0, 𝑥1) = 𝑢(𝜉) − 𝑢(𝑥0) −
𝑢(𝑥1) − 𝑢(𝑥0)

𝑥1 − 𝑥0
(𝜉 − 𝑥0) 

∀𝜉 ∈ [𝑥0, 𝑥1], 𝑎 ≤ 𝑥0 < 𝑥1 ≤ 𝑏, 𝑥0, 𝑥1, 𝜉 ∈ 𝛯.         (83) 

The value 𝛷(𝜉, 𝑥0, 𝑥1) will be called the deviation of the chord 

𝐿(𝑥0, 𝑥1) from the function u at the point ξ. Consider the 
process of constructing the grid 𝑋̃ = 𝑋̃(𝑢, 𝜀), which consists 
of the fact that after finding the knot 

s
x knot  𝑥̃𝑠+1is searched 

for by using the two-point criterion: 
1) |𝛷(𝜉, 𝑥̃𝑠, 𝑥̃𝑠+1)| ≤ 𝜀  𝑓𝑜𝑟  𝑥̃𝑠 < 𝜉 < 𝑥,, 
2) a value δ > 0 exists such that |𝛷(𝜉, 𝑥̃𝑠, 𝑥̃𝑠+1)| ≥ 𝜀 for 

𝑥̃𝑠+1 <  𝜉 <  𝑥̃𝑠+1 + 𝛿. 
This criterion is checked on the  initial grid Ξ. We 

have 𝑋̃(𝑢, 𝜀)  ⊂  𝛯. Consider the operation of searching for the 
difference 

𝛷(𝜉𝑖 , 𝑥̃𝑠, 𝜉𝑗) = 𝑢(𝜉𝑖) − 𝑢(𝑥̃𝑠) −
𝑢(𝜉𝑗) − 𝑢(𝑥̃𝑠)

𝜉𝑗 − 𝑥̃𝑠
(𝜉𝑖 − 𝑥̃𝑠). (84) 

The considered algorithm is iterative in nature and consists 
of the sequential selection of suitable knots of the source grid. 
This algorithm will be described in more detail. 

Algorithm (P): 
0. Let 𝑥̃0: = 𝑎. 

1. Suppose the knots 𝑥̃0 <  𝑥̃1 < . . . <  𝑥̃𝑠 of the desired 
adaptive grid has already been found, and 𝑥̃𝑠 = 𝜉𝑗𝑠

. If js + 1 ≤ 

M, then we change the parameter j in formula (84), 
sequentially taking 𝑗 = 𝑗𝑠 + 2, 𝑗𝑠 + 3, . . . , 𝑀 + 1, and checking 
every time the fulfillment of all inequalities 

|𝛷(𝜉𝑖 , 𝑥̃𝑠, 𝜉𝑗)| ≤ 𝜀, 𝑖 = 𝑗𝑠 + 1, 𝑗𝑠 + 2, . . . , 𝑗 − 1.    (85) 

If all inequalities (85) are satisfied, and j < M + 1, then we 
add a unit to j and go back to checking inequalities (85), i.e. 
repeat point 1. 

2. This process is interrupted in one of two cases: 
      a/.  It turns out that j = M+1. In that case, select the knot 
𝑥̃𝑠+1

= 𝜉𝑀+1
and put K = s. The adaptive griding process 

𝑋̃is finished. 
b/.  For j < M + 1, at least one of the inequalities (85) 

is violated. In this case, we select the knot 𝑥̃𝑠+1 = 𝜉𝑗−1. We 
reassign variables by setting s := s − 1, js := j – 1 and go to step 
1, i.e. make the next iteration cycle. 

It is clear to see that the previous discussion proves the next 
assertion. 

 Lemma 9. Under implementing algorithm (P) 
a number  V  of calculations  (84) is determined by the  
formula 

 2V=∑ (𝑗𝑠+1 − 𝑗𝑠)2 − (𝑀 +  1)𝐾
𝑠=0 .                               (86) 

  Proof.  By assumption, the grid  𝛯 is equidistant grid, and 
𝑋̃ is a subset of the set Ξ; therefore  the expression  (𝑥̃𝑠+1 
−𝑥̃𝑠)/ℎ  is an integer number. Without loss of generality, we 
assume that 𝑥̃𝑠 = 𝑗𝑠ℎ. It is obvious that ∑ (𝑗𝑠+1 − 𝑗𝑠)𝐾

𝑠=0 ℎ = 
∑ (𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾

𝑠=0 = 𝑥̃𝐾+1 − 𝑥̃0 = 𝑏 − 𝑎. Thus, 
 ∑ (𝑗𝑠+1 − 𝑗𝑠)𝐾

𝑠=0 = (𝑏 − 𝑎)/ℎ = 𝑀 +  1.                          (87)   
     Between the knots 𝑥̃𝑠 and  𝑥̃𝑠+1     there is (𝑥̃𝑠+1 − 𝑥̃𝑠)/

ℎ − 1 = 𝑗𝑠+1 − 𝑗𝑠 − 1 knots of equidistant grid. In the process 
 of the building of the next knot for the adaptive grid we draw 
chords 𝐿𝑗𝑠,𝑖  through the knots 𝜉𝑗𝑠

=  𝑥̃𝑠 and    𝜉𝑖 for 𝑖 ∈ {𝑗𝑠 +

2, 𝑗𝑠 + 3, . . . , 𝑗𝑠+1}.  For each chord   𝐿𝑗𝑠,𝑖  we calculate  
expression (84)  𝑖 −𝑗𝑠 − 1  times. Thus, the number of 𝑉𝑠 
calculations of expression (84)  to get the next knot 𝑥̃𝑠+1 
 is   defined by the formula  𝑉𝑠 = ∑ (𝑖 − 𝑗𝑠 −

𝑗𝑠+1
 𝑖 =𝑗𝑠+2

1) = ∑  𝑖′ =
𝑗𝑠+1−𝑗𝑠−1
 𝑖′ =1 (𝑗𝑠+1 − 𝑗𝑠 − 1)(𝑗𝑠+1 − 𝑗𝑠)/2.    

    To obtain the number of  V calculations of expression 
(84) for   building the entire grid 𝑋̃ it remains to 
 calculate the sum   𝑉 = ∑ 𝑉𝑠

𝐾
𝑠=0  . Given  relation  (87),     we 

derive formula (86).  This completes the proof. 
     Let us estimate lower bound and upper bound of 

expression (86). 
  For this we need    the following statement. 
  Lemma 10. Let 𝒚 = (𝑦0, 𝑦1, … , 𝑦𝑛)  be  𝑛 + 1-

dimensional vector, and let 𝐶  be a constant, 𝐶 > 𝑛 + 1.The 

quadratic form       

                           𝑄𝑛(𝑦) = ∑ 𝑦𝑠
2𝑛

𝑠=0                                 (88) 

discussed on the set 

           𝛺𝑛,𝐶 = {𝑦 | 𝑦𝑠 ≥ 1, ∑ 𝑦𝑠 = 𝐶𝑛
𝑠=0 }                             (89) 

  satisfies to the inequalities 

𝐶2/(𝑛 + 1) ≤ 𝑄𝑛(𝑦)|𝑦𝜖𝛺𝑛,𝐶
≤ (𝐶 − 𝑛)2 + 𝑛           (90) 

  The inequality on the left of (90) turns into the equality    

in the point 𝑦∗ = (𝑦0
∗, 𝑦1

∗, . . . , 𝑦𝑛
∗)       with identical 

components 𝑦𝑠
∗ = 𝐶/(𝑛 + 1)   ∀𝑠𝜖{0,1,2, . . . , 𝑛}. 

 The inequality on the right part of  (90) turns into equality 

in   the points(𝐶 − 𝑛) 𝑒(𝑠) + 𝑒, where 𝑒 = (1,1, . . . ,1),   𝑒(𝑠) =

(𝑒𝑗
(𝑠)

)𝑗𝜖{0,1,2,...,𝑛} are n+1-dimensional vectors, and  𝑒𝑗
(𝑠)

= 𝛿𝑠,𝑗     

is the Kronecker symbol.   

 

      Proof. Consider the conditional extremum   problem 
for  functions  (88) under the condition 

                   ∑ 𝑦𝑠 = 𝐶.𝑛
𝑠=0                                                 (91) 

  To find  a critical   point we introduce the function  
𝛹(𝑦, 𝜆) = 𝑄𝑛(𝑦) + 𝜆(∑ 𝑦𝑠 − 𝐶𝑛

𝑠=0 )     and  equate its 
derivatives to zero. As a result, we get equivalence 

𝜕𝛹

𝜕𝑦𝑠
= 0  <=> 𝑦𝑠

∗∗ = −𝜆/2    ∀𝑠𝜖{0,1,2, . . . , 𝑛}.          (92) 
  Substituting the obtained values of 𝑦𝑠

∗∗ 
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  into condition (91),  we find 𝜆/2 = −𝐶/(𝑛 + 1). . From (92) 
we find 𝑦𝑠

∗∗ = 𝐶/(𝑛 + 1) > 1  ∀𝑠𝜖{0,1,2, . . . , 𝑛}.    
  So, the critical point is  𝑦∗∗ = ( 𝑦0

∗∗, 𝑦1
∗∗, . . . , 𝑦𝑛

∗∗), it is 
 a single and  an interior point  of the set (89). Clearly, it is 
 a conditional minimum  point. We have 𝑄𝑛(𝑦∗∗) = 𝐶2/(𝑛 +
1) ≤ 𝑄𝑛(𝑦)|𝑦𝜖Ω𝑛,𝐶

. 
  The left inequality in formula (90) is proved. 
   The proof of the right-hand side is obtained by decreasing  

the induction on dimension 𝑛. From the previous one it is 
clear  that the greatest value must lie on the boundary of the 
region  Ω𝑛,𝐶 . Consider, for example, the part of the boundary 
defined by the equality𝑦𝑛 = 1 . This leads to a problem  
similar to the previous one, but on a unit of a smaller 
dimension,  it is required to find a minimum of a function 

∑ 𝑦𝑠
2𝑛

𝑠=0 + 1   on the set  Ω𝑛−1,𝐶−1  of the form 
{(𝑦0, 𝑦1, . . . , 𝑦𝑛−1) | ∑ 𝑦𝑠

𝑛−1
𝑠=0 = 𝐶 − 1, 𝑦𝑗 ≥ 1, 𝑗 =

,1,2, . . . , 𝑛 − 1}. 
  Similarly to previous reasoning in this case, we conclude 

that  the greatest value should be reached at the border. 
Continuing to  downgrade  we eventually  arrive at the 
function 𝑄𝑛(𝑦0, 1,1, . . . ,1) = 𝑄0(𝑦0) + 𝑛 = 𝑦0

2 + 𝑛 
under the condition 𝑦0 = 𝐶 − 𝑛, so the highest value is 
reached  at the point (𝐶 − 𝑛, 0,0, . . . ,0) and is equal to 
(𝐶 − 𝑛)2 + 𝑛.  Similar reasoning  for other parts of the border, 
they  produce the same result. This concludes the proof. 

Theorem 11. Number V of calculations of expression (84) 
satisfies the inequalities 

𝑀 + 1

𝐾 + 1
(𝑀 − 𝐾) ≤ 2𝑉 ≤ (𝑀 − 𝐾 + 1)(𝑀 − 𝐾), (93) 

and the left side of this inequality turns into equality ,if found 

in accordance with the algorithm (P) the adaptive grid turns 

out to be uniform. The right inequality (93) turns into equality 

if the mentioned grid can be formed removing one consecutive 

group of knots from the source grid. 

  Proof.   To estimate the value of 𝑉, we use Lemma 10 

  Setting 𝑦𝑠 = 𝑗𝑠+1 − 𝑗𝑠, according to relation (87), we have 
     ∑ 𝑦𝑠 = ∑ (𝑗𝑠+1 − 𝑗𝑠) = 𝑀 + 1𝐾

𝑠=0 .𝐾
𝑠=0                    (94) 

  Since the various knots of the  initial grid do not coincide, 
the  inequalities    

                  𝑦𝑠 ≥ 1  ∀𝑠𝜖{0,1,2, . . . , 𝐾}                         (95) 
are right. 
Obviously, by relations (94) and (95)      for 𝑛 = 𝐾, 𝐶 = 𝑀 +
1 the expression 𝑄𝐾(𝑦) = ∑ 𝑦𝑠

2𝐾
𝑠=0      satisfies  the  conditions 

of Lemma 10, so that the inequalities 
(𝑀 + 1)2/(𝐾 + 1) ≤ 𝑄𝐾(𝑦) ≤ (𝑀 − 𝐾 + 1)2 + 𝐾       

 are right.   By the representation of 2𝑉 = 𝑄𝐾(𝑦) − (𝑀 + 1) 
we arrive at the inequalities (93). According to 
 Lemma 10, the lower bound for 𝑉 is reached when all 
numbers 𝑦𝑠 are the same, i.e. when the adaptive grid 𝑋̃  turns 
out to be uniform. 

  Upper bound in this    evaluation is achieved when all 
components of  the vector  𝒚 = (𝑦0, 𝑦1, . . . , 𝑦𝐾) are equal to 
unity,  except for one, which is equal to   𝐶 − 𝑛 = 𝑀 − 𝐾 + 1. 
The number 𝑖   of this component may be    any number from 
the set {0,1,2, . . . , 𝐾}. For example, for    the i -th  components 
have 𝑗𝑖+1 − 𝑗𝑖 = 𝑀 − 𝐾 + 1, i.e. between  the knots 𝑥̃𝑖 and 

𝑥̃𝑖+1 are  deleted    𝑀 − 𝐾 knots of the initial grid. Between 
the other pairs of neighboring knots,    adaptive grid 𝑋̃ knots 
were  not deleted. This completes the proof. 

 
XIII. CONVEX FLOWS  

 
Let ε be a positive value. Discuss the function u(x) on the set 
Ξ. 

Definition 1. We say that the function u(x) is weakly convex 

(up) on the set Ξ  if for any a’, b’  ∈ Ξ, a’< b’, inequality 

𝑢(𝜉) ≥ 𝑢(𝑎′) +
𝑢(𝑏′) − 𝑢(𝑎′)

𝑏′ − 𝑎′
(𝜉 − 𝑎′)                    (96) 

∀∈ 𝛯, 𝑎′ < 𝜉 < 𝑏′ 

is right. 
In this paragraph, we assume that the arguments of the 

considered functions lie in the set Ξ. In particular, referring to 
representation (83), we assume that 𝑥0 ≤ 𝜉 ≤ 𝑥1, 𝑥0 <
 𝑥1, 𝑥0, 𝜉, 𝑥1 ∈  𝛯. 

It follows from relation (83) that the relations 
𝛷(𝑥0, 𝑥0, 𝑥1)  =  𝛷(𝑥1, 𝑥0, 𝑥1)  =  0 are valid. If the function 
u(x) is weakly convex (up), then 

𝛷(𝜉, 𝑥0, 𝑥1)  ≥  0       𝑓𝑜𝑟             𝜉 ∈  [𝑥0, 𝑥1].     (97) 

To prove relation (88), it is sufficient to use the definition of 
the weak convexity (87), setting 𝑎′ = 𝑥0, 𝑏′ = 𝑥1. 

Consider the supremum F(x) of the function 𝛷(𝜉, 𝑎, 𝑥)with 
respect to ξ ∈ (a,x) ∩ Ξ, where a < x,                                             
                                𝐹(𝑥)  =  sup𝜉∈(𝑎,𝑥)∩𝛯𝛷(𝜉, 𝑎, 𝑥).            (98) 

 
Theorem 12. If the function u(x) is weakly convex (up) then  

𝐹(𝑥′)  ≤ 𝐹(𝑥′′) ∀𝑥′, 𝑥′′ ∈  (𝑎, 𝑏)  ∩  𝛯, 𝑥′ <  𝑥′′. 
    Proof. Using the weak convexity of the function 𝑢(𝑥), 

we   implement inequality (96)   for 𝑎′ = 𝑎, 𝑏′ = 𝑥.   As a 
result we have 
 𝑢(𝜉) ≥ 𝑢(𝑎) +

𝑢(𝑥)−𝑢(𝑎)

𝑥−𝑎
(𝜉 − 𝑎)  ∀𝜉 ∈  (𝑎, 𝑥) ∩  𝛯.         (99)                                                           

   Taking into account that 𝜉 − 𝑎 is a positive value, by  
(99)  we have  

           𝑢(𝜉)−𝑢(𝑎)

𝜉−𝑎
≥

𝑢(𝑥)−𝑢(𝑎)

𝑥−𝑎
   ∀𝜉 ∈  (𝑎, 𝑥) ∩  𝛯.            (100) 

  Let 𝜉 = 𝑥′,𝑥 = 𝑥′′. As a result of (100)  we deduce 
         𝑢(𝑥′)−𝑢(𝑎)

𝑥′−𝑎
≥

𝑢(𝑥′′)−𝑢(𝑎)

𝑥′′−𝑎
   ∀𝑥′ ∈  (𝑎, 𝑥′′) ∩  𝛯          (101) 

     Multiplying inequality (101)  by − (𝜉 − 𝑎) for 𝜉 ∈
 (𝑎, 𝑥′′)    and adding to both parts  the value 𝑢(𝜉) − 𝑢(𝑎), we  
obtain the relation  

 𝑢(𝜉) − 𝑢(𝑎) −
𝑢(𝑥′)−𝑢(𝑎)

𝑥′−𝑎
(𝜉 − 𝑎) ≤ 𝑢(𝜉) − 𝑢(𝑎) −

      
𝑢(𝑥′′)−𝑢(𝑎)

𝑥′′−𝑎
(𝜉 − 𝑎) ∀𝑥′, 𝜉 ∈  (𝑎, 𝑥′′) ∩  𝛯.                      (102)    

   Relation  (102) can be written in the form 
        𝛷(𝜉, 𝑎, 𝑥′) ≤ 𝛷(𝜉, 𝑎, 𝑥′′) ∀𝑥′, 𝜉 ∈  (𝑎, 𝑥′′) ∩  𝛯.    (103) 
       By definition (98)  we have 
       𝛷(𝜉, 𝑎, 𝑥′′) ≤ 𝐹(𝑥′′) ∀𝜉 ∈  (𝑎, 𝑥′′) ∩  𝛯.                  (104) 
       Using relation  (103) , we deduce  
            𝛷(𝜉, 𝑎, 𝑥′) ≤ 𝐹(𝑥′′) ∀𝑥′, 𝜉 ∈  (𝑎, 𝑥′′) ∩  𝛯.        (105) 
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   Passing  to the exact upper bound of  the left side of 
inequality  (105)   according to 𝜉 ∈  (𝑎, 𝑥′) ∩  𝛯,   we obtain 
relation 𝐹(𝑥′) ≤ 𝐹(𝑥′′) ∀𝑥′ ∈  (𝑎, 𝑥′′) ∩  𝛯. 

This completes the proof. 
Consider the algorithm for finding an adaptive grid, based 

on the idea of bisection. The algorithm described here is 
suitable for the weakly convex function. It is significantly 
more economical than the previous one. 

We suppose that 𝑏 = 𝜉𝑗0
, 𝐹(𝜉𝑗0

)  ≥ 𝜀. 
 
 
Algorithm (Q): 
0. We accomplish assignments 𝑥0 = 𝜉0, 𝑠: = 0. 
1. Suppose that the previous knot𝑥̃𝑠 = 𝜉𝑖 has been found. 

Thus,𝐹(𝜉𝑖)  ≤ 𝜀. 
2. We do assignment j := j0. 
3. We calculate k = [(i + j)/2]. If 𝐹(𝜉𝑘)  ≤ 𝜀  then we put i 

:= k, but if 𝐹(𝜉𝑘) >  𝜀then we put j := k. If j −i > 1 then we go 
to point 3, but if j = i + 1 then we put 𝑥̃𝑠+1 = 𝜉𝑖 . 
Thus the next knot of the adaptive grid has been found. 

4. If i < j0 − 1 then we put s := s + 1 and go to point 2, but if i 
= j0 − 1 then the Algorithm (Q) has finished, the adaptive grid 
has been obtained. A next fragment of  initial grid will begin 
with knot a := b. 

It is easy to see that the next assertion can be proved. 
Theorem 13. Suppose the algorithm (Q) is implemented to 

a weakly convex flow {𝑢(𝜉𝑖)}, 𝑖 ∈  {0,1, . . . , 𝑀}, where M = 2k. 

Then the number V̂ of calculations of formula (48)satisfies to 

inequality 

 2𝑘+1
− 𝑘 −  2 ≤ 𝑉̂  ≤ 𝑘(2𝑘 −  1).             (106) 

Inequality (89) is exact: the left and right parts can be 

reached for some flows. 

By formula (106) we have the next assertion. 
Corollary 1. In the general case (that is, when M is not 

necessarily a power of two) under the conditions of Theorem 

13, the estimate 2(𝑀 −  1)  − ⌈log2𝑀⌉  ≤ 𝑉̂  ≤  (𝑀 −
 1) ⌈log2𝑀⌉ is right. 

                                   XIV.    CONCLUSION 

  This paper is proposed an adaptive wavelet decomposition 
using an adaptive compression algorithm for a flow of 
numerical information of length M with complexity 
and with a given precision of 𝜀>0. The natural source of 
optimization is the adaptive processing for the initial data 
flow.  It is clear to see that the processing speed of the 
decomposition and length K of the compression result are 
very important. It is also important the possibility of restoring 
the initial flow with a given precision of 𝜀> 0 from the 
obtained compressed flow. On other hand, the wavelet flow, 
together with the main flow, allows the receiver to reconstruct 
the initial flow exactly (the remarkable property of the 
wavelet expansion).  However, the wavelet flow is too long, it 
can only be transmitted by a special request from the receiver.  

This remarkable property of the wavelet expansion brings 
us to the question of the complexity of the algorithm for the 
expansion. The classical wavelet decomposition removes the 
odd components of the wavelet flow. This decomposition is 
not adaptive because it does not take into account the 
properties of the initial flow. With a non-classical approach to  
adaptive wavelet expansion is possible (see V--XI sections). 
In this paper, we propose  non-classical adaptive wavelet 
expansions with 𝜀- compression.  

In this article, the following results were obtained. The 
number of arithmetic operations in obtaining the proposed 
wavelet decomposition is of the same order as the number of 
operations required to 𝜀-compression of the initial flow. If 
optimal 𝜀-compression is needed, then in general  
arithmetic operations are required (see XII Section). If it is 
known that the initial flow has the convexity property, then 
for optimal 𝜀-compression it is possible to use only 

 arithmetic operations (see XIII Section). If the 
initial flow is a flow of values of a function and its derivative, 
then adaptive compression can be obtained using  
arithmetic operations (see II -- IV sections). It is possible to 
replace the values of the derivative with difference relations 
and at the same time also obtain compression using  
arithmetic operations (when replacing the derivatives with the 
simplest difference relations, the number of arithmetic 
operations increases by about four times). 
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