
 

 

 
Abstract—Reliability and execution latency of high critical tasks 

are crucial for a successful execution in a mixed criticality system 
with tight design constraints. In this paper, we focus on two main 
design problems, namely latency-constrained maximum reliability 
problem and reliability-constrained minimum latency problem, for 
the applications running tasks of different criticality. The target 
architecture can run in two operating modes: low criticality mode 
(normal operating mode) and high criticality mode. For the former 
problem, we first find the minimum execution latency assuming the 
system runs in low criticality mode. Then, using this latency as lower 
bound, we present a heuristic algorithm to improve the reliability of 
high critical tasks in the application. The proposed algorithm assigns 
high critical tasks to the highest reliable processing elements in the 
technology library, and then, schedules low critical tasks without 
exceeding the given latency constraint.  Similarly, for the latter 
problem, we first determine the highest reliability assuming the 
system runs in low criticality mode. Then, considering the overall 
system reliability, the proposed approach reduces the latest 
completion time of high critical tasks by giving them priority over 
low critical ones when selecting processing elements. The 
experimental evaluation conducted using task graphs shows up to 
14.69% reliability improvement and 20.05%, on the average, latency 
improvement for the high critical tasks in the system. 
 

Keywords—Mixed criticality system, system reliability, 

execution latency, hardware/software co-design, scheduling, task 

mapping, critical task.  

I. INTRODUCTION 
IXED criticality systems (MCS) have become widely 
used in recent years as they can execute various 

hardware and software tasks of different criticality (e.g., 
safety critical and mission critical). They became an integral 
part of today’s daily life and can be found almost everywhere 
such as aircrafts, cars, automated machines, and remotely 
piloted vehicles. In such a system, while a mission critical task 
typically prioritizes the system goal to obtain the results 
targeted, a safety critical task works to keep the system safe 
and prioritizes system survival. Significant amount of research 
can be found in the literature to improve various metrics of 
MCSs such as reliability, performance, and power 
consumption [1].  
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The application running on a mixed criticality system 
consists of tasks of different criticality. The criticality of a task 
denotes the impact it has on the overall system output and may 
change over time during the execution. In this work, we 
classify tasks as High Critical (HC) or Low Critical (LC) ones. 
An effective task scheduling and binding involve 
classification in order to ensure the optimal use of available 
resources in the most efficient way. The system arranges tasks 
based on its level of criticality within the given constraints 
following dual criticality scheduling. Even though the 
reliability of HC tasks is generally given more importance 
over their execution times, reducing the latest completion time 
for those tasks becomes crucial in some scenarios given that 
the execution latency of the system is kept at a certain level 
(e.g., some time-sensitive military applications). In addition, 
tasks changing the criticality levels in the course of execution 
brings additional challenges in the task scheduling and 
binding process in terms of execution latency and reliability. 

The system utilized in this work runs in two different 
operating modes: low criticality mode (normal mode of 
operation) and high criticality mode. In low criticality mode, 
all tasks are treated to be of equal criticality, and they are 
scheduled accordingly in order to meet the design constraints 
(execution latency and system reliability). In high criticality 
mode, the HC tasks are held in priority when scheduling the 
tasks. Some LC tasks may be excluded from scheduling to 
meet the target optimization metric. The target architecture is 
a hardware/software co-design environment with two CPUs 
and two ASICs. Each task can be executed by any processing 
element with varying reliability and latency requirements. 

In this work, we investigate two major design problems, 
namely latency-constrained maximum reliability problem and 
reliability-constrained minimum latency problem, and present 
a new heuristic algorithm for each. Given the task graph 
representing the application, the proposed algorithms partition 
the tasks in high or low critical ones while prioritizing high 
critical tasks based on reliability or latency during the 
scheduling process. The system is allowed to transition 
between high criticality and low criticality operation modes if 
dictated by the requirements. The data is provided to the 
algorithms which start the scheduling process by choosing the 
tasks based on the predefined rules of priority and assigning 
them to the appropriate processing elements within the 
system. These rules take into consideration the number of 
tasks dependent on the current task, criticality, and the 
distance from sink node to compare the priority of the task in 
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question. In the event of multiple tasks meeting all conditions 
equally, the task with the lowest latency on the available 
processing element is scheduled. 

More specifically, the proposed approach for the former 
problem first schedules all tasks in the system assuming all 
tasks are of equal reliability (low criticality execution mode) 
and returns the final reliability and the latency of the system. 
In high criticality mode, the algorithm first considers HC tasks 
during the scheduling process. After scheduling all HC tasks, 
LC tasks are scheduled in the gaps available before the 
execution deadline. The algorithm runs until all LC tasks are 
scheduled or it may exclude some LC tasks depending on 
overall system requirements. The algorithm returns the overall 
reliability of the system and the reliability of the high critical 
tasks in both the modes of operation. By prioritizing HC tasks, 
we increase system viability by ensuring the completion of 
high critical tasks early while incorporating low critical tasks 
where possible. 

Keeping in mind that the main goal for the latter problem is 
to reduce the execution latency (the latest completion time) of 
HC tasks, the proposed method first schedules all tasks in the 
system and calculates the final latency and reliability of the 
system in low criticality execution mode. Then, in high 
criticality mode, the algorithm prioritizes HC tasks for 
scheduling. After ensuring all HC tasks are scheduled, the LC 
tasks are scheduled in the idle time internals. The algorithm 
runs untill all LC tasks are scheduled or it can exclude some 
LC tasks depending on overall system requirements. The 
algorithm finally returns the overall latency of the system and 
the latency of the high critical tasks in both modes of 
operation. The proposed algorithm also considers the changes 
on the criticality levels of the tasks in the course of execution 
due to the system goal, operating environment or an 
approaching emergency situation. 

The rest of the paper is organized as follows: Section II 
gives the literature review, Section III describes the elements 
that form the system, Section IV shows an illustrative example 
for reliability and execution latency calculations using the 
technology library, Section V explains the details of the 
proposed algorithms, Section VI presents the experimental 
evaluation, and finally, Section VII concludes the paper.  

II. RELATED WORK 
Early studies into mixed criticality systems noted that the 

application specific integrated circuits enhance the 
performance of the system at a really high cost. In systems 
that utilize HW/SW co-design, the repeatedly executed tasks 
typically dictate the entire execution time [7]. Distinguishing a 
particular node within the hot path that decreases overall 
latency once it is allotted to a hardware element is presented in 
[8]. The planned fault tolerance strategies were check 
pointing, rollback recovery, and active replication time 
redundancy and area redundancy [11]. A quasi-static 
scheduling strategy was studied based on fault occurrence and 
execution time in [14]. 

As fault tolerance became more common, a brand new 
metric of criticality was introduced to task scheduling while 
permitting tasks to alter criticality over time [1]. If a task 
exceeded its execution time limit, it moves the system into 
high criticality mode untill all high critical tasks were 
completed [5]. The zero slack approach makes an attempt to 
reduce the occurrences of high criticality tasks preempting 
low criticality tasks [17]. When utilized in conjunction with a 
priority-based preventive scheduling algorithm, this proves to 
be an efficient method.  

Priority assignment in multiprocessor real time systems is 
employed in [20]. Research into multicore systems found an 
underutilization because of high WCET’s and therefore the 
requirement for temporal isolation of critical tasks [15]. The 
underutilization was further studied and a scheduling 
algorithm was designed in [4]. The proposed algorithm 
scheduled critical tasks while employing a constant bandwidth 
server to schedule low critical tasks in [10]. An alternate 
metric of processor acceleration factor was presented and the 
effectiveness of a reservation-based scheduling and priority-
based scheduling were tested in [12]. A scheduling algorithm 
from a single-core processor to a multicore process system is 
given in [16]. 

While multicore processors become widely used, task 
scheduling should also consider potential core necessities with 
completely different scheduling implementations [2]. For a 
selected mission or safety critical application situation 
dependability attributes are the first concern. Transient or soft 
errors do not affect the hardware permanently; however, may 
still have an effect on the result [13]. Multicore processors 
conjointly led to the introduction of federated scheduling, 
wherever each individual task is either restricted to execute on 
a selected processor or has exclusive access to all processors 
[6]. Many programming algorithms were given in [9], and a 
UML model was created while considering concurrency, 
completely different resource allocations, and multiple 
platform configurations [18]. 

Sha et al. [21] discussed how mode changes can be 
accommodated within a given framework of priority driven 
real-time scheduling. Schneider et al. [22] presented a multi-
layered schedule synthesis scheme for MCCPS that aims to 
jointly schedule deadline-critical and QoC-critical tasks at 
different scheduling layers. Zhou et al. [23] proposed a design 
framework comprising a hyper-period optimization algorithm, 
which reduces the size of the schedule table and preserves 
schedulability, and a re-scheduling algorithm to reduce the 
number of preemptions. Zeng et al. [24] presented design 
methodologies to guarantee both safety and schedulability for 
real-time mixed-criticality systems on identical multicores. 
Assuming hardware/software transient errors and model safety 
requirements on different criticality levels explicitly according 
to safety standards, they further propose fault-tolerant mixed-
criticality scheduling techniques with task replication and re-
execution to enhance system safety. Pathan et al. [25] came up 
with an effective scheduling policy that can guarantee 
certification of the system at each criticality level while 
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maximizing the utilization of the processors. Müller et al. [26] 
reviewed EDF-VD's schedulability criteria and determined its 
schedulability region to better understand and design mixed-
criticality systems. Maurer et al. [27] presented a generic 
component and communication model for CPS that not only 
allows the coexistence of computing paradigms of different 
criticality but also supports the data exchange between them. 

Research into criticality led to the idea of dual criticality 
involving high critical and low critical tasks. Once a HC task 
exceeds its assigned execution time, the algorithmic rule 
switches HC mode and all LC tasks are abandoned [3]. The 
trend shifted to utilizing the network on chip architectures to 
overcome these problems as the number of cores increased. 
The designed reliability-aware task scheduling on NOC 
primarily based platform uses changed clustered replication 
with the bulk voting to attain reliability [19].  

Koc et al. [28] studied latency-constrained task mapping to 
improve reliability of HC tasks. Previous research into MCSs 
has primarily centered on task scheduling which supported 
hardware/software co-design restrictions, task criticality, 
processor accessibility, or fault tolerance. This paper extends 
the discussions in [28] and proposes two new heuristic 
algorithms to reduce the execution latency of HC tasks based 
on task scheduling.  

III. PRELIMINARIES 

A. Target Architecture Model 

The target architecture is a multicore HW/SW co-design 
environment with four processing elements along with a 
shared memory and a synchronization/communication unit as 
shown in Figure 1. Processing elements include two software 
components (CPU 1 and CPU 2) and two hardware 
components (ASIC 1 and ASIC 2). The synchronization and 
communication unit is the circuitry that manages the 
communication among the components through the memory 
with a uniform access latency. The inputs are read from 
memory when a task is about to start executing and the result 
is stored in memory just after a task finishes its execution. For 
the sake of simplicity (and in order to not deviate from the 
main purpose of this paper), we assume a uniform access 
latency for each memory read and write, and include the 
memory access latencies into the execution latencies of tasks. 

 
Fig. 1 The target HW/SW co-design environment with two CPUs, 
two ASICs, memory, and synchronization /communication unit. 

Each task can be executed by any processing element in the 
system with varying latency and reliability values. ASICs 
typically execute tasks much faster than CPUs. The reliability 
and execution latency values of each task when running on 
different processing element is given in a technology library. 

B. Application Modelling 

The functionality of an application running on the system is 
graphically represented using a task graph. A task graph is a 
directed acyclic graph, Gs(V, E). Each vertex node, V = {vi; i 
= 0, 1, 2, 3, …, n} represents an independent task performing 
various operations. The intercommunication between tasks is 
denoted by edges. The edges represent dependencies between 
tasks, E = {(vi, vj); i, j = 0, 1, …, n}. A task can start 
executing only after all its predecessors complete their 
executions. The result of a predecessor task is passed to its 
successors upon completion. Tasks are executed on various 
processing elements.  

An example task graph is shown in Figure 2. Each node in 
the task graph denotes a task in the system while an edge 
represents the data dependency between predecessors and 
successors within the graph. This dependency implies that a 
task cannot start executing before all its predecessors 
complete their executions. For example, T13 cannot be 
scheduled to execute before T4, T11, T5 and T12 complete 
their executions. Each task is mapped to a processing elements 
in the target architecture during task scheduling. Source and 
sink vertices are used for synchronization and have zero 
execution time. While LC tasks are illustrated by white nodes, 
the nodes representing HC tasks are filled with color. Note 
that if a task is marked critical, all its predecessors would be 
deemed critical as well to avoid discrepancies in data 
dependency. 

 
Fig. 2. Example Task Graph 

C. Mixed Criticality System 

A mixed criticality system can be defined as a group of 
tasks (with different criticality) interconnected with one 
another and working towards generating an output. Each MCS 
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includes a combination of critical and non-critical tasks (e.g., 
HC and LC tasks) that contribute to success. Execution of 
critical tasks ensures that the system works safely and 
produces output whereas execution of non-critical tasks 
improves performance of the system result. It can also be 
expressed that critical tasks are essential to the survival of the 
system whereas non-critical tasks improve the effectiveness of 
the system. 

Criticality Modes of a Task:  In this work, we classify a 
task as high critical task or low critical task. This helps us in 
the scheduling process as our system allows a task to change 
its criticality during the execution. Criticality additionally 
helps confirm the importance of the task within the system. 
We specify the condition that a HC task cannot have a LC task 
as a predecessor. In Figure 3, the tasks in Figure 2 are grouped 
by their criticality. HC tasks are colored in.  

 
Fig. 3. Re-arranged example task graph with HC tasks (blue) and 

LC tasks (white). Some LC tasks depend on HC tasks. 

Criticality Modes of the System: The MCS utilized in this 
work operates in two different operating modes: high 
criticality mode and low criticality mode. Low criticality mode 
considers all tasks to be of equal priority and schedules them 
accordingly. Low criticality mode can be considered as 
normal operational mode for the system. The system 
transitions into high criticality mode based on predefined 
conditions such as a) when a crisis or emergency approaches, 
b) when a high critical task error occurs, c) when the system is 
not able to schedule all tasks within given constrains, or d) 
whenever a manual override is deemed necessary. Once the 
system is in high criticality mode, it ignores all low critical 

tasks for the present and schedules the high critical tasks in 
line with their priority assignment. Finally, after all HC tasks 
are scheduled, LC tasks are placed within the slack generated 
between high critical tasks. 

D. Reliability Modeling 

Reliability is defined by how efficiently a task can run on a 
specific processor, which varies for each task, when running 
on each of the processing elements in the target architecture. 
Each and every task must be executed correctly for a 
successful execution of the entire system. So, the overall 
reliability of a system with multiple units is determined by the 
product of the reliabilities of individual tasks in the system as 
shown in (1).  

                 (1) 

Equation (1) suggests that the individual reliability of the 
tasks should be improved in order to enhance the overall 
reliability of the system. This may be achieved by adding a 
redundant element to each task (i.e., parallel configuration). 
The elements in this configuration are connected in parallel 
manner within which the input divides into all the components 
and the outputs of the components combine into one. 
Reliability of such a parallel system is calculated by (2). 

         (2) 

E. Design Constraints 

This paper addresses two main design problems: latency-
constrained maximum reliability problem and reliability-
constrained minimum latency problem. For the first problem, 
we find the minimum execution latency (using Algorithm 1) 
assuming the system runs in low criticality mode. Then, this 
latency is used (by Algorithm 2) as an upper bound when 
finding the most reliable design solution. Similarly, for the 
second problem, we first find the most reliable design 
assuming the system runs in low criticality mode, and then, 
this reliability value is used as lower bound for the system 
reliability when determining the design that provides the 
minimum completion time for the high critical tasks in the 
system. Please note that the algorithms will be explained in 
detail later. 

F. Technology Library 

Each task can run on any available processing element 
(CPU 1, CPU 2, ASIC 1, or ASIC 2). The reliability and 
execution latency values of each task on each processor are 
tabulated into a technology library. The technology library for 
the tasks T1 to T22 in the sample task graph in Figure 2 is 

TABLE I. TECHNOLOGY LIBRARY FOR TASKS IN FIGURE 2. BLUE IS FOR HC TASKS AND WHITE IS FOR LC TASKS. R:RELIABILITY, L: LATENCY. 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 

ASIC2 
R 0.997 0.998 0.994 0.995 0.985 0.979 0.993 0.996 0.988 0.992 0.998 0.969 0.989 0.979 0.978 0.998 0.974 0.976 0.990 0.997 0.997 0.995 
L 10 12 9 8 10 11 12 12 7 13 16 12 12 15 6 12 9 6 12 15 14 10 

ASIC1 
R 0.995 0.996 0.998 0.992 0.991 0.994 0.979 0.97 0.986 0.955 0.991 0.987 0.993 0.971 0.990 0.991 0.971 0.998 0.993 0.995 0.986 0.993 
L 8 10 12 6 7 9 10 15 5 17 12 7 10 10 12 8 9 8 8 12 8 11 

CPU2 
R 0.993 0.980 0.980 0.977 0.975 0.976 0.999 0.995 0.98 0.989 0.985 0.990 0.987 0.973 0.985 0.987 0.973 0.989 0.980 0.996 0.993 0.984 
L 55 45 30 65 55 35 35 50 65 30 50 30 35 20 55 55 30 25 65 40 25 30 

CPU1 
R 0.994 0.994 0.986 0.987 0.989 0.969 0.995 0.993 0.972 0.985 0.990 0.978 0.996 0.991 0.987 0.983 0.970 0.985 0.990 0.995 0.987 0.995 
L 50 40 35 45 35 50 25 25 35 35 30 45 25 40 50 60 35 30 50 35 45 50 
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given in Table 1. The library contains the data that is utilized 
by the algorithms to decide which processor is the best to 
achieve the target reliability or execution latency constraint. 
The latency values are given in clock cycles (e.g., executing 
T1 using ASIC 2 and CPU 2 takes 10 clock cycles and 55 
clock cycles, respectively). In the table, R is for reliability and 
L is for execution latency. Blue columns represent the high 
critical tasks and white columns are for the low critical tasks. 

IV. MOTIVATIONAL EXAMPLE 
Let us consider the task graph given in Figure 2 and its 

associated technology library in Table 1. The graph contains 
22 tasks (12 of them are HC) interconnected with each other 
from source to sink. HC and LC tasks are later grouped 
separately in Figure 3. The technology library provides us the 
reliability and execution time of each task on each processor. 

The approach proposed for the latency-constrained 
maximum reliability problem first starts with scheduling the 
source vertex to clock cycle 0. Please note that source and 
sink nodes have execution time of zero cycles. Then, T1, T2, 
T4 and T5 are selected by the algorithm among all successors 
of the source vertex based on the distance of each successor to 
the sink vertex (i.e., the nodes with higher distance is selected 
first). The selected nodes are mapped to the available 
processing elements ASIC 1 (T1 - 8 cycles), ASIC 2 (T4 - 8 
cycles), CPU 1 (T5 - 35 cycles), and CPU 2 (T2 - 45 cycles). 
It waits for a processor to free up to schedule the tasks in 
queue and waits for each task’s predecessors to be executed 
before the task is scheduled. The algorithm runs until the sink 
vertex is scheduled. The schedule generated by the algorithms 
are represented in Figure 4. The darker rectangles represent 

HC tasks and the white ones represent LC tasks. In Fig. 4(a), 
the tasks are scheduled assuming the system is in low 
criticality mode. It is observed that LC tasks are scheduled 
alongside HC tasks that make some HC tasks to be scheduled 
later in the order. This method still allocates all the tasks to 
their highest reliable processor available. In Fig. 4(b), 
scheduling is done following the high criticality mode of the 
system. This scheduling order achieves lower latency and 
higher reliability for HC tasks fulfilling the target intended. It 
is also observed that some LC tasks go beyond the intended 
deadline. These tasks are dropped to reduce latency as they do 
not affect the success of the system. The latency and reliability 
results for this illustrative example are given in Table 2 under 
the reliability priority scheduling. Note that LC mode 
represents the normal operating mode where all tasks have the 
same level of criticality while HC tasks are given priority 
when the system runs in HC mode. The column labeled 
“Overall” give the reliability and latency values for all tasks; 
the column labelled “HC tasks” presents the values only for 
high criticality tasks. The reliability values are calculated 
using the series configuration in (1). The results show 5% 
reliability improvement (0.854 to 0.897) as well as 46% 
latency improvement for HC tasks. It can also be seen that, 
when we consider all tasks, the algorithm shows an 
improvement in the reliability of the high criticality mode at 
the cost of latency. If a few low critical tasks can be dropped, 
this latency overshoot can be rectified (i.e., T7 and T14).  

Similarly, the approach proposed for the reliability-
constrained minimum latency problem first schedules the 
source vertex to clock cycle 0. Then, T1, T4, T3 and T5 are 
selected by the algorithm among all successors of the source 

 

 
Fig. 4. Scheduling of the task graph in Fig. 3 generated by the proposed approaches: a) Initial schedule to find the minimum execution 
latency; b) The schedule that provides the maximum reliability for HC tasks; c) Initial schedule to find the maximum reliability; d) The 

schedule for minimum completion time of HC tasks in the system. 
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vertex based on the distance of each successor to the sink 
vertex. The selected nodes are mapped to the available 
processing elements ASIC 1 (T4 - 6 cycles), ASIC 2 (T1 - 10 
cycles), CPU 1 (T5 - 35 cycles), and CPU 2 (T3-30 cycles). 
Then, once a processing elements becomes available, the task 
with longest delay to the sink is scheduled if all its 
predecessors have completed their executions. This process 
continues until all tasks are scheduled. In Figure 4(c), the 
tasks are scheduled assuming the system is in low criticality 
execution mode. It is observed that the LC tasks are scheduled 
alongside HC tasks that make some high critical tasks to be 
scheduled later in the order. This method still allocates all the 
tasks to the fastest processor available. Figure 4(d) shows the 
schedule generated assuming the system runs in the high 
criticality mode. This scheduling order achieves faster latency 
and higher reliability for HC tasks. The latency and reliability 
results for this illustrative example are given in Table 2 under 
the latency priority scheduling. As seen in the table, the 
execution latency of HC tasks is reduced by 11% (79 to 71 
cycles) while the latency of all tasks goes down by 10 clock 
cycles. The table also shows that better reliability values are 
achieved by the proposed algorithm for both HC tasks and all 
tasks when the systems is running in high criticality mode.  

V. DETAILS OF PROPOSED APPROACH 
In this section, we will explain the details of the algorithms 

proposed as solutions to the two main design problems 
investigated in this paper: the latency-constrained maximum 
reliability problem and the reliability-constrained minimum 
latency problem. Algorithm 1 is used to find the minimum 
execution latency assuming the system runs in low criticality 
mode (i.e., all tasks are of the same level of criticality). This 
latency is used as an input for Algorithm 2 that is proposed as 
solution to the latency-constrained maximum reliability 
problem in this paper. After changing the selection criteria and 
the target optimization metric in the proposed two algorithms, 
the modified version of Algorithm 1 is used to find the 
maximum reliability value assuming the system runs in low 
criticality mode. This reliability value is used as input to the 
modified version of Algorithm 2 that is proposed as a solution 
to the reliability-constrained minimum latency problem. 

A. Latency-Constrained Maximum Reliability Problem 

Algorithm 1 is developed to schedule the tasks when the 
system is in low criticality mode while Algorithm 2 is used to 
schedule the tasks when the system is in high criticality mode. 
Algorithm 2 is referred as Reliability Priority Algorithm. Each 
algorithm first lists out all the tasks available for scheduling 

into set T. Then, it sorts the tasks based on the number of 
successors. Considering the inputs from the technology 
library, the algorithm chooses the task with the greatest 
number of successors and schedules it. This decision is made 
in this way because the distance from each task to the sink 
cannot be determined until all tasks are scheduled. By doing 
so, our goal is that the next tasks in line would be available 
earlier and the longer path getting stuck in slower processors 
is avoided. 

Once the first tasks are scheduled, the algorithm updates its 
set of available tasks as new tasks arrive and compares them 
with their priority. The priority of tasks in case of equal 
number of successors is determined by checking the following 
conditions in the given order: the task with higher criticality, 
the task with greater number of high critical successors, and 
the task nearest to the source. If there is still a tie, the task that 
can run with the highest reliability in the available processor is 
chosen. This order is devised to obtain higher reliability. If 
there is a task available to schedule, the algorithm waits until a 
processor becomes available. After all the tasks are scheduled 
to the most reliable processor available, the overall execution 
latency is calculated. When the system switches into high 
criticality mode, the LC tasks are not considered in the first  

Algorithm 1: Scheduling with Low Criticality System Mode 
 

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J 
(1,4) refers to processors and i ∈ I (1, n) denotes the tasks in task graph,  
OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc 
1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I} 
2. Update Jcurrent = {j | j are processors that are idle, j ∈ J} 
3. Form the set of ‘Iʹ where 
4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}  
5. if |I| = 1  
6. then Tcurrent = Ti 
7.     else Iʹ = I  
8.    I = {i | i is High Critical task, i ∈ Iʹ} 
9.   if |I| = 1  
10.   then Tcurrent = Ti 
11.    else Iʹ = I 
12.             I = {i | i is nearest to the source, i ∈ Iʹ} 
13.    if |I| = 1  
14.     then Tcurrent = Ti 
15.     else Iʹ = I 
16.      I = {i | i has greatest Rj(i), i ∈ Iʹ & j ∈ Jcurrent} 
17.     if |I| = 1  
18.     then Tcurrent = Ti 
19. Assign Tcurrent to j ∋ Rj(i) is the highest, j ∈ Jcurrent 
20. if | Jcurrent | = 0  
21. then wait for time T 
22. Update Icurrent & Jcurrent 
23. if | Icurrent | = 0 
24. then wait for time T 
25. Update Icurrent & Jcurrent 
26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled 

TABLE II. THE RELIABILITY AND EXECUTION LATENCY VALUES FOR THE ILLUSTRATIVE EXAMPLE FOR THE SAMPLE TASK GRAPH. 

 Properties 

Reliability Priority Scheduling Latency Priority Scheduling 

LC mode HC mode LC mode HC mode 

Overall HC tasks Overall HC tasks Overall HC tasks Overall HC tasks 

 Reliability 0.786 0.854 0.831 0.897 0.743 0.837 0.776 0.887 

 Latency 110 107 162 73 107 79 97 71 
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Algorithm 2: Scheduling with High Criticality System Mode 
 

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji) 
where j ∈ J (1,4) refers to processors and I ∈ I (1, n) denotes the tasks in task 
graph, 
OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc, 
Rhc 
1. Update Hcurrent = {h | h are High Critical tasks that are available to be 

scheduled, h ∈ I} 
2.  Update Jcurrent = {j | j are processors that are idle, j ∈ J} 
3. Form a set of ‘H’ where 
4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}  
5. if |H| = 1  
6. then Tcurrent = Th 
7.        else Hʹ = H  
8.                H = {h | h is nearest to the source, h ∈ Hʹ} 
9.        if |H| = 1 
10. then Tcurrent = Th 
11.  else Hʹ = H  
12.   H = {h | h has greatest Rj(h), h ∈ Hʹ & j ∈ Jcurrent} 
13.   if |H| = 1  
14.   then Tcurrent = Th 

15. Assign Tcurrent to j ∋ Rj(h) is the highest, j ∈ Jcurrent 
16. if | Jcurrent | = 0  
17. then wait for time T  
18. Update Hcurrent & Jcurrent 
19. if | Hcurrent | = 0  
20. then wait for time T  
21. Update Hcurrent & Jcurrent 
22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled 
23. Form a set of tasks Lcurrent where 
24.  Lcurrent = {l | l are the remaining tasks that are available to be scheduled 

with greatest number of successors, l ∈ I} 
25.  if |L| = 1  
26.  then Tcurrent = Tl 
27.        else Lʹ = L  
28.                L = {l | l is nearest to the source, l ∈ Lʹ} 
29.        if |L| = 1 
30.   then Tcurrent = Tl 
31.                  else Lʹ = L  
32.   L = {l | l has greatest Rj(l), l ∈ Lʹ & j ∈ Jcurrent} 
33.   if |L| = 1  
34.     then Tcurrent = Tl 

35. Assign Tcurrent to j ∋ Rj(l) is the greatest, j ∈ Jcurrent 
36. if | Jcurrent | = 0  
37. then wait for time T  
38. Update Lcurrent & Jcurrent 
39. if | Lcurrent | = 0  
40. then wait for time T  
41. Update Lcurrent & Jcurrent 
42.  Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled 

cycle for the scheduling process. All HC tasks are scheduled 
first following the order with the task having the greatest 
number of successors scheduled first. After all HC tasks are 
scheduled, the algorithm processes LC tasks and completes 
the scheduling. 
More specifically, Algorithm 1 takes the task graph 
representing the application and the technology library as 
inputs. In steps 1 to 4, it compiles the data and arranges tasks 
in the order of predecessors. In steps 5 to 18, the algorithm 
selects the task that has the highest priority and assigns it to 
the suitable processor. Then, the algorithm loops back to 
select the suitable processor. Then, the algorithm loops back 
to select the next task to be scheduled. In Algorithm 2, the 
first four steps categories the tasks as high critical and low 
critical (e.g., construction of the graph in Figure 3). Then, the 

steps 5 to 15 select the highest critical task and assigns it to 
the most reliable processor. Steps 16 to 22 are repeated until 
all high critical tasks are scheduled. The steps from 23 until 
the end schedule the rest of the tasks accordingly until all 
tasks are scheduled. 

B. Reliability-Constrained Minimum Latency Problem 

After changing the selection criteria of the tasks to be 
scheduled and the target optimization metric for Algorithm 1 
and Algorithm 2, they can be used to solve the reliability-
constrained minimum latency problem. More specifically, a) 
the tasks that can run with the smallest latency in the available 
processor should be selected (instead of the tasks that can run 
with the highest reliability); b) the tasks should be scheduled 
to the fastest processors (instead of the most reliable 
processor); and, c) the highest critical task should be assigned 
to the fastest processor (instead of the most reliable 
processor). The modified version of Algorithm 2 is referred as 
Latency Priority Algorithm. 

Now let us list the specific changes in Algorithm 1 and 
Algorithm 2 in order to modify them for the reliability-
constrained minimum latency problem. The following changes 
are needed in Algorithm 1: 

Step 16: I = {i | i has lowest Lj(i), i ∈ Iʹ & j ∈ Jcurrent} 
Step 19: Assign Tcurrent to j ∋ Lj(i) is the lowest, j ∈ Jcurrent 
In addition, the following modifications are needed in 

Algorithm 2: 
Step 12: H = {h | h has lowest Lj(h), h ∈ Hʹ & j ∈ Jcurrent} 
Step 15: Assign Tcurrent to j ∋ Lj(h) is the lowest, j ∈ Jcurrent 
Step 32: L = {l | l has lowest Lj(l), l ∈ Lʹ & j ∈ Jcurrent} 
Step 35: Assign Tcurrent to j ∋ Lj(l) is the lowest, j ∈ Jcurrent 

VI. EXPERIMENTAL EVALUATION 
In this section, we present the experiment evaluation for the 

proposed algorithms: Reliability Priority Algorithm for the 
latency-constrained maximum reliability problem and Latency 
Priority Algorithm for the reliability-constrained minimum 
latency problem. Assuming the target architecture described in 
Section 3 (i.e., HW/SW co-design architecture with two CPUs 
and two ASIC components along with a synchronization and 
communication unit), the algorithms are tested using task 
graphs generated by TGFF tool. Each graph has a unique 
technology library. The task graphs are named as TG1 (22 
tasks), TG2 (16 tasks), TG3(25 tasks), TG4 (31 tasks), TG5 
(43 tasks), TG6 (28 tasks), TG7(36 tasks), and TG8 (40 
tasks). A detailed experimental evaluation using these eight 
graphs is presented in Table 3 and Table 4. The first two 
columns in these tables give the labels of the task graphs and 
the number of tasks in each graph. The next four columns 
report the reliability values and the execution latencies for 
each graph in low criticality execution mode for all tasks and 
only HC tasks. The next four columns report the same when 
the system runs in high criticality execution mode. The last 
two columns in Table 3 present the reliability improvements 
in percentage considering all tasks and only HC tasks for 
Reliability Priority Algorithm while the last two columns in 
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Table 4 present the latency  improvements for Latency 
Priority Algorithm.  

The gray columns in Table 3 report the reliability values 
and the reliability improvement for each graph.  As seen in the 
last column, the proposed reliability priority algorithm is 
successful in increasing the reliability of the HC tasks by 
8.12% on the average (in the range of 0.19% and 14.69%). 
Please note that the results of the proposed algorithm are 
compared with those of Algorithm 1. Algorithm 1 is a 
reliability-centric algorithm which, in a sense, represents state-
of-the-art. Prioritizing HC tasks over others resulted in lesser 
holdup times for HC tasks and making more reliable 
processors to be available when they are scheduled. We 
compare the HC task reliabilities in both system modes for 
each task graph to obtain the reliability improvement as shown 
in the gray columns in the table. The algorithm aims at 
increasing the HC tasks’ reliability to ensure the system 
success in critical times and emergencies. Scheduling LC 
tasks after HC tasks gives HC tasks better access to reliable 
processors, thereby inducing an improvement in HC task 
reliability. The improvement is consistent in tasks graphs with 
higher number of task and in graphs with fewer tasks. 

TG1 is our sample task graph. TG2 has a HC task reliability 

improvement of just 0.19% due to the low number of tasks 
available (only 16 tasks) to schedule at any given point in the 
execution. Most of the tasks have more reliable processors 
readily available in both operating modes. Although the 
algorithm returns high reliability, the improvement of HC 
tasks’ reliability is low. We also observe in some cases that 
when the system reliability is increased, it comes at the cost of 
an increased latency (e.g., TG3 and TG5). Assigning HC tasks 
to highly reliable but slower processors cause this. This 
overall latency overhead can be avoided as the LC tasks can 
be dropped to run within the time boundary. This does not 
affect the primary goal of the algorithm which is improving 
the reliability of HC tasks in the system. The algorithm 
generates higher reliability improvements for TG4 (14.69%) 
and TG6 (11.57%) as the lower dependency requirements of 
these graphs allows higher reliable components to be assigned 
to HC tasks. The algorithms also keep track of high critical 
task latency as achieving reliability at an enormous cost to 
latency is not a viable option. Another observation is that the 
overall system reliability typically decreases as the number of 
tasks increase as discussed in reliability modelling.  

Table 4 presents the execution latency and the latency 
improvement for each graph in the gray columns. The 

TABLE III. THE RELIABILITY IMPROVEMENTS  FOR THE LATENCY-CONSTRAINED MAXIMUM RELIABILITY PROBLEM 

Task 

Graph 
Number 

of tasks 

Reliability Priority Algorithm 
% Reliability Improvement   

Low Criticality Mode High Criticality Mode 

Reliability Latency Reliability Latency Overall system High Critical 

tasks  

Overall HC task Overall HC task Overall HC task Overall HC task   

TG1 22 0.7863 0.8548 110 107 0.8317 0.8978 162 73 6.41 4.71 

TG2 16 0.7839 0.9263 155 155 0.7879 0.9281 157 157 0.51 0.19 

TG3 25 0.5680 0.7301 164 162 0.6440 0.8067 255 125 13.38 10.49 

TG4 31 0.6459 0.7789 243 173 0.6933 0.8933 233 171 7.34 14.69 

TG5 43 0.6097 0.7549 205 205 0.6518 0.7773 245 160 6.91 2.97 

TG6 28 0.6526 0.7961 201 184 0.6648 0.8682 219 173 1.87 11.57 

TG7 36 0.6192 0.7813 195 187 0.6215 0.8598 239 162 0.37 10.05 

TG8 40 0.6745 0.7382 225 219 0.6939 0.8141 252 177 2.88 10.28 
 

TABLE IV. THE EXECUTION LATENCY IMPROVEMENTS  FOR THE RELIABILITY-CONSTRAINED MINIMUM LATENCY PROBLEM 

Task 

Graph 

Number 

of tasks 

Latency Priority Algorithm % Latency Improvement 

Low Criticality Mode High Criticality Mode 

Overall 

system 

High Critical 

Tasks 
Reliability Latency Reliability Latency 

Overall HC task Overall HC task Overall HC task Overall HC task 

TG1 22 0.7431 0.8378 107 79 0.7769 0.8870 97 71 9.35 10.13 

TG2 16 0.6963 0.8503 103 72 0.7114 0.8546 103 60 0 16.67 

TG3 25 0.5314 0.7183 110 110 0.4742 0.6644 160 68 -45.45 38.18 

TG4 31 0.5366 0.7122 205 200 0.5536 0.7355 178 116 13.17 42.0 

TG5 43 0.5742 0.7045 157 135 0.5595 0.7216 200 118 -27.38 12.0 

TG6 28 0.5812 0.7513 147 127 0.5634 0.7643 152 113 -3.40 11.02 

TG7 36 0.5915 0.7441 165 145 0.5841 0.7145 161 126 2.42 13.10 

TG8 40 0.5435 0.7112 185 185 0.5356 0.6571 192 153 -3.78 17.29 
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proposed Latency Priority Algorithm (the modified version of 
Algorithm 2) improves the execution latency (latest 
completion time) of the HC tasks by 20.05% on the average 
(in the range of 10.13% and 42%). Please note that the results 
of Latency Priority Algorithm are compared with the modified 
version of Algorithm 1, which is, in a sense, represents state-
of-the-art. Prioritizing HC tasks over others let the algorithm 
schedule HC tasks to faster processors (mostly ASICs). We 
compare the HC task execution latencies in both system 
modes for each task graph to obtain the latency improvement 
as shown in the gray columns. The improvement is consistent 
in all task graphs. 

The experimental evaluation reports the lowest 
improvement (10.13%) for TG2, which has smallest number 
of tasks making small number of tasks available to be 
scheduled to the fastest processing elements. The graphs TG3 
and TG4 gives the highest reliability improvements (38.18% 
and 42%, respectively) as they have relatively large number of 
HC tasks available to be assigned to faster processing 
elements. One interesting observation is that even though TG3 
gives one of the highest latency improvements for HC tasks, 
the table reports the highest degradation for the overall system 
latency (HC tasks + LC tasks). This is mainly due to the 
dependency requirements of the task graph. Please note that 
the main goal for the proposed method is to reduce the 
execution latency (the latest completion time) of HC tasks. In 
real applications, the algorithm would drop LC tasks that 
exceeds the latency constraint which is set by the first 
algorithm. The algorithm also keeps track of high critical task 
reliabilities because a significant increase in reliability cost is 
not a viable option when achieving better execution times.  

VII. CONCLUSION 
In this paper, we proposed two algorithms, namely 

Reliability Priority Algorithm and Latency Priority Algorithm, 
as solutions to two main design problems, the latency-
constrained maximum reliability problem and the reliability-
constrained minimum latency problem, respectively, in the 
context of mixed criticality systems. The application 
composed of high critical and low critical tasks run on a 
hardware/ software co-design environment. For each problem, 
an initial algorithm determines the highest system reliability or 
the lowest execution latency assuming all tasks are of equal 
criticality. Then, this value is used as a constraint by the 
corresponding proposed algorithm. The experimental 
evaluation conducted clearly shows the viability of the 
proposed algorithms.  

The future work includes focusing on behavior of high 
criticality tasks and investigating the scenarios where the 
criticality of tasks changes in during the execution when the 
system is in high criticality mode. 
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