

Abstract—Reliability and execution latency of high critical tasks

are crucial for a successful execution in a mixed criticality system
with tight design constraints. In this paper, we focus on two main
design problems, namely latency-constrained maximum reliability
problem and reliability-constrained minimum latency problem, for
the applications running tasks of different criticality. The target
architecture can run in two operating modes: low criticality mode
(normal operating mode) and high criticality mode. For the former
problem, we first find the minimum execution latency assuming the
system runs in low criticality mode. Then, using this latency as lower
bound, we present a heuristic algorithm to improve the reliability of
high critical tasks in the application. The proposed algorithm assigns
high critical tasks to the highest reliable processing elements in the
technology library, and then, schedules low critical tasks without
exceeding the given latency constraint. Similarly, for the latter
problem, we first determine the highest reliability assuming the
system runs in low criticality mode. Then, considering the overall
system reliability, the proposed approach reduces the latest
completion time of high critical tasks by giving them priority over
low critical ones when selecting processing elements. The
experimental evaluation conducted using task graphs shows up to
14.69% reliability improvement and 20.05%, on the average, latency
improvement for the high critical tasks in the system.

Keywords—Mixed criticality system, system reliability,

execution latency, hardware/software co-design, scheduling, task

mapping, critical task.

I. INTRODUCTION
IXED criticality systems (MCS) have become widely
used in recent years as they can execute various

hardware and software tasks of different criticality (e.g.,
safety critical and mission critical). They became an integral
part of today’s daily life and can be found almost everywhere
such as aircrafts, cars, automated machines, and remotely
piloted vehicles. In such a system, while a mission critical task
typically prioritizes the system goal to obtain the results
targeted, a safety critical task works to keep the system safe
and prioritizes system survival. Significant amount of research
can be found in the literature to improve various metrics of
MCSs such as reliability, performance, and power
consumption [1].

Hakduran Koc is with Computer Engineering Program at University of

Houston-Clear Lake, Houston, TX 77058 USA (corresponding author, phone:
+1 281-283-3877; fax: 281-226-7608; e-mail: KocHakduran@uhcl.edu).

Vamsi Krishna Karanam was with Computer Engineering Program at
University of Houston-Clear Lake, Houston, TX 77058 USA (e-mail:
KranamV1321@uhcl.edu).

The application running on a mixed criticality system
consists of tasks of different criticality. The criticality of a task
denotes the impact it has on the overall system output and may
change over time during the execution. In this work, we
classify tasks as High Critical (HC) or Low Critical (LC) ones.
An effective task scheduling and binding involve
classification in order to ensure the optimal use of available
resources in the most efficient way. The system arranges tasks
based on its level of criticality within the given constraints
following dual criticality scheduling. Even though the
reliability of HC tasks is generally given more importance
over their execution times, reducing the latest completion time
for those tasks becomes crucial in some scenarios given that
the execution latency of the system is kept at a certain level
(e.g., some time-sensitive military applications). In addition,
tasks changing the criticality levels in the course of execution
brings additional challenges in the task scheduling and
binding process in terms of execution latency and reliability.

The system utilized in this work runs in two different
operating modes: low criticality mode (normal mode of
operation) and high criticality mode. In low criticality mode,
all tasks are treated to be of equal criticality, and they are
scheduled accordingly in order to meet the design constraints
(execution latency and system reliability). In high criticality
mode, the HC tasks are held in priority when scheduling the
tasks. Some LC tasks may be excluded from scheduling to
meet the target optimization metric. The target architecture is
a hardware/software co-design environment with two CPUs
and two ASICs. Each task can be executed by any processing
element with varying reliability and latency requirements.

In this work, we investigate two major design problems,
namely latency-constrained maximum reliability problem and
reliability-constrained minimum latency problem, and present
a new heuristic algorithm for each. Given the task graph
representing the application, the proposed algorithms partition
the tasks in high or low critical ones while prioritizing high
critical tasks based on reliability or latency during the
scheduling process. The system is allowed to transition
between high criticality and low criticality operation modes if
dictated by the requirements. The data is provided to the
algorithms which start the scheduling process by choosing the
tasks based on the predefined rules of priority and assigning
them to the appropriate processing elements within the
system. These rules take into consideration the number of
tasks dependent on the current task, criticality, and the
distance from sink node to compare the priority of the task in

Latency and reliability improvements of high
critical tasks in mixed criticality systems

Hakduran Koc and Vamsi Krishna Karanam
Received: July 18, 2020. Revised: August 29, 2020. Accepted: September 4, 2020. Published: September 15, 2020.

M

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 561

question. In the event of multiple tasks meeting all conditions
equally, the task with the lowest latency on the available
processing element is scheduled.

More specifically, the proposed approach for the former
problem first schedules all tasks in the system assuming all
tasks are of equal reliability (low criticality execution mode)
and returns the final reliability and the latency of the system.
In high criticality mode, the algorithm first considers HC tasks
during the scheduling process. After scheduling all HC tasks,
LC tasks are scheduled in the gaps available before the
execution deadline. The algorithm runs until all LC tasks are
scheduled or it may exclude some LC tasks depending on
overall system requirements. The algorithm returns the overall
reliability of the system and the reliability of the high critical
tasks in both the modes of operation. By prioritizing HC tasks,
we increase system viability by ensuring the completion of
high critical tasks early while incorporating low critical tasks
where possible.

Keeping in mind that the main goal for the latter problem is
to reduce the execution latency (the latest completion time) of
HC tasks, the proposed method first schedules all tasks in the
system and calculates the final latency and reliability of the
system in low criticality execution mode. Then, in high
criticality mode, the algorithm prioritizes HC tasks for
scheduling. After ensuring all HC tasks are scheduled, the LC
tasks are scheduled in the idle time internals. The algorithm
runs untill all LC tasks are scheduled or it can exclude some
LC tasks depending on overall system requirements. The
algorithm finally returns the overall latency of the system and
the latency of the high critical tasks in both modes of
operation. The proposed algorithm also considers the changes
on the criticality levels of the tasks in the course of execution
due to the system goal, operating environment or an
approaching emergency situation.

The rest of the paper is organized as follows: Section II
gives the literature review, Section III describes the elements
that form the system, Section IV shows an illustrative example
for reliability and execution latency calculations using the
technology library, Section V explains the details of the
proposed algorithms, Section VI presents the experimental
evaluation, and finally, Section VII concludes the paper.

II. RELATED WORK
Early studies into mixed criticality systems noted that the

application specific integrated circuits enhance the
performance of the system at a really high cost. In systems
that utilize HW/SW co-design, the repeatedly executed tasks
typically dictate the entire execution time [7]. Distinguishing a
particular node within the hot path that decreases overall
latency once it is allotted to a hardware element is presented in
[8]. The planned fault tolerance strategies were check
pointing, rollback recovery, and active replication time
redundancy and area redundancy [11]. A quasi-static
scheduling strategy was studied based on fault occurrence and
execution time in [14].

As fault tolerance became more common, a brand new
metric of criticality was introduced to task scheduling while
permitting tasks to alter criticality over time [1]. If a task
exceeded its execution time limit, it moves the system into
high criticality mode untill all high critical tasks were
completed [5]. The zero slack approach makes an attempt to
reduce the occurrences of high criticality tasks preempting
low criticality tasks [17]. When utilized in conjunction with a
priority-based preventive scheduling algorithm, this proves to
be an efficient method.

Priority assignment in multiprocessor real time systems is
employed in [20]. Research into multicore systems found an
underutilization because of high WCET’s and therefore the
requirement for temporal isolation of critical tasks [15]. The
underutilization was further studied and a scheduling
algorithm was designed in [4]. The proposed algorithm
scheduled critical tasks while employing a constant bandwidth
server to schedule low critical tasks in [10]. An alternate
metric of processor acceleration factor was presented and the
effectiveness of a reservation-based scheduling and priority-
based scheduling were tested in [12]. A scheduling algorithm
from a single-core processor to a multicore process system is
given in [16].

While multicore processors become widely used, task
scheduling should also consider potential core necessities with
completely different scheduling implementations [2]. For a
selected mission or safety critical application situation
dependability attributes are the first concern. Transient or soft
errors do not affect the hardware permanently; however, may
still have an effect on the result [13]. Multicore processors
conjointly led to the introduction of federated scheduling,
wherever each individual task is either restricted to execute on
a selected processor or has exclusive access to all processors
[6]. Many programming algorithms were given in [9], and a
UML model was created while considering concurrency,
completely different resource allocations, and multiple
platform configurations [18].

Sha et al. [21] discussed how mode changes can be
accommodated within a given framework of priority driven
real-time scheduling. Schneider et al. [22] presented a multi-
layered schedule synthesis scheme for MCCPS that aims to
jointly schedule deadline-critical and QoC-critical tasks at
different scheduling layers. Zhou et al. [23] proposed a design
framework comprising a hyper-period optimization algorithm,
which reduces the size of the schedule table and preserves
schedulability, and a re-scheduling algorithm to reduce the
number of preemptions. Zeng et al. [24] presented design
methodologies to guarantee both safety and schedulability for
real-time mixed-criticality systems on identical multicores.
Assuming hardware/software transient errors and model safety
requirements on different criticality levels explicitly according
to safety standards, they further propose fault-tolerant mixed-
criticality scheduling techniques with task replication and re-
execution to enhance system safety. Pathan et al. [25] came up
with an effective scheduling policy that can guarantee
certification of the system at each criticality level while

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 562

maximizing the utilization of the processors. Müller et al. [26]
reviewed EDF-VD's schedulability criteria and determined its
schedulability region to better understand and design mixed-
criticality systems. Maurer et al. [27] presented a generic
component and communication model for CPS that not only
allows the coexistence of computing paradigms of different
criticality but also supports the data exchange between them.

Research into criticality led to the idea of dual criticality
involving high critical and low critical tasks. Once a HC task
exceeds its assigned execution time, the algorithmic rule
switches HC mode and all LC tasks are abandoned [3]. The
trend shifted to utilizing the network on chip architectures to
overcome these problems as the number of cores increased.
The designed reliability-aware task scheduling on NOC
primarily based platform uses changed clustered replication
with the bulk voting to attain reliability [19].

Koc et al. [28] studied latency-constrained task mapping to
improve reliability of HC tasks. Previous research into MCSs
has primarily centered on task scheduling which supported
hardware/software co-design restrictions, task criticality,
processor accessibility, or fault tolerance. This paper extends
the discussions in [28] and proposes two new heuristic
algorithms to reduce the execution latency of HC tasks based
on task scheduling.

III. PRELIMINARIES

A. Target Architecture Model

The target architecture is a multicore HW/SW co-design
environment with four processing elements along with a
shared memory and a synchronization/communication unit as
shown in Figure 1. Processing elements include two software
components (CPU 1 and CPU 2) and two hardware
components (ASIC 1 and ASIC 2). The synchronization and
communication unit is the circuitry that manages the
communication among the components through the memory
with a uniform access latency. The inputs are read from
memory when a task is about to start executing and the result
is stored in memory just after a task finishes its execution. For
the sake of simplicity (and in order to not deviate from the
main purpose of this paper), we assume a uniform access
latency for each memory read and write, and include the
memory access latencies into the execution latencies of tasks.

Fig. 1 The target HW/SW co-design environment with two CPUs,
two ASICs, memory, and synchronization /communication unit.

Each task can be executed by any processing element in the
system with varying latency and reliability values. ASICs
typically execute tasks much faster than CPUs. The reliability
and execution latency values of each task when running on
different processing element is given in a technology library.

B. Application Modelling

The functionality of an application running on the system is
graphically represented using a task graph. A task graph is a
directed acyclic graph, Gs(V, E). Each vertex node, V = {vi; i
= 0, 1, 2, 3, …, n} represents an independent task performing
various operations. The intercommunication between tasks is
denoted by edges. The edges represent dependencies between
tasks, E = {(vi, vj); i, j = 0, 1, …, n}. A task can start
executing only after all its predecessors complete their
executions. The result of a predecessor task is passed to its
successors upon completion. Tasks are executed on various
processing elements.

An example task graph is shown in Figure 2. Each node in
the task graph denotes a task in the system while an edge
represents the data dependency between predecessors and
successors within the graph. This dependency implies that a
task cannot start executing before all its predecessors
complete their executions. For example, T13 cannot be
scheduled to execute before T4, T11, T5 and T12 complete
their executions. Each task is mapped to a processing elements
in the target architecture during task scheduling. Source and
sink vertices are used for synchronization and have zero
execution time. While LC tasks are illustrated by white nodes,
the nodes representing HC tasks are filled with color. Note
that if a task is marked critical, all its predecessors would be
deemed critical as well to avoid discrepancies in data
dependency.

Fig. 2. Example Task Graph

C. Mixed Criticality System

A mixed criticality system can be defined as a group of
tasks (with different criticality) interconnected with one
another and working towards generating an output. Each MCS

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 563

includes a combination of critical and non-critical tasks (e.g.,
HC and LC tasks) that contribute to success. Execution of
critical tasks ensures that the system works safely and
produces output whereas execution of non-critical tasks
improves performance of the system result. It can also be
expressed that critical tasks are essential to the survival of the
system whereas non-critical tasks improve the effectiveness of
the system.

Criticality Modes of a Task: In this work, we classify a
task as high critical task or low critical task. This helps us in
the scheduling process as our system allows a task to change
its criticality during the execution. Criticality additionally
helps confirm the importance of the task within the system.
We specify the condition that a HC task cannot have a LC task
as a predecessor. In Figure 3, the tasks in Figure 2 are grouped
by their criticality. HC tasks are colored in.

Fig. 3. Re-arranged example task graph with HC tasks (blue) and

LC tasks (white). Some LC tasks depend on HC tasks.

Criticality Modes of the System: The MCS utilized in this
work operates in two different operating modes: high
criticality mode and low criticality mode. Low criticality mode
considers all tasks to be of equal priority and schedules them
accordingly. Low criticality mode can be considered as
normal operational mode for the system. The system
transitions into high criticality mode based on predefined
conditions such as a) when a crisis or emergency approaches,
b) when a high critical task error occurs, c) when the system is
not able to schedule all tasks within given constrains, or d)
whenever a manual override is deemed necessary. Once the
system is in high criticality mode, it ignores all low critical

tasks for the present and schedules the high critical tasks in
line with their priority assignment. Finally, after all HC tasks
are scheduled, LC tasks are placed within the slack generated
between high critical tasks.

D. Reliability Modeling

Reliability is defined by how efficiently a task can run on a
specific processor, which varies for each task, when running
on each of the processing elements in the target architecture.
Each and every task must be executed correctly for a
successful execution of the entire system. So, the overall
reliability of a system with multiple units is determined by the
product of the reliabilities of individual tasks in the system as
shown in (1).

 (1)

Equation (1) suggests that the individual reliability of the
tasks should be improved in order to enhance the overall
reliability of the system. This may be achieved by adding a
redundant element to each task (i.e., parallel configuration).
The elements in this configuration are connected in parallel
manner within which the input divides into all the components
and the outputs of the components combine into one.
Reliability of such a parallel system is calculated by (2).

 (2)

E. Design Constraints

This paper addresses two main design problems: latency-
constrained maximum reliability problem and reliability-
constrained minimum latency problem. For the first problem,
we find the minimum execution latency (using Algorithm 1)
assuming the system runs in low criticality mode. Then, this
latency is used (by Algorithm 2) as an upper bound when
finding the most reliable design solution. Similarly, for the
second problem, we first find the most reliable design
assuming the system runs in low criticality mode, and then,
this reliability value is used as lower bound for the system
reliability when determining the design that provides the
minimum completion time for the high critical tasks in the
system. Please note that the algorithms will be explained in
detail later.

F. Technology Library

Each task can run on any available processing element
(CPU 1, CPU 2, ASIC 1, or ASIC 2). The reliability and
execution latency values of each task on each processor are
tabulated into a technology library. The technology library for
the tasks T1 to T22 in the sample task graph in Figure 2 is

TABLE I. TECHNOLOGY LIBRARY FOR TASKS IN FIGURE 2. BLUE IS FOR HC TASKS AND WHITE IS FOR LC TASKS. R:RELIABILITY, L: LATENCY.

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

ASIC2
R 0.997 0.998 0.994 0.995 0.985 0.979 0.993 0.996 0.988 0.992 0.998 0.969 0.989 0.979 0.978 0.998 0.974 0.976 0.990 0.997 0.997 0.995
L 10 12 9 8 10 11 12 12 7 13 16 12 12 15 6 12 9 6 12 15 14 10

ASIC1
R 0.995 0.996 0.998 0.992 0.991 0.994 0.979 0.97 0.986 0.955 0.991 0.987 0.993 0.971 0.990 0.991 0.971 0.998 0.993 0.995 0.986 0.993
L 8 10 12 6 7 9 10 15 5 17 12 7 10 10 12 8 9 8 8 12 8 11

CPU2
R 0.993 0.980 0.980 0.977 0.975 0.976 0.999 0.995 0.98 0.989 0.985 0.990 0.987 0.973 0.985 0.987 0.973 0.989 0.980 0.996 0.993 0.984
L 55 45 30 65 55 35 35 50 65 30 50 30 35 20 55 55 30 25 65 40 25 30

CPU1
R 0.994 0.994 0.986 0.987 0.989 0.969 0.995 0.993 0.972 0.985 0.990 0.978 0.996 0.991 0.987 0.983 0.970 0.985 0.990 0.995 0.987 0.995
L 50 40 35 45 35 50 25 25 35 35 30 45 25 40 50 60 35 30 50 35 45 50

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 564

given in Table 1. The library contains the data that is utilized
by the algorithms to decide which processor is the best to
achieve the target reliability or execution latency constraint.
The latency values are given in clock cycles (e.g., executing
T1 using ASIC 2 and CPU 2 takes 10 clock cycles and 55
clock cycles, respectively). In the table, R is for reliability and
L is for execution latency. Blue columns represent the high
critical tasks and white columns are for the low critical tasks.

IV. MOTIVATIONAL EXAMPLE
Let us consider the task graph given in Figure 2 and its

associated technology library in Table 1. The graph contains
22 tasks (12 of them are HC) interconnected with each other
from source to sink. HC and LC tasks are later grouped
separately in Figure 3. The technology library provides us the
reliability and execution time of each task on each processor.

The approach proposed for the latency-constrained
maximum reliability problem first starts with scheduling the
source vertex to clock cycle 0. Please note that source and
sink nodes have execution time of zero cycles. Then, T1, T2,
T4 and T5 are selected by the algorithm among all successors
of the source vertex based on the distance of each successor to
the sink vertex (i.e., the nodes with higher distance is selected
first). The selected nodes are mapped to the available
processing elements ASIC 1 (T1 - 8 cycles), ASIC 2 (T4 - 8
cycles), CPU 1 (T5 - 35 cycles), and CPU 2 (T2 - 45 cycles).
It waits for a processor to free up to schedule the tasks in
queue and waits for each task’s predecessors to be executed
before the task is scheduled. The algorithm runs until the sink
vertex is scheduled. The schedule generated by the algorithms
are represented in Figure 4. The darker rectangles represent

HC tasks and the white ones represent LC tasks. In Fig. 4(a),
the tasks are scheduled assuming the system is in low
criticality mode. It is observed that LC tasks are scheduled
alongside HC tasks that make some HC tasks to be scheduled
later in the order. This method still allocates all the tasks to
their highest reliable processor available. In Fig. 4(b),
scheduling is done following the high criticality mode of the
system. This scheduling order achieves lower latency and
higher reliability for HC tasks fulfilling the target intended. It
is also observed that some LC tasks go beyond the intended
deadline. These tasks are dropped to reduce latency as they do
not affect the success of the system. The latency and reliability
results for this illustrative example are given in Table 2 under
the reliability priority scheduling. Note that LC mode
represents the normal operating mode where all tasks have the
same level of criticality while HC tasks are given priority
when the system runs in HC mode. The column labeled
“Overall” give the reliability and latency values for all tasks;
the column labelled “HC tasks” presents the values only for
high criticality tasks. The reliability values are calculated
using the series configuration in (1). The results show 5%
reliability improvement (0.854 to 0.897) as well as 46%
latency improvement for HC tasks. It can also be seen that,
when we consider all tasks, the algorithm shows an
improvement in the reliability of the high criticality mode at
the cost of latency. If a few low critical tasks can be dropped,
this latency overshoot can be rectified (i.e., T7 and T14).

Similarly, the approach proposed for the reliability-
constrained minimum latency problem first schedules the
source vertex to clock cycle 0. Then, T1, T4, T3 and T5 are
selected by the algorithm among all successors of the source

Fig. 4. Scheduling of the task graph in Fig. 3 generated by the proposed approaches: a) Initial schedule to find the minimum execution
latency; b) The schedule that provides the maximum reliability for HC tasks; c) Initial schedule to find the maximum reliability; d) The

schedule for minimum completion time of HC tasks in the system.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 565

vertex based on the distance of each successor to the sink
vertex. The selected nodes are mapped to the available
processing elements ASIC 1 (T4 - 6 cycles), ASIC 2 (T1 - 10
cycles), CPU 1 (T5 - 35 cycles), and CPU 2 (T3-30 cycles).
Then, once a processing elements becomes available, the task
with longest delay to the sink is scheduled if all its
predecessors have completed their executions. This process
continues until all tasks are scheduled. In Figure 4(c), the
tasks are scheduled assuming the system is in low criticality
execution mode. It is observed that the LC tasks are scheduled
alongside HC tasks that make some high critical tasks to be
scheduled later in the order. This method still allocates all the
tasks to the fastest processor available. Figure 4(d) shows the
schedule generated assuming the system runs in the high
criticality mode. This scheduling order achieves faster latency
and higher reliability for HC tasks. The latency and reliability
results for this illustrative example are given in Table 2 under
the latency priority scheduling. As seen in the table, the
execution latency of HC tasks is reduced by 11% (79 to 71
cycles) while the latency of all tasks goes down by 10 clock
cycles. The table also shows that better reliability values are
achieved by the proposed algorithm for both HC tasks and all
tasks when the systems is running in high criticality mode.

V. DETAILS OF PROPOSED APPROACH
In this section, we will explain the details of the algorithms

proposed as solutions to the two main design problems
investigated in this paper: the latency-constrained maximum
reliability problem and the reliability-constrained minimum
latency problem. Algorithm 1 is used to find the minimum
execution latency assuming the system runs in low criticality
mode (i.e., all tasks are of the same level of criticality). This
latency is used as an input for Algorithm 2 that is proposed as
solution to the latency-constrained maximum reliability
problem in this paper. After changing the selection criteria and
the target optimization metric in the proposed two algorithms,
the modified version of Algorithm 1 is used to find the
maximum reliability value assuming the system runs in low
criticality mode. This reliability value is used as input to the
modified version of Algorithm 2 that is proposed as a solution
to the reliability-constrained minimum latency problem.

A. Latency-Constrained Maximum Reliability Problem

Algorithm 1 is developed to schedule the tasks when the
system is in low criticality mode while Algorithm 2 is used to
schedule the tasks when the system is in high criticality mode.
Algorithm 2 is referred as Reliability Priority Algorithm. Each
algorithm first lists out all the tasks available for scheduling

into set T. Then, it sorts the tasks based on the number of
successors. Considering the inputs from the technology
library, the algorithm chooses the task with the greatest
number of successors and schedules it. This decision is made
in this way because the distance from each task to the sink
cannot be determined until all tasks are scheduled. By doing
so, our goal is that the next tasks in line would be available
earlier and the longer path getting stuck in slower processors
is avoided.

Once the first tasks are scheduled, the algorithm updates its
set of available tasks as new tasks arrive and compares them
with their priority. The priority of tasks in case of equal
number of successors is determined by checking the following
conditions in the given order: the task with higher criticality,
the task with greater number of high critical successors, and
the task nearest to the source. If there is still a tie, the task that
can run with the highest reliability in the available processor is
chosen. This order is devised to obtain higher reliability. If
there is a task available to schedule, the algorithm waits until a
processor becomes available. After all the tasks are scheduled
to the most reliable processor available, the overall execution
latency is calculated. When the system switches into high
criticality mode, the LC tasks are not considered in the first

Algorithm 1: Scheduling with Low Criticality System Mode

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J
(1,4) refers to processors and i ∈ I (1, n) denotes the tasks in task graph,
OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc
1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I}
2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}
3. Form the set of ‘Iʹ where
4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}
5. if |I| = 1
6. then Tcurrent = Ti
7. else Iʹ = I
8. I = {i | i is High Critical task, i ∈ Iʹ}
9. if |I| = 1
10. then Tcurrent = Ti
11. else Iʹ = I
12. I = {i | i is nearest to the source, i ∈ Iʹ}
13. if |I| = 1
14. then Tcurrent = Ti
15. else Iʹ = I
16. I = {i | i has greatest Rj(i), i ∈ Iʹ & j ∈ Jcurrent}
17. if |I| = 1
18. then Tcurrent = Ti
19. Assign Tcurrent to j ∋ Rj(i) is the highest, j ∈ Jcurrent
20. if | Jcurrent | = 0
21. then wait for time T
22. Update Icurrent & Jcurrent
23. if | Icurrent | = 0
24. then wait for time T
25. Update Icurrent & Jcurrent
26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled

TABLE II. THE RELIABILITY AND EXECUTION LATENCY VALUES FOR THE ILLUSTRATIVE EXAMPLE FOR THE SAMPLE TASK GRAPH.

 Properties

Reliability Priority Scheduling Latency Priority Scheduling

LC mode HC mode LC mode HC mode

Overall HC tasks Overall HC tasks Overall HC tasks Overall HC tasks

 Reliability 0.786 0.854 0.831 0.897 0.743 0.837 0.776 0.887

 Latency 110 107 162 73 107 79 97 71

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 566

Algorithm 2: Scheduling with High Criticality System Mode

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji)
where j ∈ J (1,4) refers to processors and I ∈ I (1, n) denotes the tasks in task
graph,
OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc,
Rhc
1. Update Hcurrent = {h | h are High Critical tasks that are available to be

scheduled, h ∈ I}
2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}
3. Form a set of ‘H’ where
4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}
5. if |H| = 1
6. then Tcurrent = Th
7. else Hʹ = H
8. H = {h | h is nearest to the source, h ∈ Hʹ}
9. if |H| = 1
10. then Tcurrent = Th
11. else Hʹ = H
12. H = {h | h has greatest Rj(h), h ∈ Hʹ & j ∈ Jcurrent}
13. if |H| = 1
14. then Tcurrent = Th

15. Assign Tcurrent to j ∋ Rj(h) is the highest, j ∈ Jcurrent
16. if | Jcurrent | = 0
17. then wait for time T
18. Update Hcurrent & Jcurrent
19. if | Hcurrent | = 0
20. then wait for time T
21. Update Hcurrent & Jcurrent
22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled
23. Form a set of tasks Lcurrent where
24. Lcurrent = {l | l are the remaining tasks that are available to be scheduled

with greatest number of successors, l ∈ I}
25. if |L| = 1
26. then Tcurrent = Tl
27. else Lʹ = L
28. L = {l | l is nearest to the source, l ∈ Lʹ}
29. if |L| = 1
30. then Tcurrent = Tl
31. else Lʹ = L
32. L = {l | l has greatest Rj(l), l ∈ Lʹ & j ∈ Jcurrent}
33. if |L| = 1
34. then Tcurrent = Tl

35. Assign Tcurrent to j ∋ Rj(l) is the greatest, j ∈ Jcurrent
36. if | Jcurrent | = 0
37. then wait for time T
38. Update Lcurrent & Jcurrent
39. if | Lcurrent | = 0
40. then wait for time T
41. Update Lcurrent & Jcurrent
42. Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled

cycle for the scheduling process. All HC tasks are scheduled
first following the order with the task having the greatest
number of successors scheduled first. After all HC tasks are
scheduled, the algorithm processes LC tasks and completes
the scheduling.
More specifically, Algorithm 1 takes the task graph
representing the application and the technology library as
inputs. In steps 1 to 4, it compiles the data and arranges tasks
in the order of predecessors. In steps 5 to 18, the algorithm
selects the task that has the highest priority and assigns it to
the suitable processor. Then, the algorithm loops back to
select the suitable processor. Then, the algorithm loops back
to select the next task to be scheduled. In Algorithm 2, the
first four steps categories the tasks as high critical and low
critical (e.g., construction of the graph in Figure 3). Then, the

steps 5 to 15 select the highest critical task and assigns it to
the most reliable processor. Steps 16 to 22 are repeated until
all high critical tasks are scheduled. The steps from 23 until
the end schedule the rest of the tasks accordingly until all
tasks are scheduled.

B. Reliability-Constrained Minimum Latency Problem

After changing the selection criteria of the tasks to be
scheduled and the target optimization metric for Algorithm 1
and Algorithm 2, they can be used to solve the reliability-
constrained minimum latency problem. More specifically, a)
the tasks that can run with the smallest latency in the available
processor should be selected (instead of the tasks that can run
with the highest reliability); b) the tasks should be scheduled
to the fastest processors (instead of the most reliable
processor); and, c) the highest critical task should be assigned
to the fastest processor (instead of the most reliable
processor). The modified version of Algorithm 2 is referred as
Latency Priority Algorithm.

Now let us list the specific changes in Algorithm 1 and
Algorithm 2 in order to modify them for the reliability-
constrained minimum latency problem. The following changes
are needed in Algorithm 1:

Step 16: I = {i | i has lowest Lj(i), i ∈ Iʹ & j ∈ Jcurrent}
Step 19: Assign Tcurrent to j ∋ Lj(i) is the lowest, j ∈ Jcurrent
In addition, the following modifications are needed in

Algorithm 2:
Step 12: H = {h | h has lowest Lj(h), h ∈ Hʹ & j ∈ Jcurrent}
Step 15: Assign Tcurrent to j ∋ Lj(h) is the lowest, j ∈ Jcurrent
Step 32: L = {l | l has lowest Lj(l), l ∈ Lʹ & j ∈ Jcurrent}
Step 35: Assign Tcurrent to j ∋ Lj(l) is the lowest, j ∈ Jcurrent

VI. EXPERIMENTAL EVALUATION
In this section, we present the experiment evaluation for the

proposed algorithms: Reliability Priority Algorithm for the
latency-constrained maximum reliability problem and Latency
Priority Algorithm for the reliability-constrained minimum
latency problem. Assuming the target architecture described in
Section 3 (i.e., HW/SW co-design architecture with two CPUs
and two ASIC components along with a synchronization and
communication unit), the algorithms are tested using task
graphs generated by TGFF tool. Each graph has a unique
technology library. The task graphs are named as TG1 (22
tasks), TG2 (16 tasks), TG3(25 tasks), TG4 (31 tasks), TG5
(43 tasks), TG6 (28 tasks), TG7(36 tasks), and TG8 (40
tasks). A detailed experimental evaluation using these eight
graphs is presented in Table 3 and Table 4. The first two
columns in these tables give the labels of the task graphs and
the number of tasks in each graph. The next four columns
report the reliability values and the execution latencies for
each graph in low criticality execution mode for all tasks and
only HC tasks. The next four columns report the same when
the system runs in high criticality execution mode. The last
two columns in Table 3 present the reliability improvements
in percentage considering all tasks and only HC tasks for
Reliability Priority Algorithm while the last two columns in

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 567

Table 4 present the latency improvements for Latency
Priority Algorithm.

The gray columns in Table 3 report the reliability values
and the reliability improvement for each graph. As seen in the
last column, the proposed reliability priority algorithm is
successful in increasing the reliability of the HC tasks by
8.12% on the average (in the range of 0.19% and 14.69%).
Please note that the results of the proposed algorithm are
compared with those of Algorithm 1. Algorithm 1 is a
reliability-centric algorithm which, in a sense, represents state-
of-the-art. Prioritizing HC tasks over others resulted in lesser
holdup times for HC tasks and making more reliable
processors to be available when they are scheduled. We
compare the HC task reliabilities in both system modes for
each task graph to obtain the reliability improvement as shown
in the gray columns in the table. The algorithm aims at
increasing the HC tasks’ reliability to ensure the system
success in critical times and emergencies. Scheduling LC
tasks after HC tasks gives HC tasks better access to reliable
processors, thereby inducing an improvement in HC task
reliability. The improvement is consistent in tasks graphs with
higher number of task and in graphs with fewer tasks.

TG1 is our sample task graph. TG2 has a HC task reliability

improvement of just 0.19% due to the low number of tasks
available (only 16 tasks) to schedule at any given point in the
execution. Most of the tasks have more reliable processors
readily available in both operating modes. Although the
algorithm returns high reliability, the improvement of HC
tasks’ reliability is low. We also observe in some cases that
when the system reliability is increased, it comes at the cost of
an increased latency (e.g., TG3 and TG5). Assigning HC tasks
to highly reliable but slower processors cause this. This
overall latency overhead can be avoided as the LC tasks can
be dropped to run within the time boundary. This does not
affect the primary goal of the algorithm which is improving
the reliability of HC tasks in the system. The algorithm
generates higher reliability improvements for TG4 (14.69%)
and TG6 (11.57%) as the lower dependency requirements of
these graphs allows higher reliable components to be assigned
to HC tasks. The algorithms also keep track of high critical
task latency as achieving reliability at an enormous cost to
latency is not a viable option. Another observation is that the
overall system reliability typically decreases as the number of
tasks increase as discussed in reliability modelling.

Table 4 presents the execution latency and the latency
improvement for each graph in the gray columns. The

TABLE III. THE RELIABILITY IMPROVEMENTS FOR THE LATENCY-CONSTRAINED MAXIMUM RELIABILITY PROBLEM

Task

Graph
Number

of tasks

Reliability Priority Algorithm
% Reliability Improvement

Low Criticality Mode High Criticality Mode

Reliability Latency Reliability Latency Overall system High Critical

tasks

Overall HC task Overall HC task Overall HC task Overall HC task

TG1 22 0.7863 0.8548 110 107 0.8317 0.8978 162 73 6.41 4.71

TG2 16 0.7839 0.9263 155 155 0.7879 0.9281 157 157 0.51 0.19

TG3 25 0.5680 0.7301 164 162 0.6440 0.8067 255 125 13.38 10.49

TG4 31 0.6459 0.7789 243 173 0.6933 0.8933 233 171 7.34 14.69

TG5 43 0.6097 0.7549 205 205 0.6518 0.7773 245 160 6.91 2.97

TG6 28 0.6526 0.7961 201 184 0.6648 0.8682 219 173 1.87 11.57

TG7 36 0.6192 0.7813 195 187 0.6215 0.8598 239 162 0.37 10.05

TG8 40 0.6745 0.7382 225 219 0.6939 0.8141 252 177 2.88 10.28

TABLE IV. THE EXECUTION LATENCY IMPROVEMENTS FOR THE RELIABILITY-CONSTRAINED MINIMUM LATENCY PROBLEM

Task

Graph

Number

of tasks

Latency Priority Algorithm % Latency Improvement

Low Criticality Mode High Criticality Mode

Overall

system

High Critical

Tasks
Reliability Latency Reliability Latency

Overall HC task Overall HC task Overall HC task Overall HC task

TG1 22 0.7431 0.8378 107 79 0.7769 0.8870 97 71 9.35 10.13

TG2 16 0.6963 0.8503 103 72 0.7114 0.8546 103 60 0 16.67

TG3 25 0.5314 0.7183 110 110 0.4742 0.6644 160 68 -45.45 38.18

TG4 31 0.5366 0.7122 205 200 0.5536 0.7355 178 116 13.17 42.0

TG5 43 0.5742 0.7045 157 135 0.5595 0.7216 200 118 -27.38 12.0

TG6 28 0.5812 0.7513 147 127 0.5634 0.7643 152 113 -3.40 11.02

TG7 36 0.5915 0.7441 165 145 0.5841 0.7145 161 126 2.42 13.10

TG8 40 0.5435 0.7112 185 185 0.5356 0.6571 192 153 -3.78 17.29

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 568

proposed Latency Priority Algorithm (the modified version of
Algorithm 2) improves the execution latency (latest
completion time) of the HC tasks by 20.05% on the average
(in the range of 10.13% and 42%). Please note that the results
of Latency Priority Algorithm are compared with the modified
version of Algorithm 1, which is, in a sense, represents state-
of-the-art. Prioritizing HC tasks over others let the algorithm
schedule HC tasks to faster processors (mostly ASICs). We
compare the HC task execution latencies in both system
modes for each task graph to obtain the latency improvement
as shown in the gray columns. The improvement is consistent
in all task graphs.

The experimental evaluation reports the lowest
improvement (10.13%) for TG2, which has smallest number
of tasks making small number of tasks available to be
scheduled to the fastest processing elements. The graphs TG3
and TG4 gives the highest reliability improvements (38.18%
and 42%, respectively) as they have relatively large number of
HC tasks available to be assigned to faster processing
elements. One interesting observation is that even though TG3
gives one of the highest latency improvements for HC tasks,
the table reports the highest degradation for the overall system
latency (HC tasks + LC tasks). This is mainly due to the
dependency requirements of the task graph. Please note that
the main goal for the proposed method is to reduce the
execution latency (the latest completion time) of HC tasks. In
real applications, the algorithm would drop LC tasks that
exceeds the latency constraint which is set by the first
algorithm. The algorithm also keeps track of high critical task
reliabilities because a significant increase in reliability cost is
not a viable option when achieving better execution times.

VII. CONCLUSION
In this paper, we proposed two algorithms, namely

Reliability Priority Algorithm and Latency Priority Algorithm,
as solutions to two main design problems, the latency-
constrained maximum reliability problem and the reliability-
constrained minimum latency problem, respectively, in the
context of mixed criticality systems. The application
composed of high critical and low critical tasks run on a
hardware/ software co-design environment. For each problem,
an initial algorithm determines the highest system reliability or
the lowest execution latency assuming all tasks are of equal
criticality. Then, this value is used as a constraint by the
corresponding proposed algorithm. The experimental
evaluation conducted clearly shows the viability of the
proposed algorithms.

The future work includes focusing on behavior of high
criticality tasks and investigating the scenarios where the
criticality of tasks changes in during the execution when the
system is in high criticality mode.

REFERENCES
[1] A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality

Systems,” ACM Computing Surveys, vol. 50, no. 6, pp. 1–37, Nov.
2017.

[2] D. Tamas-Selicean and P. Pop, “Task Mapping and Partition Allocation
for Mixed-Criticality Real-Time Systems,” IEEE 17th Pacific Rim
International Symposium on Dependable Computing, pp. 282–283,
2011.

[3] R. Medina, E. Borde, and L. Pautet, “Scheduling Multi-periodic Mixed-
Criticality DAGs on Multi-core Architectures,” IEEE Real-Time
Systems Symposium (RTSS), pp. 254–264, 2018.

[4] M. Bagheri and G. Jervan, “Fault-Tolerant Scheduling of Mixed-Critical
Applications on Multi-processor Platforms,” 12th IEEE International
Conference on Embedded and Ubiquitous Computing, pp. 25–32, 2014.

[5] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” 28th IEEE
International Real-Time Systems Symposium (RTSS 2007), pp. 239–
243, 2007.

[6] S. Baruah, “The Federated Scheduling of Systems of Mixed-Criticality
Sporadic DAG Tasks,” IEEE Real-Time Systems Symposium (RTSS),
pp. 227–236, 2016.

[7] E. Azari and H. Koc, “Improving performance through path-based
hardware/software partitioning,” 5th International Conference on Digital
Information Processing and Communications (ICDIPC), pp. 54–59,
2015.

[8] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W.-L.
Hung, “Reliability-Centric Hardware/Software Co-Design,” 6th
International Symposium on Quality of Electronic Design (ISQED), pp.
375–380, 2005.

[9] B. Nimer and H. Koc, “Improving reliability through task recomputation
in heterogeneous multi-core embedded systems,” The International
Conference on Technological Advances in Electrical, Electronics and
Computer Engineering (TAEECE), pp. 72–77, 2013.

[10] P. K. Saraswat, P. Pop, and J. Madsen, “Task Mapping and Bandwidth
Reservation for Mixed Hard/Soft Fault-Tolerant Embedded Systems,”
16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 89–98, 2010.

[11] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-tolerant
embedded systems with checkpointing and replication,” 3rd IEEE
International Workshop on Electronic Design, Test and Applications
(DELTA06), pp. 5, pp. 447, 2006.

[12] S. K. Baruah et al., ‘‘Scheduling real-time mixed-criticality jobs,’’ IEEE
Trans. Comput., vol. 61, no. 8, pp. 1140–1152, Aug. 2012

[13] C. Bolchini and A. Miele, “Reliability-Driven System-Level Synthesis
for Mixed-Critical Embedded Systems,” IEEE Transactions on
Computers, vol. 62, no. 12, pp. 2489–2502, Dec. 2013.

[14] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of Fault-Tolerant
Embedded Systems with Soft and Hard Timing Constraints,” Design,
Automation and Test in Europe, pp. 915–920, 2008.

[15] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos, “Mixed-Criticality Real-Time Scheduling for Multicore
Systems,” 10th IEEE International Conference on Computer and
Information Technology, pp. 1864–1871, 2010.

[16] H. Li and S. Baruah, “Global Mixed-Criticality Scheduling on
Multiprocessors,” 24th Euromicro Conference on Real-Time Systems,
pp. 166–175, 2012.

[17] D. D. Niz, K. Lakshmanan, and R. Rajkumar, “On the Scheduling of
Mixed-Criticality Real-Time Task Sets,” 30th IEEE Real-Time Systems
Symposium, pp. 291–300, 2009.

[18] P. Penil, H. Posadas, J. Medina, and E. Villar, “UML-based single-
source approach for evaluation and optimization of mixed-critical
embedded systems,” Conference on Design of Circuits and Integrated
Systems (DCIS), pp. 1–6, 2015.

[19] A. Namazi, S. Safari, and S. Mohammadi, “CMV: Clustered Majority
Voting Reliability-Aware Task Scheduling for Multicore Real-Time
Systems,” IEEE Transactions on Reliability, vol. 68, no. 1, pp. 187–200,
2019.

[20] R. I. Davis and A. Burns, “Priority Assignment for Global Fixed Priority
Pre-Emptive Scheduling in Multiprocessor Real-Time Systems,” 30th
IEEE Real-Time Systems Symposium, pp. 398–409, 2009.

[21] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority driven preemptive scheduling. Journal of Real-
Time Systems, 1(3):244–264, 1989.

[22] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty.
Multi-layered scheduling of mixed-criticality cyber-physical systems.
Journal of Systems Architecture, 59(10, Part D):1215 – 1230, 2013.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 569

[23] Y. Zhou, S. Samii, P. Eles, and Z. Peng. Partitioned and overhead-aware
scheduling of mixed criticality real-time systems. In Proc. of 24th Asia
and South Pacific Design Automation Conference, ASPDAC, pages 39–
44. ACM, 2019.

[24] L. Zeng, P. Huang and L. Thiele, "Towards the design of fault-tolerant
mixed-criticality systems on multicores," 2016 International Conference
on Compilers, Architectures, and Synthesis of Embedded Systems
(CASES), Pittsburgh, PA, 2016, pp. 1-10.

[25] R. M. Pathan, "Schedulability Analysis of Mixed-Criticality Systems on
Multiprocessors," 2012 24th Euromicro Conference on Real-Time
Systems, Pisa, 2012, pp. 309-320.

[26] D. Müller and A. Masrur, "The schedulability region of two-level mixed-
criticality systems based on EDF-VD," 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE), Dresden, 2014, pp. 1-6.

[27] S. Maurer and R. Kirner. Cross-criticality interfaces for cyber-physical
systems. In Proc. 1st IEEE Int’l Conference on Event-based Control,
Communication, and Signal Processing, 2015.

[28] H. Koc, V. K. Karanam and M. Sonnier, "Latency Constrained Task
Mapping to Improve Reliability of High Critical Tasks in Mixed
Criticality Systems," IEEE 10th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON),
Vancouver, BC, Canada, 2019, pp. 320-324.

Hakduran Koc received his B.S. degree in Electronics Engineering from
Ankara University, Turkey in 1997. After working in the industry for two
years, he joined Syracuse University, NY where he received his M.S. and
Ph.D. degrees in Computer Engineering in 2001 and 2008, respectively.
During his graduate study, he was at the Pennsylvania State University as
visiting scholar. He is currently chair and an associate professor of Computer
Engineering at University of Houston-Clear Lake. He is a senior member of
IEEE. His research is in the areas of digital design, embedded systems, and
computer architecture.
Vamsi Krishna Karanam received his B.S. degree in Computer Engineering
from Vellore Institute of Technology, India in 2016 and his M.S. degree in
Computer Engineering from University of Houston-Clear Lake in 2019. He is
a student member of IEEE. His research is in the areas of linear circuits,
embedded systems, and cyber physical systems.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.72 Volume 14, 2020

ISSN: 1998-4464 570

