
 

 

 
Abstract—One of the approaches to the problem of 

approximating functions with a singularity is the creation 

of an approximating apparatus based on splines with the 

same feature. For the wavelet decomposition of spline 

spaces it is important that the property of the embedding 

of these spaces is associated with embedding grids. The 

purpose of this paper is to consider ways of constructing 

spaces of splines with a predefined singularity and obtain 

their wavelet decomposition. Here the concept of 

generalized smoothness is used, within which the 

mentioned singularity is generalized smooth. This 

approach leads to the construction of a system of 

embedded spaces on embedded grids.  A spline-wavelet 

decomposition of mentioned spaces is presented. 

Reconstruction formulas are done. 

 

Keywords— generalized smoothness, reconstruction 

formulas, singular splines, spline-wavelet decomposition 

I.  INTRODUCTION 

n practice, we often deal with functions which have 

singular points (i.e. with the discontinuation of 

functions or their derivatives in certain points). 

Two approaches exist for an approximation of such 

functions. The first of them is the extraction (additive or 

multiplicative) of singularities from the discussed function, 

and the approximation of the function rest. The second one is 

an introduction of the mentioned singularities in the 

approximation apparatus (see [1],[4], [11], [22]). The second 

approach is usually simpler because it is required less than the 

priori information about the function in question (it is not 

required to know the exact function characteristics, its 

asymptotic behavior, orders of the defining multipliers, etc.) 

In [11] the singular splines determined by the kernel of the 

differential operator in special boundary value problems were 

 

 
 

used for the collocation method. In the work [22]   the singular 

splines are constructed with an implicit representation 

of manifold on which coefficient of model elliptic problem are 

discontinuous. As a result a meshless method of optimal order 

with the computational advantages of the B-spline calculus 

was obtained. 

     The general approach to the construction of splines and 

finite element approximations is to use approximation 

relations (in the case of a cubic grid, these relations are called 

the Strang-Mikhlin relations, see [2] - [3]). The use of the 

above relations allows one to obtain spline approximations 

that are asymptotically optimal with respect to the N-width of 

standard compact sets. To construct singular splines, it is 

sufficient to include the singularity in the right-hand sides of 

the approximation relations. 

     It is very important to have the sequence of embedded 

spaces for the successive approximation of the mentioned 

functions. It is also very important for the spline-wavelet 

theory (see [4],[6],[12]). With regard to splines, it is most 

convenient to obtain the system of embedded spaces on 

embedded grids. Simple examples show that the use of the 

approximative relations does not guarantee the mentioned 

property.  
    An in-depth study of the cases when a system of embedded 

spaces is obtained has shown that in these cases the splines 

have maximum smoothness (or, which is the same, the 

minimum defect). It turned out that when considering singular 

splines, one can use the generalized smoothness in order to 

achieve the embedding of spaces on the embedded grids. The 

next step is to construct a wavelet decomposition of the spaces 

of singular splines. 

     The notion of generalized continuity was introduced in 

[20]. In the aforementioned work, necessary and sufficient 

conditions for the pseudo-continuity of coordinate splines and 

their derivatives are obtained. Further development of this idea 

led to the study of the generalized smoothness of spline spaces 

of the Lagrangian and Hermitian types (see [21], [24] - [25], 

[27]), as well as method spaces in finite elements (see [23], 

[26 ]). In this paper, this idea is applied to the construction of 

spaces of singular splines and to their wavelet decomposition. 
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      Additional possibilities arise in the wavelet expansion. In 

this case, in addition to the compressed flow (called in this 

case the main flow), a refinement (so-called wavelet) flow is 

also formed. The wavelet flow has a large volume. It is stored 

at the flow (sender) and can be issued to the receiver in whole 

or in part, on demand. The wavelet flow, together with the 

main flow, allows the receiver to reconstruct the exact original 

flow. This is the value of the wavelet decomposition. 

However, with the classical approach, the construction of an 

adaptive wavelet decomposition is not possible. 
     Let us dwell in more detail on the wavelet expansion. In 

the classical sense, the wavelet decomposition is usually 

defined by two functions: the scaling function and a function 

called the parent wavelet. The rest of the functions, and 

function spaces considered in the classical approach, are 

obtained by the similarity transformation and integer shifts of 

the two mentioned functions. A number of requirements are 

imposed on these functions, the main of which is the scale 

ratio that the scaling function must satisfy. The 

implementation of the multi-scale ratio leads to the possibility 

of constructing a chain of embedded function spaces. Note 

right away that the aforementioned chain of embedded spaces 

is the foundation for obtaining the wavelet decomposition.    

The main difficulty lies in finding a scaling function that 

satisfies a number of additional properties (approximation 

property, property of rapid decay at infinity, etc.), as well as in 

finding the parent wavelet. 

        In papers [11], [15] the non-classical approach is based 

on the construction of a system of embedded spaces, and 

abandoning the idea of using only two functions (scaling 

function and parent wavelet). In this case, the multiple-scale 

ratio is replaced by calibration ratios. These ratios provide a 

representation of the coordinate splines associated with the 

embedded grid through a linear combination of coordinate 

splines associated with the original fine grid. The coordinate 

splines themselves are obtained from the approximation 

relations mentioned above. The result of using these relations 

is a system of embedded spline spaces associated with a 

system of embedded grids. Projection a spline space into an 

embedded space gives a wavelet decomposition. 

The purpose of this paper is to consider ways of 

constructing spaces of splines with a prescribed singularity 

and obtain their wavelet decomposition. Here the concept of 

generalized smoothness is used, within which the mentioned 

singularity is generalized smooth. This approach leads to the 

construction of a system of embedded spaces on embedded 

grids. The sequence of embedded spaces is necessary for 

approximating singular functions, for implementing the finite 

element method in the degenerate problems, for constructing 

multi-grid methods, and also for the wavelet analysis of the 

singular numerical flows.  

In this paper the approximation relations are considered to 

determine coordinate splines with a predefined singularity. 

The concept of generalized smoothness allows us to consider 

functions with singularity as generalized smooth functions. 

The linear shells of the singular coordinate splines are spaces 

with the property of embedding on embedding grids. We 

discuss the spline-wavelet decomposition of the mentioned 

spaces. The decomposition and reconstruction formulas are 

done. 

II.  INITIAL NOTATION AND AUXILIARY 

STATEMENTS 

Let Z be the set of all integers, and R1 be the set of all real 

numbers, and R3 be the linear space of all three-dimensional 

vectors with real components. In the future, all vectors are 

represented as column vectors. The dot · denotes a scalar 

product of vectors (for example, a · b is the scalar product of 

vectors a and b), the sign × between the vectors means the 

vector product of them (for example, a × b is the vector 

product of vectors a and b). A square matrix of the third order 

with columns a,b,c ∈ R3 will be denoted by (a,b,c), and its 

determinant will be denoted by the symbol det(a,b,c). On the 

real axis R1, we introduce a grid 

               X : ... < x−2 < x−1 < x0 < x1 < x2 < ..., (1) 

and put 

   

                    lim
𝑗→−∞

𝑥𝑗  =a,            lim
𝑗→+∞

𝑥𝑗 =b.                        (2) 

Introduce notation M = ∪j∈Z(xj,xj+1), Sj = [xj−1,xj+2],  

 Jk = {k − 1,k,k + 1}, k,j ∈ Z. Let U(xi,xi+1) be the linear space 

of functions defined on the interval (xi,xi+1). By definition put          

U = ...⊗U(x−1,x0)⊗ U(x0,x1) ⊗ U(x1,x2) ⊗ .... 

Let (t) be a three-component vector function with the 

component belonging to the space U. 

Discuss a complete chain of vectors {bj}j∈Z in R3, i.e. a 

sequence of the vectors bj that 

 det(bj−1,bj,bj+1) ≠ 0 ∀j ∈ Z. (3) 

Consider the functions Ωj(t) defined on M, which is equal to 

zero on the set M\Sj and satisfy the approximate ratios      

∑ 𝒃𝑗𝑗∈𝑍 Ω𝑗 ≡ 𝜑(t)       ∀t ∈ M,       supp Ωj ⊂ Sj                    (4) 

Taking into account relations (1)–(4) by the Cramer’s 

formulas we have 

 Ωj(t) ≡ 0 ∀t ∈ M\Sj ,     ∀j ∈ Z , (5) 

    for   t ∈ (xj−1,xj),   (6) 

 

 for t ∈ (xj,xj+1),  (7) 

 

 for t ∈ (xj+1,xj+2).  (8) 

 

The functions Ωj(t) are called coordinate B𝜑-splines, and the 

vector function 𝜑(t) is a generating function. 

Let  𝐹𝑖+1
𝑠,−

  and  𝐹𝑖+1
𝑠,+

, s = 0,1, be linear functionals in the 

space U(xi,xi+1) ∀i ∈ Z. 

Consider the next condition. 

(A) Ratio  𝐹𝑗
𝑠,−𝜑 = 𝐹𝑗

𝑠,+𝜑      ∀j∈Z, s=0,1, are right. 

The application of a functional to a vector function means 

applying it to each component, so we have the numerical 

vector. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.73 Volume 14, 2020

ISSN: 1998-4464 572



 

 

If the condition (A) is true, we say that the condition of the 

generalized smoothness of the first order is fulfilled. In this 

case we use the notation 

                     𝐅𝑗
𝑠 = 𝐹𝑗

𝑠,−𝜑 = 𝐹𝑗
𝑠,+𝜑,       𝑠=0,1. (9) 

In what follows we define 

 bj = Nj × Nj+1, (10) 

where 

 Nj=𝐅𝑗
0×𝐅𝑗

1. (11) 

In the next section, it is proved that if the chain {Nj}j∈Z is 

complete then the chain {bj}j∈Z is also complete. To construct 

the complete chain {Nj}j∈Z we use a parametric family of 

functionals and its derivative with respect to the parameter. 

III.   SOME ALGEBRAIC IDENTITIES 

Then it will be convenient to use the next two famous 

formula for a double vector product: 

(x × y) × (z × w) = det(x,z,w)y − det(y,z,w)x,  (12) 

 (x×y)×(z×w) = det(x,y,w)z−det(x,y,z)w ∀x,y,z,w ∈ R3. (13) 

 

In this section, a series of simple provable lemmas will be 
stated. By (12)–(13) we get proof of the next assertions. 

Lemma 1. For a, b, c, d, e, f ∈ R3 the next identity is true 

det(a × b,c × d,e × f)  

 = det(a,c,d)det(b,e,f) − det(b,c,d)det(a,e,f). (14) 

Proof. In identity det(a × b,c × d,e × f) = [(a × b) × (c × d)] 

· (e × f) we put x = a, y = b, x = c, w = d, and use (12). This 

proves formula (14). 

Corollary 1. For arbitrary vectors a, b, d, f ∈ R3 the next 

identity is right 

 det(a × b,a × d,a × f) = 0. (15) 

Proof. If we put a = c = e in identity (14) then we obtain 

relation (15). 

Lemma 2. For arbitrary vectors A, B, C, D ∈ R3 we have 

the relation det(A × B, B × C, C × D) = 

det(A, B, C)det(B, C, D). 

Proof. In (14) we discuss a = A, b = c = B, d = e = C, f = 

D. This completes the proof.  

Lemma 3. Let A, B, C, c be vectors from the space 

R3. Then det(A × B,B × C,c) = det(A,B,C)(B · c). 

Proof. The proof follows from (12), if we take x = A,  y = z 

= B, w = C. 

Corollary 2. If B · c = 0, then det(A×B,B×C,c) = 0. 

Lemma 4. Let B, C, D, E, c be vectors from the space R3. If 

C · c = 0 then the identity det(B × C,c,D × E) = det(C,D,E)(B 

· c) holds. 

Proof. Analogously to the discussion in the proof of Lemma 

1 we have  

det(D × E,B × C,c) = [(D × E) × (B × C)] · c.  

Consider formula (13) for x = D, y = E, z = B, w = C. Taking 

into account C · c = 0 we complete the proof.  

By Lemma 2 and Lemma 3 we get the next statement. 

Corollary 3. If B · c = 0 and C · c = 0, then 

det(B × C, c, D × E) = 0. 

Lemma 5. Let B, c, c´, D be arbitrary vectors from the 

space R3. If C = c × c´ then the formula 

 
 is correct. 

Proof. In Lagrangue’s identity = 

(x×y)·(z×w) we put x = B, y = D, z = c´, w = c, and take into 

account the equality C = c×c´, (B×D)·(c´×c) = det(B,C,D). 

This completes the proof. 

Suppose that 

 bj = Nj × Nj+1. (16) 

Lemma 6. If each of the next sets of three vectors 

(Nj−1, Nj, Nj+1), (Nj, Nj+1, Nj+2) is linear independent, then the 

set of three vectors (bj−1,bj,bj+1) is also linear independent. 

Proof. Taking into account formulas (10), (16), and using 

Lemma 2 for A = Nj−1, B = Nj, C = Nj+1, D = Nj+2, we obtain 

the linear independence of the set of three vectors bj−1, bj, bj+1. 

Theorem 1. If the vector chain {Nj}j∈Z is complete then the 

vector chain {bj}j∈Z is also complete. 

Proof. The proof follows from the definition of 

completeness of the vector chain by Lemma 6. 

             IV.  PARAMETERIZED   FAMILIES 

Let 𝐹−(τ) and 𝐹+(τ), τ ∈ (a,b), be linear nonzero functionals 

in the space U with the next property 

            supp𝐹−(xi) ⊂ (xi−1,xi], supp𝐹+(xi) ⊂ [xi,xi+1). 

Let U0 be a linear space of functions u, u ∈ U, with property 

                      𝐹−(t)u=𝐹+(t)u ∀t ∈ (a,b). (17) 

Consider the next condition. 

(B) The components of the vector function 𝜑(t) belong to 

the space U0. 

If the condition (B) is right then we use the notation 

 Φ(t) =𝐹−(t)𝜑=𝐹+(t)𝜑 ∀t ∈ (a,b). (18) 

 If  Φ ∈ C1 we use the notion 𝚽𝑗 = 𝚽(𝑥𝑗), 𝚽𝑗
′ = 𝚽′(𝑥𝑗), 

                  N(t)=Φ(t)×Φ´(t),       𝐍𝑗 = 𝚽𝑗 × 𝚽𝑗
′.                (19) 

Expressions (17)–(19) discussed for t ∈ (a,b) are named by 

parameterized families. 

In what follows that Φ ∈ C2(M) and ξ is fixed in set M. The 

certain integer i exists so that ξ ∈ (xi, xi+1). We discuss a value 

ε > 0 for which xi + ε < ξ < xi+1 −ε. Consider vector function 

Φh(t) =  , where h ∈ (0, ε), t ∈ (xi + ε, xi+1 

−ε). Suppose that 

 [c,d] ⊂ (xi + ε, xi+1 − ε). (20) 

It is evident that Φh ∈ C3[c,d].  

By definition, put 

                        N(h)(t)=Φh(t)×𝚽ℎ
′ (t). (21)                                                                                                                                                                                    

It is clear that limh→+0N(h)(t) = N(t) and the derivatives 𝐍(ℎ)
′ (t), 

and 𝐍(ℎ)
″ (t) exist for all t ∈ [c,d]. 
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Theorem 2. If Φ ∈ C2(M), and the vector function N(h)(t) is 

defined by formula (21) then identity 

lim h→+0 det(N(h), 𝐍(ℎ)
′ , 𝐍(ℎ)

″ )(t) = 

 = det(Φ × Φ´,Φ × Φ´´,Φ´× Φ´´)(t) (22) 

is true. 

Proof. By relations 𝐍(ℎ)
′

 = 𝚽ℎ
′ ×𝚽ℎ

′
 + Φh× 𝚽ℎ

″
 = Φh× 𝚽ℎ

″,  

𝐍(ℎ)
″ =𝚽ℎ

′ × 𝚽ℎ
″+Φh×𝚽ℎ

‴, we have 

det(N(h), 𝐍(ℎ)
′ , 𝐍(ℎ)

″ ) = 

          det(Φh×𝚽ℎ
′ , Φh× 𝚽ℎ

″, 𝚽ℎ
′ × 𝚽ℎ

″+Φh×𝚽ℎ
‴). (23) 

Using (15) with a = Φh, b = 𝚽ℎ
′ , d = 𝚽ℎ

″, f = 𝚽ℎ
‴

 , we obtain 

det(Φh×Φ´h, Φh× 𝚽ℎ
″, Φh×𝚽ℎ

‴) = 0. 

Therefore the relation (23) can be represented in the form 

det(N(h), N´(h), N´´(h)) = 

 det(Φh×𝚽ℎ
′ , Φh×Φ´´h, 𝚽ℎ

′ ×Φ´´h). (24) 

Let h tend to zero in identity (24). Passage to the limit gives 

the relation (22). This completes the proof. 

Theorem 3. If Φ ∈ C2(M), and a vector function N(h)(t) is 

defined by formula (21) then the identity 

lim h→+0 det(N(h), N´(h), N´´(h))(t) =  

                                  =[det(Φ,Φ´,Φ´´)(t)]2 (25) 

is true. 

Proof. By relation (14) for a = c = Φ, b = e = Φ´, d = f = 

Φ´´, we have  

det(Φ×Φ´,Φ×Φ´´,Φ´ ×Φ´´)(t) = [det(Φ,Φ´,Φ´´)(t)]2. (26) 

It remains to apply formula (22). This completes the proof. 

Theorem 4. Let Φ(t) be vector function defined on the 

segment [c,d] and Φ ∈ C2[c,d]. Suppose the inequality 

           |det(Φ(t),Φ´(t),Φ´´(t))| ≥ α ∀t ∈ [c,d] (27) 

is fulfilled, where α > 0. If τ and η are positive numbers, and t, 

t+τ+η∈[c,d],then the relation 

              det(N(t),N(t+τ),N(t+τ+η))≥α2τη(τ+η)/2 (28)                                                           

is true. 

Proof. Firstly, we use the vector function N(h) defined by 

formula (21). By well known properties of determinant we 

have det(N(h)(t),N(h)(t + τ),N(h)(t + τ + η)) = 

det(N(h)(t),N(h)(t+τ)−N(h)(t),N(h)(t+τ+η)−N(h)(t+ τ)). By 

Newton’s formula we get  

det(N(h)(t),N(h)(t + τ),N(h)(t + τ + η)) = 

=∫ 𝑑𝜉 ∫ 𝑑𝑒𝑡(𝐍(ℎ)(𝑡),
𝜏+𝜂

𝜏

𝜏

0
𝐍(ℎ)

′ (t+𝜉),𝐍(ℎ)
′ (t+η))d𝜁, 

Again by Newton’s formula we have 𝐍(ℎ)
′ (t+𝜁) − 𝐍(ℎ)

′ (t+𝜉) 

=  ∫ 𝐍(ℎ)
″ (𝑡 + 𝜎)𝑑𝜎.

ζ

ξ
   Now we obtain  

det(N(h)(t),N(h)(t + τ),N(h)(t + τ + η)) = 

=∫ 𝑑𝜉 ∫ 𝑑𝜁 ∫ 𝑑𝑒𝑡(𝐍(ℎ)(𝑡),
𝜁

𝜉

𝜏+𝜂

𝜏

𝜏

0
𝐍(ℎ)

′ (t+𝜉),𝐍(ℎ)
″ (𝑡 + 𝜎)𝑑𝜎. (29) 

 

 Let ε´ be a positive value, ε´< α2. According to (25) and (27) a 

value h0 = h0(ε´) > 0 exists such that lim h→+0 h0(ε´)=0. For h ∈ 

(0,h0) we have 

                   det(N(h)(t),𝐍(ℎ)
′ (t),𝐍(ℎ)

″ (t)) ≥ α2 - ε´. (30) 

Taking into account the positivity of the integral kern in 

(29), we obtain  

det(N(h)(t),N(h)(t+τ),N(h)(t+τ+η))≥ 

  
Let us give formula (28) the integration and passing of the 

limit under condition ε´ → +0. This completes the proof. 

Remark 1. We would like to emphasize that formulas (22), 

(25) and (26) are valid for all t ∈ M because we can discuss 

the segment [c,d] (see (20)). 

If u ∈ U0, we write shortly 𝐹𝑗
±u instead of 𝐹𝑗

−u and 𝐹𝑗
+u. If u ∈ 

U0 and F±(t) u differentiable function then we write (F±)′(t)u 

instead of 
𝑑

𝑑𝑡
F± u  and (𝐹±)𝑗

′ u instead of 
𝑑

𝑑𝑡
F± (xj) u. If 

𝐹−(t)= 𝐹+(t)𝜑 is a differentiable vector function then we 

write Φ(s)(t) instead of (F±(t)𝜑)(s). If the discussed function  

has 𝑠 derivatives on the interval (a,b),  we use the next 

notations, 

𝐹𝑗
− = 𝐹−(xj), 𝐹𝑗

+ = 𝐹+(xj),Nj = N(xj), 𝚽𝑗
(𝑠)

=  Φ(s)(xj). 

        Corollary 4. Suppose c = xj-1, d = xj+2, Φ ∈ C2[c,d] and 

condition (27) is fulfilled. Then 

det(N(xj−1),N(xj),N(xj+1))  

 ≥ α2(xj+1 − xj)(xj − xj−1)(xj+1 − xj−1)/2. (31) 

Proof. Implying formula (28), we put t = xj−1, τ = xj − xj−1, η 

= xj+1−xj. As a result we obtain relation (31). This completes 

the proof. 

Corollary 5. If Φ ∈ C2(a,b) and condition 

                |det(Φ(t),Φ´(t),Φ´´(t))| > 0 ∀t ∈ (a,b) (32) 

is fulfilled. Then the vector chain {Nj}j∈Z is complete. 

Proof. In the discussed case, condition (32) is right for 

arbitrary j ∈ Z, i.e. the triple {Nj−1,Nj,Nj+1} is linear 

independent for all j ∈ Z. Thus the vector chain {Nj}j∈Z is 

complete. This concludes the proof. 

Consider the next condition. 

(D) Functionals 𝐹−(t) and  𝐹+(t) are differentiable (as 

abstract functions). 

Under condition (D) we put 

         𝐹𝑖+1
0,−

u= 𝐹𝑖+1
− u,         𝐹𝑖

0,+
u=𝐹𝑖

+u        ∀i∈Z,              (33) 

             𝐹𝑖+1
1,−

u= (𝐹−)𝑖+1
′ u,  𝐹𝑖

1,+
u= (𝐹+)𝑖

′u   ∀i∈Z. (34) 

Theorem 5. Suppose 𝜑 ∈ U0, and Φ(τ) = F±(τ)𝜑 is a twice 

continuously differentiable function on the interval (a,b), i.e.  

Φ ∈ C 2 (a,b). Then 

1) the functionals (33)–(34) satisfy to the condition (A), and 

the vectors Nj, bj, Fs
j= 𝚽𝑗

(𝑠)
, s = 0,1, are defined, 

2) if besides the relation  

                det(Φ(t),Φ´(t),Φ´´(t)) ≠ 0 ∀t ∈ (a,b), (35) 

is fulfilled, then the vector chain {Nj}j∈Z is complete. 

Proof. The first part of the proved assertion follows from 

formulas (9)–(11), (33) and (34). Therefore we prove the 

second part. We discuss the vector function N(t)=Φ(t)×Φ´(t). 

By formula (35) according to Theorem 3 we see that the 

Wronskian det(N,N´,N´´)(t) is not zero on the interval (a,b). 

Using its continuity we have a number α > 0 such that the 

condition (27) is fulfilled for all t ∈ (a,b). Thus by Theorem 4, 

the inequality (28) is right. Therefore  
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det(N(xj-1),N(xj),N(xj+1))≥𝛼(xj+1-xj)(xj-xj-1)(xj+1−xj−1)/2 ∀j ∈ Z. 

Using the relations Nj = N(xj), we obtain the completeness of 

vector chain {Nj}j∈Z. This concludes the proof. 

Corollary 6. If the conditions of Theorem 5 are right then 

vector chain { bj } defined by formulas bj = Nj × Nj+1 ∀ j∈ 𝑍  

𝐍𝑖  = Φ(𝑥𝑖)×Φ´(𝑥𝑖)  ∀𝑖 ∈ 𝑍, is complete, and coordinate 

splines Ωj(t) exist. 

Proof. The proof of this assertion follows from Theorem 3 

and Theorem 5. 

 V.  EXAMPLE OF PARAMETRIZED   FAMILY 

 

Consider a vector function 𝜑(𝑡) = (1, 𝑡, 1/𝑡)𝑇 . Let {𝐹±(𝑡)} be 

a family of linear functionals, 𝐹±(𝑡)𝑢 = 𝑡𝑢(𝑡). By definition 

we put 𝚽(𝑡) =  𝐹±(𝑡)𝜑 = (𝑡, 𝑡2, 1)𝑇 , 𝐍(𝑡) = 𝚽(𝑡) × 𝚽′(𝑡). 
We have  𝐍(𝑡) = (−2𝑡, 1, 𝑡2). Consider a determinant 

∆0= 𝑑𝑒𝑡( 𝐍(𝑥), 𝐍(𝑦), 𝐍(𝑧)) = 2(𝑧 − 𝑥)(𝑧 − 𝑦)(𝑦 − 𝑥). 
If 𝑥, 𝑦, 𝑧 are different numbers then triple {𝐍(𝑥), 𝐍(𝑦), 𝐍(𝑧)}  
is a linear independent system of vectors. By formula (10) 

𝐛𝑗 = 𝐛(𝑥𝑗 , 𝑥𝑗+1), 𝑤ℎ𝑒𝑟𝑒 𝐛(𝑥, 𝑦) = 𝐍(𝑥) ×  𝐍(𝑦). We have 

                  𝐛(𝑥, 𝑦) = 2(𝑦 − 𝑥)((𝑥 + 𝑦)/2, 𝑥𝑦, 1)𝑇. 

   Let us introduce the expression 

∆= 𝑑𝑒𝑡(𝐛(𝑥, 𝑦), 𝐛(𝑦, 𝑧), 𝐛(𝑧, 𝑣))    𝑓𝑜𝑟 𝑥, 𝑦, 𝑧, 𝑣 ∈ 𝑅1. 
 Simple transformations give  

         ∆= 4(𝑦 − 𝑥)(𝑧 − 𝑦)(𝑣 − 𝑧)(𝑧 − 𝑥)(𝑣 − 𝑦)(𝑧 − 𝑦).       
This shows the linear independence of vectors 𝐛(𝑥, 𝑦),
𝐛(𝑦, 𝑧),   𝐛(𝑧, 𝑣), if  the points 𝑥, 𝑦, 𝑧, 𝑣 are different. 

Consider a determinant ∆1= 𝑑𝑒𝑡(𝐛(𝑥, 𝑦), 𝐛(𝑦, 𝑧), 𝜑(𝑡)). 
It is clear to see 𝑡ℎ𝑎𝑡 ∆1=2(y−x)(z−y)(z−x)(𝑦 − 𝑡)2/t. Thus 

we have  

                   ∆1/∆=
(𝑦−𝑡)2/𝑡

2(𝑣−𝑧)(𝑣−𝑦)(𝑧−𝑦)
.     

The last formula gives the right part of relation (6), if we put 

 𝑥 = 𝑥𝑗−2, 𝑦 = 𝑥𝑗−1, 𝑧 = 𝑥𝑗 , 𝑣 = 𝑥𝑗+1. Thus we have 

Ω𝑗(t)= 
(𝑥𝑗−1−𝑡)2/𝑡

2(𝑥𝑗+1−𝑥𝑗)(𝑥𝑗+1−𝑥𝑗−1)(𝑥𝑗−𝑥𝑗−1)
      for    t ∈ (xj−1,xj).  

   

    Similarly, the spline Ω𝑗(t) can be found on the intervals  

(𝑥𝑗 , 𝑥𝑗+1) and (𝑥𝑗+1, 𝑥𝑗+2). 

VI.  BIORTHOGONAL SYSTEM 

 Later in this section we discuss a biorthogonal system of 

functionals to the coordinate splines.   We suppose that 𝑗 is 

fixed, and what follows is that afterwards, we try to exclude it 

off the notation.   By definition put 

𝐀 = 𝑁𝑗−2, 𝐁 = 𝑁𝑗−1, 𝐂 = 𝐍𝑗 ,     (36) 

𝐃 = 𝑁𝑗+1, 𝐁 = 𝑁𝑗+2, 𝐅 = 𝐍𝑗+3.     (37) 

   By (10) and (36) -- (37) we have  𝐛𝑗−2=𝐀 × 𝐁, 𝐛𝑗−1=𝐁 ×

𝐂, 𝐛𝑗=𝐂 × 𝐃, 𝐛𝑗+1=𝐃 × 𝐄, 𝐛𝑗+2=𝐄 × 𝐅.  

    According to formulas (6) -- (8) and (36) – (37)    we 

obtain 

Ω𝑗(t)=
𝑑𝑒𝑡(𝐀×𝐁,𝐁×𝐂,𝜑(𝑡))

𝑑𝑒𝑡(𝐀×𝐁,𝐁×𝐂,𝐂×𝐃)
  for  𝑡 ∈ (xj−1, xj ),            (38) 

Ω𝑗(t)=
𝑑𝑒𝑡(𝐁×𝐂,𝜑(𝑡),𝐃×𝐄)

𝑑𝑒𝑡(𝐁×𝐂,𝐂×𝐃,𝐃×𝐄)
  for  𝑡 ∈ (xj, xj+1 ),           (39) 

Ω𝑗(t)=
𝑑𝑒𝑡(𝜑(𝑡),𝐃×𝐄,𝐄×𝐅)

𝑑𝑒𝑡(𝐂×𝐃,𝐃×𝐄,𝐄×𝐅)
  for  𝑡 ∈ (xj+1, xj+2 ).            (40) 

Theorem 6. The next assertions are right. 

1. For  𝑡 ∈ (xj−1, xj ) the 𝐵𝜑 −spline 𝛺𝑗(t) can be 

represented in the form 

Ω𝑗(t)=𝐁 ∙ 𝜑(𝑡)[det(𝐁, 𝐂, 𝐃)]−1,                            (41) 

2. For  𝑡 ∈ (xj, xj+1 ) the 𝐵𝜑 −spline 𝛺𝑗(t) can be 

represented in the form 

Ω𝑗(t)=𝐁 ∙ 𝜑(𝑡)[det(𝐁, 𝐂, 𝐃)]−1 − det(𝐁, 𝐃, E)𝐁 ∙

𝜑(𝑡)[det(𝐁, 𝐂, 𝐃)]−1[det(𝐂, 𝐃, 𝐄)]−1,                (42) 

   and it can also be written by the formula 

Ω𝑗(t)=𝐄 ∙ 𝜑(𝑡)[det(𝐁, 𝐂, 𝐃)]−1 − det(𝐁, 𝐃, 𝐄)𝐁 ∙

𝜑(𝑡)[det(𝐁, 𝐂, 𝐃)]−1[det(𝐂, 𝐃, 𝐄)]−1,                (43) 

3. For  𝑡 ∈ (xj−1, xj ) the 𝐵𝜑 −spline 𝛺𝑗(t) can be 

represented in the form 

Ω𝑗(t)=𝐄 ∙ 𝜑(𝑡)[det(𝐂, 𝐃, 𝐄)]−1.                           (44) 

   Here notations (36) – (37) are used. 

    Proof. Taking into account formulas (6) – (8), (16) and 

(36) – (37), we use Lemma 3. We have 𝑑𝑒𝑡(𝐀 × 𝐁, 𝐁 ×
𝐂, 𝜑(𝑡)) = 𝑑𝑒𝑡(𝐀, 𝐁, 𝐂)(𝐁 ∙ 𝜑(𝑡)),𝑑𝑒𝑡(𝜑(𝑡), 𝐃 × 𝐄, 𝐄 × 𝐅) =
𝑑𝑒𝑡(𝐃, 𝐄, 𝐅)(𝐄 ∙ 𝜑(𝑡)). By (12) – (13) we convert the 

numerator in formula (39). We obtain 𝑑𝑒𝑡(𝐁 × 𝐂, 𝜑(𝑡), 𝐃 ×
𝐄) = 𝑑𝑒𝑡(𝐂, 𝐃, 𝐄)𝐁 ∙ 𝜑(𝑡)–𝑑𝑒𝑡(𝐁, 𝐃, 𝐄)𝐂 ∙ 𝜑(𝑡), 𝑑𝑒𝑡(𝐁 ×
𝐂, 𝜑(𝑡), 𝐃 × 𝐄) = 𝑑𝑒𝑡(𝐁, 𝐂, 𝐃)𝐄 ∙ 𝜑(𝑡)–𝑑𝑒𝑡(𝐁, 𝐂, 𝐄)𝐃 ∙
𝜑(𝑡). 𝑇ℎ𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (38) − (40) are 

converted by Lemma 2 such that we deduce 𝑑𝑒𝑡(𝐀 × 𝐁, 𝐁 ×
𝐂, 𝐂 × 𝐃) = 𝑑𝑒𝑡(𝐀, 𝐁, 𝐂)𝑑𝑒𝑡(𝐁, 𝐂, 𝐃), 𝑑𝑒𝑡(𝐁 × 𝐂, 𝐂 × 𝐃, 𝐃 ×
𝐄) = 𝑑𝑒𝑡(𝐁, 𝐂, 𝐃)𝑑𝑒𝑡(𝐂, 𝐃, 𝐄), 𝑑𝑒𝑡(𝐂 × 𝐃, 𝐃 × 𝐄, 𝐄 × 𝐅) =
𝑑𝑒𝑡(𝐂, 𝐃, 𝐄)𝑑𝑒𝑡(𝐃, 𝐄, 𝐅). Finally we replace the numerators 

and the denominators in formulas (38) – (40) according to the 

mentioned transformations. As a result we have relations (42) 

– (44). This completes the proof. 

By definition put 

𝐚 = 𝚽𝑗–2, 𝐚′ = 𝚽𝒋−𝟐
′ , 𝐛 = 𝚽𝑗–1, 𝐛′ = 𝚽𝒋−𝟏

′ ,          (45) 

𝐜 = 𝚽𝑗 , 𝐜′ = 𝚽𝒋
′, 𝐝 = 𝚽𝑗+1, 𝐝′ = 𝚽𝒋+𝟏

′ ,              (46) 

𝐜 = 𝚽𝑗+2, 𝐜′ = 𝚽𝒋+𝟐
′ , 𝐝 = 𝚽𝑗+3, 𝐟′ = 𝚽𝒋+𝟑

′ .       (47) 

 

Lemma 7.  The next formulas are right, 

                             𝐹
𝑗–1

± Ω𝑗 =
𝑑

𝑑𝑡
𝐹

𝑗–1

± Ω𝑗 = 0,                       (48) 
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    𝐹𝑗
±Ω𝑗 = [det(𝐁, 𝐂, 𝐃)]−1𝐁 ∙ 𝐜                         (49) 

𝑑

𝑑𝑡
𝐹𝑗

±Ω𝑗 = [det(𝐁, 𝐂, 𝐃)]−1𝐁 ∙ 𝐜′                          (50)  

𝐹𝑗+1
± Ω𝑗 = [det(𝐂, 𝐃, 𝐄)]−1𝐄 ∙ 𝐝                               (51) 

  
𝑑

𝑑𝑡
 𝐹𝑗+1

± Ω𝑗 = [det(𝐂, 𝐃, 𝐄)]−1𝐄 ∙ 𝐝′                          (52) 

                     𝐹𝑗+2
± Ω𝑗 =

𝑑

𝑑𝑡
𝐹𝑗+2

± Ω𝑗 = 0,                        (53) 

Theorem 7.   The linear functionals {𝐺𝑗}𝑗∈𝑍 defined by 

formula 

𝐺𝑗(𝑢) = 𝐃 ∙ (𝐜
𝑑

𝑑𝑡
𝐹𝑗

±𝑢 − 𝐜′𝐹𝑗
±𝑢),                           (54) 

have the properties 

𝐺𝑗(Ω𝑖) = 𝛿𝑖,𝑗         ∀𝑖, 𝑗𝜖𝑍.                                            (55) 

Proof.    If 𝑗 ≤ 𝑗′ − 1  or 𝑗′ + 2 ≤  𝑗 then the point 𝑥𝑗 is the 

inner point   of the support of the function  Ω𝑗′.  Therefore the 

function and its derivative are equal to zero in this point.   It 

follows that the functional (54) on the function Ω𝑗′ equals 

zero. Thus for the proof of formula (55) it is sufficient to 

discuss the cases 𝑗 = 𝑗′ and 𝑗 = 𝑗′ + 1.   By formulas (49) -- 

(50) and (54) for  𝑢 = Ω𝑗 we obtain  

𝐺𝑗(Ω𝑗) = 𝐃 ∙ (𝐜
𝑑

𝑑𝑡
𝐹𝑗

±
Ω𝑗 − 𝐜′𝐹𝑗

±
Ω𝑗) = 

𝐃 ∙ (𝐜𝐁 ∙ 𝐜′ − 𝐜′𝐁 ∙ 𝐜)[det(𝐁, 𝐂, 𝐃)]−1.                    (56) 

Taking into  account Lemma 5 and equality𝐂 = 𝐜 × 𝐜′ we 

see that 𝐃 ∙ (𝐜𝐁 ∙ 𝐜′ − 𝐜′𝐁 ∙ 𝐜) = 𝑑𝑒𝑡(𝐵, 𝐶, 𝐷). By (118) we 

obtain 𝐺𝑗(Ω𝑗) = 1. 𝐼𝑓  𝑢 = Ω𝑗−1 we have 

𝐺𝑗(Ω𝑗) = 𝐃 ∙ (𝐜
𝑑

𝑑𝑡
𝐹𝑗

±
Ω𝑗 − 𝐜′𝐹𝑗

±
Ω𝑗).                       (57) 

  By formulas (51) and  (52) we deduce 

𝐹𝑗
±Ω𝑗−1 = [det(𝐁, 𝐂, 𝐃)]−1𝐃 ∙ 𝐜,                               (58) 

  
𝑑

𝑑𝑡
 𝐹𝑗

±Ω𝑗−1 = [det(𝐁, 𝐂, 𝐃)]−1𝐃 ∙ 𝐜′.                        (59) 

   Using (58) and (59) in the relation   (119) we obtain 

𝐺𝑗(Ω𝑗−1) = 𝐃 ∙ (𝐜
𝑑

𝑑𝑡
𝐹𝑗

±
Ω𝑗−1 − 𝐜′𝐹𝑗

±
Ω𝑗−1) = 

𝐃 ∙ (𝐜𝐃 ∙ 𝐜′ − 𝐜′𝐃 ∙ 𝐜)[det(𝐁, 𝐂, 𝐃)]−1 = 0.             (60) 

This concludes the proof. 

Corollary 7. The system of the linear functionals  {𝐺𝑗}𝑗∈𝑍 

can be represented in the form 

𝐺𝑗(𝑢) = 𝑑𝑒𝑡(𝚽𝑗+1, 𝚽𝒋+𝟏
′ , 𝚽𝑗  (𝐹±)𝑗

′ 𝑢 − 𝚽𝒋
′𝐹𝑗

±𝑢).      (61)          

                       VII. WAVELET   DECOMPOSITION 

Let B𝜑(X) be the linear span of the coordinate B𝜑-splines 

on the grid X. Thus 

B𝜑(X) = { u | u = ∑j∈Z cjΩj  ∀cj ∈ R1 } 

is the linear space. The last one is named the space of B𝜑-

splines of second order on the grid X. 

We introduce a grid 

Y: …< 𝑦-2 < 𝑦-1<𝑦0<𝑦1<𝑦2<…, 

lim
𝑗→−∞

 𝑦𝑗 =  𝑎, lim
𝑗→+∞

 𝑦𝑗 = 𝑏. 

We suppose that X⊂Y. By definition we put �̃�𝑗
± = �̃�±(𝑦𝑗) 

 �̃�j =Φ(yj)  �̃�𝑗
′ =Φ´(yj),  �̃�𝑗 = �̃�𝑗 × �̃�𝑗

′, �̃�𝑗 = Ñj ×Ñj+1. Using 

the formulas which are analogous to formulas (3)–(8) with 

replacing the vectors bj   by with the vectors �̃�𝑗, we obtain the 

new coordinate splines ωj, j∈Z. Let B𝜑(Y) be a space of B𝜑-

splines of the second order on the grid Y, 

B𝜑(Y) = {ũ | ũ = ∑j∈Zĉjωj   ∀ĉj ∈ R1}. 

We can see that embedding B𝜑(X) ⊂ B𝜑(Y) is true. 

We discuss the operator P, which projects the space B𝜑(Y) 

on the space B𝜑(X). More precisely we suppose that projective 

operator P is defined by the formula 

                Pũ = ∑jGj(ũ)Ωj    ∀ũ∈B𝜑(X).                          (62) 

We also introduce the operator Q = I − P, where I is the 

identity operator. The space W = QB𝜑(Y) is named the wavelet 

space. The direct decomposition 

 B𝜑(Y) = B𝜑(X) + W, (63) 

is called the spline-wavelet decomposition of the space 

B𝜑(Y).  

     In what follows we discuss the infinite series in the form 

∑j cjωj, cj ∈ R1, where the summation is extended on all integer 

numbers j ∈ Z. Under each fixed t ∈ (a,b) the series contains 

no more than three nonzero terms. Therefore the mentioned 

series converge (in the sense of point-wise convergence) for 

arbitrary sequence of coefficients {cj}j∈Z, cj ∈ R1.  

    Consider the case when the grid Y is obtained from the grid 

X by adding one knot x, x∈(xk,xk+1). By definition, we put 

X=N(x). 

    Let ũ be an element of the space B𝜑(Y). Discuss the 

decomposition of the mentioned element with the projective 

operator P, Pũ=∑iai Ωi,  Qũ=∑i’bi’ωi’, where ai=Gi(ũ), 

bi’=Ĝ(Qũ). Suppose that coefficients ai and bi’ are done.  

Theorem 8. The next relations are fulfilled: 

                                          Ωi = ∑ 𝑑𝑖,𝑗𝜔𝑗𝑗 , (64) 

where 

di,j = δi,j   for   j ≤ k-1, 

                           di,j = δi+1,j   for   j ≥ k+2,  ∀i∈Z, (65) 
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𝑑𝑘−1,𝑘 =
det(𝐍𝑘,𝐗,𝐍𝑘+1)

det(𝐍𝑘 −1,𝐍𝑘,𝐍𝑘+1)
,  𝑑𝑘,𝑘 =

det(𝐍𝑘 −1,𝐍𝑘,𝐗)

det(𝐍𝑘 −1,𝐍𝑘,𝐍𝑘+1)
, (66) 

 

𝑑𝑖,𝑘 = 0 for  ∀i∈Z \{k −1,k},  𝑑𝑖,𝑘+1 = 0 for  ∀i∈Z \{k ,k+1}, 

 𝑑𝑘,𝑘+1 =
det(𝐗, 𝐍𝑘 +1, 𝐍𝑘+2)

det(𝐍𝑘 , 𝐍𝑘+1, 𝐍𝑘+2)
,                                             (67) 

 𝑑𝑘+1,𝑘+1 =
det(𝐍𝑘,𝐗,𝐍

𝑘 +1
)

det(𝐍𝑘 ,𝐍𝑘+1,𝐍𝑘+2)
.                              (68) 

Proof.  As it is shown in [20], we are in conditions of 

maximum pseudo-smoothness, and therefore the spaces B𝜑(X) 

and B𝜑(Y) are embedded, B𝜑(X) ⊂ B𝜑(Y). Thus 

representation (64) exists. Consider the system of linear 

functionals defined by formula 

𝑔𝑗(𝑢) = 𝑑𝑒𝑡( �̃�𝑗 , �̃�𝒋+𝟏
′ , �̃�𝑗  (�̃�±)𝑗

′ 𝑢 − �̃�𝑗
′�̃�𝑗

±𝑢).         (69) 

Similarly to functionals (61), we establish that the system  

{𝑔𝑗}𝑗∈𝑍  is biorthogonal to the system {𝜔𝑗}𝑗∈𝑍 ,  

                     𝑔𝑗(𝜔𝑖) = 𝛿𝑖,𝑗         ∀𝑖, 𝑗𝜖𝑍. 

We apply these functionals to relation (64). Taking into 

account formulas (5) - (8) и (10), we obtain relations (65) - 

(68). This completes the proof. 

Formulas (65) – (68) are called by calibration relations, the 

functions ωj are called calibrating functions, and the functions 

Ωj are called calibrated functions.  

      By formulas (69) we see that 

                  𝑔𝑗  = Gj for j ≤ k−1, 𝑔𝑗=Gj−1  for j ≥ k+2. (70)  

According to formulas (63) and (64) we have 

ũ=∑iaiΩi+∑i’bi’ωi’=∑i’(∑iaidi,i’+bi’)ωi’. 

Hence for values cj = fj(ũ) we obtain the reconstruction 

formulas cj =∑iaidi,j + bj, j ∈ Z. 

Theorem 9. Reconstruction formulas for spline-wavelet 

decomposition (63) can be written in the form  

        cj = aj + bj   for j ≤ k − 1; cj = aj−1 + bj    for j ≥ k + 2, (71) 

ck+1 = ak dk,k+1  + ak+1 dk+1,k+1 + bk+1 , 

               ck = ak-1 dk-1,k  + ak dk,k + bk,                    (72) 

Proof. If j does not equal k or k+1 then by (65) we obtain 

the relations (71). If j = k or if j = k + 1 then by formulas (66) 

– (68) we have (72). 

VIII. DECOMPOSITION FORMULAS 

Let ũ be an element of the space B𝜑(Y). Suppose that the 

coefficients ck in the decomposition ũ = ∑kckωk are done. 

Applying the equality ai = Gi(ũ), by (72) we consequently 

obtain  

 bj = cj − ∑i di,jai =cj − ∑i di,j ∑k ckGi(ωk). 

The formulas 

                        (73)

 (74) 

are named by the decomposition formulas. 

Lemma 8. The next relations are right, 

                           Gj(ωj) = 1   for   j ≤ k − 1, (75) 

 

                         Gj(ωj+1) = 1  for  j ≥ k + 1,  (76) 

 , (77) 

   (78) 

                                Gj (ωi) = 0 (79) 

where  

        (i,j) ∉ {(i´,i´) | i´ ≤ k - 1}  

               ⊂{(i´,i´+1) | i´ ≥ k + 1}⊂{(k,k-1), (k,k)}. (80) 

Proof. We use the relations (70). If j ≤ k−1 then we have 

Gj(ωi) = Ĝj(ωi) = δj,i, i ∈ Z. If j ≥ k + 1 then we obtain Gj(ωi) 

=Ĝj+1(ωi) = δj+1,i ∀i ∈ Z. It remains to discuss the values 

Gk(ωi), i ∈ Z. Taking into account the formula supp ωi = 

[ξi−1,ξi+2], we see that Fk(ωi) = 0 for i ∉ {k − 1,k}. We apply 

formulas (5)–(8) and (10) on segment [xk,x]. As a result we 

have ωk−1(t)=X·𝜑(t)[det(Nk−1,Nk,X)]−1 for t ∈ [xk,x].  

By definition, we put  

𝐷= det (Φk+1,𝚽𝑘+1
′ ,Φk(𝐹±)𝑘

′ (X · 𝜑) − 𝚽𝑘
′ 𝐹𝑘

±(X · 𝜑))  

so that  

                    Gk(ωk−1) = 𝐷/det(Nk−1,Nk,X).                (81) 

Taking into account the relations  𝐹𝑘
±φ = 𝚽𝑘 ,  (𝐹±)𝑘

′ φ =

𝚽𝑘
′ , we obtain 𝐷= det (Φk+1,𝚽𝑘+1

′ ,Φk(X · 𝚽𝑘
′ ) – 𝚽𝑘

′ (X · Φk)) . 

Using the formula of mixed product, we get 

𝐷=det(Φk+1,𝚽𝑘+1
′ ,Φk)(X · 𝚽𝑘

′ ) –  

 det (Φk+1,𝚽𝑘+1
′ , 𝚽𝑘

′ )(X · Φk)=(Φk+1× 𝚽𝑘+1
′ )∙  𝚽𝑘(𝐗 ·  𝚽𝑘

′ ) –  

(Φk+1× 𝚽𝑘+1
′ )∙ 𝚽𝑘

′ (𝐗 ·  𝚽𝑘).  

By the formula  Φk+1× 𝚽𝑘+1
′ = 𝐍𝑘+1 we have 

. 

 If we apply Lemma 5 to the last expression then we obtain 

                    .  

Hence, by (81) we deduce relation (77). Taking into account 

equality supp ωk+1 = [xk,xk+1], for t ∈ [xk−1,xk] we have ωk(t) = 

det(Nk−1,Nk,Nk+1)[det(Nk−1,Nk,X)]−1Ωk(t) ∀t ∈ [xk−1,xk].We 

apply the functional Gk to the last identity, and as a result we 
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obtain formula (78). Thus formulas (75)–(80) have been 

proved. This concludes the proof. 

Theorem 10. The decomposition formulas of representation 

(37) can be written in the next form 

              ai = ci   for i ≤ k − 1,      ai = ci+1    for i ≥ k + 1,  (56) 

ak = (det(X,Nk,Nk+1)ck−1 + det(Nk−1,Nk,X)ck)  

                                      /det(Nk−1,Nk,X),  (83) 

  

× [det(X,Nk,Nk+1)ck−1 + det(Nk−1,Nk,Nk+1)ck + ck+1 

                          −det(Nk,X,Nk+1)ck+2/det(Nk,Nk+1Nk+2) (84) 

bj = 0  for j ≠ k - 1. 

Proof. Formulas (82) follows from (73), (75)–(76). For i = k 

by Lemma 7 we see that only two terms remain in the sum 

(72), ak = ck−1Fk(ωk−1)+ckFk(ωk). Applying formulas (77) – 

(78), we obtain relation (83). Thus formulas (82) – (83) have 

been proved. 

Using the equivalent writing of equalities (71) – (72) and 

formula (73), we have 

                           bj = cj – aj  for j ≤ k − 1,                            (85) 

                               bj = cj − aj−1       for  j ≥ k + 2, (86) 

bk = ck − ak-1dk-1,k − akdk,k, 

                            bk+1 = ck+1 − akdk,k+1 − ak+1dk+1,k+1, (87) 

By (56) and (60) we obtain 

                   bj = 0    for   j ≤ k − 1  or   j ≥ k + 2. (88) 

Substituting the values ak-1 and ak from expressions (82) – (83) 

in formula (87), we deduce the next relations 

bk = ck − ak-1det(Nk,X,Nk+1)[det(Nk−1,Nk,X)]-1 

− ak det(Nk-1,Nk,X)[det(Nk−1,Nk,Nk+1)]-1. 

By (82)–(83) we have 

                                        bk 
 = 0. (89) 

Formulas (88)–(89) show that the equalities (84) are true. 

Similarly from (87) with the help of relations (68) and (83) we 

have (84). This concludes the proof. 

                                IX.  CONCLUSION 

There are two basic techniques for approximating functions 

with a singularity. The first is to extract a singularity (additive 

or multiplicative) so that the remainder of such a selection 

turns out to be a smooth function. As a result, the matter is 

reduced to the approximation of a smooth remainder. This 

technique can be effective in cases where the type of feature 

and its exact location are known. In the case where the 

function of interest is a solution to the initial boundary value 

problem, it is difficult to count on the availability of accurate 

information. In the absence of accurate information, a critical 

situation can arise. Instead of a smooth remainder, one can 

obtain a remainder with doubled singularities, which can lead 

to a halt in the computational process. Note that even with 

accurate information, the result may be unacceptable due to 

round-off errors that accompany the computational process 

when using floating point calculations. 

    The second technique is that the expected feature is 

introduced into the approximation apparatus. In the case 

considered in this paper, this is the apparatus of singular 

splines. In the absence of accurate information about the 

location and type of a feature, the situation is less critical: as a 

result, the quality of the approximation will be violated, but 

not the entire computational process. In particular, if the type 

of a feature is known, but the coefficient of its occurrence in 

the function of interest is not known, then this coefficient is 

found from one or another optimization relationship (the 

minimum of the energy norm in the finite element method, 

etc.). With inaccurate information, you can hope for less 

damage. 

      In this paper, the second technique is considered: the 

singularity is introduced into the spline approximation 

apparatus. When constructing splines, it has long been 

customary to use approximation relations, since they allow 

one to construct spaces of splines with the required 

approximation properties (see [2], [12] – [16], [20] – [27]). To 

refine the approximation of the required functions (for 

example, in the finite element method) and in the compression 

of information flows (for example, using wavelet 

decompositions), a chain of embedded spline spaces on 

embedded grids is required. 

      Unfortunately, approximation relations do not guarantee 

the embedding of the spline spaces corresponding to the 

embedded grids. It is necessary to additionally require the 

maximum smoothness of these spaces. It turned out that it is 

enough to consider one or another generalized smoothness. 

With respect to the spaces of singular splines, it is possible in 

a number of cases to introduce generalized smoothness in such 

a way that the existing singularity turns out to be “smooth” 

from the new point of view. Thus, the introduction of 

generalized smoothness leads to the corresponding calibration 

relations and to embedded spline spaces on embedded grids. 

This paper proposes a general approach to constructing 

spaces of singular splines for approximating functions that 

have a singularity in the function itself or in its derivatives. 

This approach is to introduce the concept of generalized 

smoothness. Due to this, a function with a singularity can be 

considered as a generalized smooth function. This approach 

leads to the construction of a system of embedded spaces on 

embedded grids. The sequence of embedded spaces can be 

used for approximating singular functions, for implementing 

the finite element method in the degenerate problems, for 

constructing multi-grid methods, and also for the wavelet 

decomposition of the singular numerical flows. The linear 

shells of the coordinate splines are spaces with the property of 

embedding on embedding grids.  
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