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Abstract- The objective of this study is to ef-
ficiently resolve a perturbed symmetric eigen-
value problem, without resolving a completely
new eigenvalue problem. When the size of an
initial eigenvalue problem is large, its multiple
times solving for each set of perturbations can be
computationally expensive and undesired. This
type of problems is frequently encountered in
the dynamic analysis of mechanical structures.
This study deals with a perturbed symmetric
eigenvalue problem. It propose to develop a
technique that transforms the perturbed sym-
metric eigenvalue problem, of a large size, to
a symmetric polynomial eigenvalue problem of
a much reduced size. To accomplish this, we
only need the introduced perturbations, the sym-
metric positive-definite matrices representing the
unperturbed system and its first eigensolutions.
The originality lies in the structure of the ob-
tained formulation, where the contribution of the
unknown eignsolutions of the unperturbed sys-
tem is included. The effectiveness of the pro-
posed method is illustrated with numerical tests.
High quality results, compared to other existing
methods that use exact reanalysis, can be ob-
tained in a reduced calculation time, even if the
introduced perturbations are very significant.

Keywords- Finite element method, Modal re-
analysis, Perturbation, Polynomial eigenvalue
problem, Structural modification, Truncated
modal basis.

I. Introduction

THE design of a mechanical structure process goes
through the controlling and development of its dy-

namic characteristics. During the design phase, one con-
veys numerous iterations before ensuing the prototype.
A substantial period of time is dedicated to contrasting
the respective dynamic behaviours of the various alter-
natives of design. At each iteration, one compares the

calculated eigensolutions of the real model with those of
the desired one. For each structural modification, the
same structure is treated with the form and the charac-
teristic matrices which are simply updated.

To avoid long and arduous repetitions, efficient tech-
niques of matrix perturbation labeled as the technique of
reanalysis of dynamic structural modifications have been
developed from a truncated modal base. The incom-
plete modal scheme, identified from the original struc-
ture, heavily influence the modified structure results.

Elliott and Mitchell [1], Coupry [2] and Ram and
Braun [3] highlight the effects of modal truncation. In
order to reduce these effects, several authors [4, 5, 6] pro-
posed strategies allowing to enrich the identifed modal
sub-basis. Other authors [6, 7, 8, 9] presented the effect
of the static residues in a greater or lesser approximate
form.

While I. G. Burova proposed in [10, 11] applications
of local polynomial integro differential splines to solve
the problem of calculating the real eigenvalues, based on
either splines of Lagrangian type of fifth order, or polyno-
mial integro-differential splines. I. G. Burova presented
in [10] one of those applications in order to resolve fred-
holm equation. [12] proposed a reanalysis method of vi-
brations, based on a combined block approximation with
shifting, using triangular factorizations in order to cal-
culate the prorblem’s eigenvalues.[13] focused one topo-
logical modificatiins by adding DoFs.

In this paper, we suggest a reanalysis method, which
reduces the computation time through using data ob-
tained either from an experiment or from a theoretical
analysis based on a finite element model of the structure
[14, 15, 16, 17]. The originality lies in the fact that the
strategy takes into account, in a very significant manner,
the contribution of the unknown modes. This contri-
bution will be represented by residual flexibility terms,
which can be determined either through experiment or
theoretically.

Nelson [18] presented a simplified procedure for calcu-
lating the derivatives of the eigenvectors of an arbitrary
order system using only the eigenvectors of left and right
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and their associated eigenvalues. However, these expres-
sions have been derived based only on the standard eigen-
value problem. Chen and Wada [19] formulated a first
order perturbation solution using an expansion of the
power series to perform a dynamic structural analysis.
The first order of the proposed method has already been
developed in [6] and compared to the technique devel-
oped in [7]. In order to develop our method, various
hypotheses have been made. The structure is presumed
to be linear, undamped and fixed. The strategy can be
extended to damped and floating structures.

II. Theory

The theory of eigenvalues perturbations or the struc-
tural modification in the design of mechanical systems
has been well studied. However, most articles have only
applied this method to systems with small system dis-
turbances as demonstrated by Fox and Kapoor [20]. Our
method consists of developing a formula to address dis-
turbed systems during important modifications. Let us
consider a system whose modes of vibration are governed
by the solutions of the following generalized problem of
the eigenvalue:

[B0]y0 = λ0[A0]y0 (1)

Where [B0] and [A0] denote the nominal matrices of
the system, both of size [n× n], λ0 represents a nominal
eigenvalue, and y0 is the corresponding right nominal
eigenvector. Let us Suppose that all the undisturbed
eigenvalues of the system are distinct, and that [B0] and
[A0] are symmetrical and positively defined. The left
eigenvectors of the initial system, designated by qT0 , sat-
isfy:

qT0 [B0]q0 = λ0q
T
0 [A0]q0 (2)

We suppose that the left eigenvector jth and the right
eigenvector ith have been correctly normalized so that
they satisfy the following orthogonality conditions:

qT0i[A0]q0j = δij , q
T
0i[B0]q0j = λijδij (3)

Where δij denotes the Kronecker delta and i, j =
1, ..., n. After an initial analysis, structural design mod-
ifications are introduced so that the system matrices be-
come:

[A] = [A0] + [δA], [B] = [B0] + [δB] (4)

Where [A0] and [B0] denote the undisturbed matri-
ces, [δA] and [δB] are the disturbed matrices, and [A]
and [B] are the highly disturbed matrices. In addition,
the elements of [δA] and [δB] are supposed to be of an
order of magnitude lower than those of [A0] and [B0].

Its eigenvalue problem, in physical coordinates, is
given by:

[B + λ̂νA]q̂ν = 0 (5)

Where q̂ν and λ̂ν are respectively the νth eigenvec-
tor and the eigenvalue of the perturbed structure, and
ν = 1, ..., n
To have the problem of the eigenvalue (5) in modal co-
ordinates, we considers the following transformation of
coordinates:

q̂ν = Qpν (6)

Where pν is the generalized coordinate vector. We
replace Equation (6) in Equation (5) we obtain the fol-
lowing Equation:

[Λ +QT δBQ− λ̂ν(I +QT δAQ)]pν = 0 (7)

Where Λ = diagλν and the orthogonality properties
(3) of the mode forms are used to eliminate the matrices
from the original structure.

The solutions of the previous equation are exact if all
the modes of the original structure are used. However,
this condition is rarely verified and the solutions can only
be approximate. Consequently, the first advantage of the
modal representation is that the dynamics of the original
structure can be adequately represented by few of its
fundamental modes (lowest frequencies). In addition, it
can be applied in a wide variety of experimental and
analytical cases.

Our objective is therefore to evaluate the eigensolu-
tions of the modified structure without resorting to a new
exact and thus costly analysis. In other words, we would
like to look for the best faster approximate solutions of
equation (7), using only the identified modal parameters
of the original structure.

To distinguish between the identified (subscript 1)
and unknown (subscript 2) portions of the original struc-
ture eigenbasis, we partition the full matrices Q, Λ and
pν as:

Q =
[
Q1 Q2

]
, Λ =

[
Λ1 0
0 Λ2

]
and pν =

[
p1ν
p2ν

]
(8)

where Q1 and Λ1 = diag{λν ; ν = 1, 2, . . . . . . ,m}
are assumed to be known, Q2 and Λ2 =
diag{λν ; ν = m+ 1, . . . , n} are unknown p1ν and
p2ν m is the number of known modes (m < n). With
this decomposition, Eq. (8) becomes:

q̂ν = Q1p1ν +Q2p2ν (9)

Before proposing the method, we will briefly review
the classical Rayleigh-Ritz approach using only the trun-
cated modal basis of the original structure.
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Where, them first eigensolutions of the original struc-
ture satisfy the bi-orthogonal relations

QT1 BQ1 = Λ1, Q
T
1 AQ1 = Im (10)

A classical Ritz procedure expresses the νth eigen-
vector q̂ν of the modified structure on the known modal
sub-basis Q1 of the original structure, as

q̂ν ∼= Q1p1ν (11)

In this case, approximate solutions are given by the
following reduced linear eigenvalue problem of order m

[Λ1 +QT1 δBQ1 − λ̂ν(Im +QT1 δAQ1)]p1ν = 0 (12)

In practice, the quality of the reanalysis provided by
this strategy is often disappointing, since its impreci-
sion, even for moderate structural modifications, exacer-
bates an already delicate procedure. We remark that the
convergence toward the exact solution is monotonic, but
generally slow for an increasing m. The perennial ques-
tion is how many modes should be included in Y1 for
having an adequate reanalysis.Coupry [2] demonstrated
the sensitivity of the approximated solutions to trunca-
tion errors, while Ram and Braun [3] gave upper and
lower bounds on the eigensolutions calculated with this
procedure.

III. Transformation of the eigenvalue
problem

The suggested method transforms, in a well struc-
tured form, the N th order linear eigenvalue problem (4)
to a mth (m < N) order symmetric polynomial eigen-
value one.

After decomposing equation (10) we left two parts; a
known part 1 and an unknown part 2. The development
of the equation leads us to the following form:

[Λ1 +QT1 δBQ1 − λ̂ν(Im +QT1 δAQ1)]p1ν

+[QT1 δBQ2 − λ̂νQT1 δAQ2]p2ν = 0
(13)

[QT2 δBQ1 − λ̂νQT2 δAQ1]p1ν + [Λ2 +QT2 δBQ2

−λ̂ν(IN−m +QT2 δAQ2)]p2ν = 0
(14)

The development of the equation leads us to the fol-
lowing form:

[Λ1 +QT1 δBλQ1 − λ̂ν(I1 +QT1 δAλQ1)]p1ν = 0 (15)

Q2p2ν = −αR1(δB − λ̂νδA)Q1p1ν (16)

α = [I +R1δB − λ̂νR1A]−1 (17)

Where δBλ = ∆Bα, δAλ = ∆Aα + (δB −
λ̂νδA0)αR1M and R1 = Q2Λ−1

2 QT2
The disadvantages of the established equations are that
the problem of eigenvalues of reduced order in Equation
(8) is nonlinear and that the matrices δBλ and δAλ can
be complicated and costly to evaluate, because they are
functions of the inverse matrix α. It contains explicitly
the matrix A0 of the original structure and will be cal-
culated for each eigenvalue in the range of frequencies of
interest and for each structural modification.

IV. Transformation of the non-linear
eigenvalue problem (12)

The method used to solve the general problem (12)
requires that, in a frequency band of interest [0, fmax]
where fmax must be less than or equal to the greatest
natural frequency identified of the original structure, the
matrix α must be approximated by an n×n polynomial
matrix of n degree:

α ∼= β[I + λ̂νR1A+
n∑
i=1

λ̂iν(R1Aβ)i] (18)

Where β = [I +R1δB]−1

Thus, the problem of the nonlinear eigenvalue of
Equation (12) can be rewritten as the following poly-
nomial eigenvalue of n degree:

[Λ1 +QT1 δ̂BQ1 − λ̂ν(I1 +QT1 L1Q1)

−
n∑
i=2

λ̂iν(QT1 LiQ1)]p1ν = 0
(19)

where the matrices Li, satisfy the recurrence relation

Li = L(i−1).D1 + ...+ L1.D(i−1) − δ̂B.Di (20)

where:

L1 = δ̂B − δ̂A.D1, δ̂B = δBβ, δ̂A = δAβ

Di = Riδ̂A−R(i+1)δ̂B and Ri = Q2Λ−i
2 QT2

(21)

As mentionned in references [21, 22, 23, 24], standard
computational algorithms are used for solving polyno-
mial eigenvalue problems. As example: in MATLAB,
polyeig function solves this type of problem.

With this approach and with a given level of required
accuracy, the modal reanalysis is described by m modes
and the order of the eigenvalue problem is reduced to m
too.

Eq (19) helps calculate eigenvalues while eigenvectors
of the modified structure are expressed, according to , by
the following equation

q̂ν = β[I +
n∑
i=2

λ̂iνCi]Q1p1ν (22)
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C1 = A1 (23)

for i =2,3, . . . ,n

Ci = D1C(i−1) + ...+D(i−1)C1 +Di (24)

The quality of the reanalysis is satisfying, even if the
degree of the polynomial eigenvalue problem (19) is equal
to 1. Thus, in most cases, we have to solve a problem of
reduced symmetric linear eigenvalue of mth order. The
proposed method takes into account, in a very significant
manner, the contribution of the unknown modes. This
contribution can be estimated, after a modal identifica-
tion for an experimental model, and must be calculated
for an analytical model.

V. Calculation cost Reduction

The matrices δ̂B and Lk, for k = 1, 2, ..., n, are sym-
metrical. Therefore, Equation (19) represents a non-
linear and symmetric eigenvalue problem. The main ad-
vantage of the new system is that it uses fewer arithmetic
operations, taking full advantage of the symmetry.

In practice, the modifications affect only a reduced
number, ε(ε � n), of DOFs of the structure. However,
δB, δA and Lk are sparse matrices. Most of the calcu-
lations involved in Equation (19) will be performed with
reduced square matrices ε × ε. Thus, significant simpli-
fications and a consequent reduction of the computation
time can be obtained. To illustrate the reduction regime,
it is convenient to distribute δB, δA, Rk and Q1 as fol-
lows:

δB =

[
δBε 0

0 0

]
, δA =

[
δAε 0

0 0

]
,

Rk =

[
Rεεk Rεik
Riεk Riik

]
and Q1 =

[
Qε1
Qi1

] (25)

Where ε and i denote sets of modified and unmodi-
fied DOFs, respectively, δBε and δBε are the condensed
modification matrices of the modified DOFs, Qε1 is a sub-
set of Q1 with modified DOFs and Qi1 is the other subset
of Q1.

After several calculations [25, 26, 27], the matrix β
takes the following form:

β =

[
β̂ 0

−Riε1 δ̂Bε In−m

]
β̂ = [Iε +Rεε1 δ̂Bε]

−1and δ̂Bε = δBεβ̂

(26)

Equation (26) allows us to obtain the matrix β by in-
verting only a matrix ε×ε instead of an n×nmatrix, with
the significant advantage from a computational point of
view.

The introduction of equations (25) and (26) in equa-
tion (19) leads to the problem of the condensed polyno-
mial eigenvalue:

[Λ1 +QεT1 δ̂BεQ
ε
1 − λ̂ν(I1 +QεT1 L̂1Q

ε
1)

−
n∑
k=2

λ̂kν(QεT1 L̂kQ
ε
1)]p1ν = 0

(27)

VI. Numerical tests

Two numerical simulation tests were carried out, to
illustrate the approach developed above. The first test
concerns the blocking of the DOFs of the structures free
extremity, the second test consists of affecting the struc-
ture by parametric modifications.

To test the proposed method, finite element models
are used to generate both the problem data and the ref-
erence eigensolutions of the modified structure.

The following criteria are used to assess errors in ap-
proximate eigensolutions:

δfν(in%) =
|fexν − f̂ν |

fexν
, MACν = [

|Y Texν Ŷν |
‖Y exν ‖‖Y exν ‖

]2

and ∆MACν
= (1−MACν)× 100

(28)

Where fexν means reference values, f̂ν means approx-

imate values, f̂reν means approximate values of a smaller
problem, and is the relative error, in %, on the approx-
imate natural frequency compared to that of the refer-
ence and is the value of the modal assurance criterion
between the eigenvectors referenced and approximated
of the mode. The ideal result will give a value ∆MACν

of about 0 %.

For the two examples, the reanalysis will be done by
the first five natural frequencies (m = 5) of the orig-
inal structure. We will note the natural frequency of
these latter, the beam is modeled using 42 beam ele-
ments, which gives a total of 126 DOFs (with 3 DOFs
per node).

Its characteristics are as follows: Young’s modulus
E = 0.499 = 109Nm−2, the density = 7800kgm−3, the
moment of inertia I = 0.279 = 10−4m4, the cross section
A = 0.001m2 and the length L = 1.5m.
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Fig. 1: Fig. 1. a) Original structure; b) Modified struc-
ture; c) modified structure

Table 1: Comparison between reference and approximate
results: Eigenfrequencies relative errors in %; ∆MACν

values in % between the beams a) and b)

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 66.86 66.86 66.86 0.9999
2 42.15 84.32 84.32 84.32 0.9999
3 65.84 168.77 168.77 168.77 0.9999
4 126.53 184.30 184.30 184.30 1.0000
5 184.37 253.46 253.46 253.46 0.9999
CPU 0.0084s 0.00836 0.0071s 0.0065s

Fig. 2: Comparison between reference and approximate
results: Eigenfrequencies relative errors in %

Fig. 3: Comparison between reference and approximate
results: ∆MACν

values in %

Table 2: For a structure of 429 elements 1287 degrees of
freedom

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 65.88 66.83 66.86 1.0000
2 42.15 84.32 84.30 84.31 0.9999
3 65.84 168.62 168.62 168.62 0.9999
4 126.53 184.55 184.00 184.30 1.0000
5 184.37 252.93 252.93 252.93 0.9999
CPU 10.721s 10.556s 3.708s 0.986s

Table 3: For a structure of 859 elements 2577 degrees of
freedom

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 89.67 66.31 66.86 0.6898
2 42.15 100.94 84.30 84.31 0.8899
3 65.84 160.93 168.50 168.62 0.8599
4 126.46 172.41 177.56 184.30 0.7999
5 184.37 251.03 252.86 252.93 0.7639
CPU 88.832s 88.787s 25.877s 6.883s

Table 4: Comparison between reference and approximate
results: Eigenfrequencies relative errors in %; ∆MACν

values in % between the beams a) and b)

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 3.90 3.90 3.90 1.000
2 42.15 22.50 22.50 22.50 0.9999
3 65.84 41.83 41.83 41.83 1.000
4 126.53 121.65 121.67 121.67 0.9999
5 184.37 122.87 122.87 122.87 1.000
CPU 0.0085s 0.0084s 0.0081s 0.0075s
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Fig. 4: Comparison between reference and approximate
results: Eigenfrequencies relative errors in %

Fig. 5: Comparison between reference and approximate
results: ∆MACν

values in %

Table 5: The natural frequencies of the structure (c
which contains 429 elements in which there are 210 ele-
ments to modify and 1287 degrees of freedom

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 3.91 3.91 3.91 1.000
2 42.15 22.88 22.88 22.88 1.000
3 65.84 41.85 41.86 41.86 0.9999
4 126.46 123.08 123.08 123.08 1.000
5 184.37 123.30 123.32 123.32 0.9999
CPU 11.564s 11.821s 4.080s 1.535s

Table 6: The natural frequencies of the structure (c
which contains 859 elements in which there are 210 ele-
ments to modify and 2577 degrees of freedom

Modes fexν0 fexν f̂ν f̂reν MACν

1 10.50 4.32 4.29 4.30 1.0000
2 42.15 42.40 42.40 42.40 0.9999
3 65.84 44.02 44.02 44.02 0.9998
4 126.46 116.06 116.05 116.06 0.9996
5 184.37 125.78 125.78 125.78 1.0000
CPU 88.392s 88.569s 28.105s 7.161s

VII. Conclusion

In this work, the obtained results starting from the
problem of the reduced linear symmetric eigenvalues,
are of very high quality. This proves that the pro-
posed method uses less arithmetic operations and stor-
age space, taking full advantage of linearity, symmetry
and sparse matrices. When the database is identified,
we do not need to know the matrices of the original
structure, ultimately it can contribute significantly to re-
ducing the time and cost of developing a prototype and
updating models with identified data. And it can be eas-
ily implemented with any general purpose finite element
analysis program.Unlike methods based on a combined
block approximation with shifting, where the calculation
of the upper modes is done using triangular factoriza-
tions,or others focused on the topological modifications
by adding DOFs.
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Navier-Lamé equation with new boundary condition
using mini element method, International journal of
mechanics, Volume 12, Pages: 46-58. (2018).

[15] Ouadie Koubaiti, Ahmed Elkhalfi, Jaouad
El-Mekaoui, Nikos Mastorakis. Solving the
problem of constraints due to Dirichlet boundary con-
ditions in the context of the mini element method, In-
ternational journal of mechanics, Volume 14, Pages:
12-20. (2020).

[16] Ouadie Koubaiti, Jaouad El-mekkaoui, and
Ahmed Elkhalfi Elasticity with mixed finite ele-
ment. Communications in Applied Analysis. vol: 22.
No: 4. (2018).

[17] Ouadie Koubaiti, Ahmed Elkhalfi, Jaouad
El-mekkaoui WEB-Spline Finite Elements for the
Approximation of Navier-Lam System with CA,B
Boundary Condition Abstract and Applied Anal-
ysis, vol. 2020, Article ID 4879723, 14 pages.
https://doi.org/10.1155/2020/4879723. (2020).

[18] R. B. Nelson, Simplified calculation of eigenvector
derivatives, AIAA Journal, 14(1976): p1201–p1205.

[19] J. C. Chen and B. K. Wada, Matrix perturba-
tion for structural dynamic analysis, AIAA Journal,
15(1977): p1095–1100

[20] R. L. Fox and M. P. Kapoor, Rates of change
of eigenvalues and eigenvectors, AIAA Journal,
12(1968): p2426–2429.

[21] I. Gohberg, P. Lancaster and L. Rod-
man,Matrix Polynomials, Academic Press (1982).

[22] P. Lancaster,Nonlinear in Parameter, A Re-
view of Numerical Methods for Eigenvalue Problems
(1977), Numerik und Andwendungen von Eigenwer-
taufgaben und Verzweigungsproblemen (edited by E.
Bohl, L. Collatz and K. P. Hedeler) ISNM 38, Basel-
Stuttgart, Birkhauser.

[23] G. Peters and J. H. Wilkinson,Ax = λBx and
the Generalized Eigenproblem, SIAM Journal of Nu-
merical Analysis, Vol.7, p. 479–492, (1970).

[24] A. Ruhe,Algorithms for the Non-Linear Eigenvalue
Problem, SIAM Journal of Numerical Analysis, vol.
10, p. 674-689, (1973)

[25] H. Henderson and V. Harold and SR.
Searle, On deriving the inverse of a sum of ma-
trices, Siam Review, 23(1981): p53–p60.

[26] H. Henderson, , Journal of Statistical Computa-
tion and Simulation, 12(1981): p138.

[27] AS. Householder, The theory of matrices in nu-
merical analysis, Blaisdell Publ, Co., New York,
(1964).

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.80 Volume 14, 2020

ISSN: 1998-4464 628


	Introduction
	Theory
	Transformation of the eigenvalue problem
	Transformation of the non-linear eigenvalue problem (12)
	Calculation cost Reduction
	Numerical tests
	Conclusion



