
 

 

 
Abstract—The approaching of ubiquitous power internet 

of things is accelerating the industry to become more 

integrated and intricated. It is almost inevitable for a 

system to encounter failures during its whole life span. Thus, 

it is imperative to monitor the operating system from a 

system-level perspective to avoid potential catastrophes. 

Intuitively, inclusive prior knowledge is required for 

prognostics and health management (PHM). However, due 

to time-varying parameters and external conditions, the 

system is usually too complex to neatly fit into a prior-built 

model. This paper presents a novel pragmatic method, 

encompassing the convolutional autoencoder (CAE) and 

long short-term memory recurrent neural network 

(LSTM-RNN), to track the health state of a circuit. Briefly, 

the proposed method can be divided into two steps. First, 

degradation characteristics are extracted by using the 

time-domain features and CAE to prepare for the later 

health state estimation step. Then, the LSTM-RNN is used 

to finish the predictive process, i.e., to map the extracted 

abstract features to the health state. In addition, the 

degradation of a practical circuit considering the angular 

distance is discussed to quantify the health state of the 

circuit system. Furthermore, a case study based on that 

prognostics scheme is conducted to verify the proposed 

method. The comparison with other existing popular 

methods indicates the superiority of the proposed 

methodology. 

 

Keywords—prognostics and health management (PHM), 

convolutional autoencoder (CAE), long short-term memory 

neural network (LSTM-RNN), angular distance. 

I. INTRODUCTION 
HE impending Industry 4.0 is accelerating the smart 
manufacturing industry to a new era, thus making the system 
more and more integrated. In this way, the degradation of 

critical components within the system may spark unexpected 
disasters. For instance, three carriages of MTR Corps derailed 
in Hong Kong on September 17, 2019, the event that had 
warned people the inconceivable consequences of neglecting 
repairment, causing eight passengers injured and suspend of 

 
 

metro services. Therefore, prognostics and health monitoring 
(PHM) is vital for modern electronic systems.  

Considering the methodologies behind the realization of 
PHM, they can be divided into three categories: model-based 
approaches, data-driven methods, and hybrid techniques. For 
the model-based approaches, if the parameters are precisely 
chosen, they can yield accurate estimations [1,2]. Luo et al. [3] 
proposed an interacting multiple model (IMM) for some 
undetectable failures. Nevertheless, because of the uncertainties 
from within like time-sensitive parameters and without, 
including variations in temperature, workload, comprehensive 
prior knowledge, and so forth, it is hard for that kind of method 
to be adopted. So the same as hybrid methods, since 
model-based approaches are considered. 

On the other hand, the data-driven approaches can interpret 
the input data automatically and thus require no detailed 
knowledge for the system’s structure. Under most scenarios, 
they follow the given steps to conduct PHM: first, necessary 
features are extracted; then, the method will match the health 
state of the system to the distilled features. Pan et al. conducted 
a real-time monitoring of machine health status with the help of 
dynamic fuzzy neural networks [4]. Babu et al. [5] estimated the 
remaining useful life (RUL) of the bearing on the basis of the 
regression method. Kiranyaz et al. [6] utilized adaptive 1-D 
convolutional neural networks (CNNs), which directly used the 
raw voltage and current data and avoided any feature extraction 
algorithm. Besides, CNN has been applied in a variety of fields 
[7-8].  However, each method has its own limitation: CNN, for 
instance, cannot comprehend the inner time-domain 
connections within the samples. An interesting integrated 
method, which inspires this study, was conducted by Gensler et 
al. [9]. A hybrid neural network, incorporating autoencoder (AE) 
and long short-term memory recurrent neural network 
(LSTM-RNN), was presented to predict solar power energy. 
The combination of the two networks took advantage of their 
respective unique merits: for the AE, it could extract the features 
more precisely, and the LSTM-RNN, which is specially 
designed for time-series analysis, could effectively bridge the 
gap between the extracted features and the unknown RULs. 

Broadly, PHM includes fault diagnosis and prognostics. 
Analog circuit fault diagnosis pinpoints the faulty components 
and, sometimes, provides correction solutions [10-12]. In 
comparison, circuit fault prognosis estimates the circuit 
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performance in the future and possible failures. Some existing 
PHM researches for analog circuits focused on the degradation 
of specific elements like ceramic and embedded capacitors 
[13,14], LED drivers [15]. However, in reality, it is not rare for 
us to encounter a degradation of multiple components in a given 
analog circuit. Consequently, manifesting the health state of a 
given circuit, when a degradation happens, is of immense 
significance. The Sallen-Key bandpass filter circuit [16], 
three-phase inverter bridge circuit [17], and an H-bridge circuit 
[18] are the usual testing analog circuits for PHM methods. 

In this paper, a novel approach for analog circuit health state 
prognostics by using an integrated deep neural network,  
convolutional autoencoder- long short term memory network 
(CAE-LSTM),  is proposed. Moreover, the health state of a 
circuit is decided by time-domain feature extractions and 
angular distance calculations of the measured signals. An 
MJ-level energy unit circuit, called the main power conditioning 
module (PCM), is employed to verify the effectiveness of the 
proposed method.  

The paper is organized in the following order: Section II 
introduces the used health state estimation framework. Section 
III gives the backgrounds of PCM, simulation settings, results, 
and discussions. Finally, conclusions are drawn in Section IV. 

II. PROGNOSTICS FRAMEWORK 
The proposed method aims to estimate the health indicator 

(HI) of the system, which quantifies the health state of the 
system. First, a convolutional autoencoder is built and trained to 
extract the necessary characteristics. Then, LSTM layers will 
map the extracted features to the predicted HI. 

A. Convolutional Autoencoder 

Basically, a convolutional layer deals with images, and its 
operation procedure c can be illustrated as follow: 

( , ) ( , ) ( , ) ( , )( * )a b a m b n m n a b

m n

c P K P K       (1) 

where P is two-dimensional data input, and K is a onvolutional 
kernel. 

However, with some modifications, it can also be employed 
for other signals. A strategy called 1-D CNN presented in Fig. 1 
is used in this study to address this problem [19]. To be specific, 
the 1-D input signal is reconstructed into 2-D samples, 
including one dimension denotes the number of the time cycle 
of the signal, and the other one refers to the real sensory data. 

As demonstrated by [20], a consecutive temporal sequence 
comprises denser information than a single data point. Thus 
time window slide, which reconstructs the original signals into 
discrete samples with the given size of the time window and the 
number of the selected features, is employed to represent the 
multidimensional temporal features. To be specific, it divides 
each signal sequence into a chosen length, then inserts these 
segmented sequences within the same time cycle period into  
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Fig. 1 A brief illustration of the 1-D CNN module 

 
Table. 1 Settings of the CAE 

Layer Number Filter Size 

Convolutional layer 2 30 filters of size (1×24) and 15 
filters of size (1×6), respectively 

Deconvolutional 
layer 2 30 filters of size (24×1) and 15 

filters of size (6×1), respectively 
Max-pooling layer 2 (1×12) and (1×15), respectively 

Unsampling layer 2 (1×12) and (1×15), respectively 

 
different channels of the fusion sample, like drawing a 
multi-channel image as the input for the network. In this study, 
the stride value and the size of a slide are set to be 1 and 15 
cycles. 

Generally, a convolutional autoencoder (CAE) consists of 
three types of layers [21]: 

1) Convolutional layers: They are designed for input signal 
feature simplification, which projects the input signals 
to a higher-order space, thus obtains denser features. 

2) Pooling layers: Pooling operations further eliminate 
redundant parameters to simplify the input. 

3) Deconvolutional layers: similar to the convolutional 
layers, but with the inverse parameters, deconvolutional 
layers perform convolutional operations to generate the 
output with the same size as the corresponding 
convolutional layers.  

The equations for CAE are formulated as follows: 
1

2

(AF(conv( ) ))
ˆ AG(de_conv( ) )

ˆmin ( , )

l P X b

X l b

L D X X

 


 


 

               (2) 

where P (.), conv (.), de_conv(.) are the symbols for pooling, 
convolution, and deconvolution operations, respectively. AF (.), 
AG (.) denote the activation function for different elements. b1, 
b2 are the bias terms for the corresponding layers. X and X̂  are 
the original input and processed output for the AE, respectively. 
D(.) calculates the difference between X and X̂ , Ω is the 
regularization term to reduce the overfitting problem. The goal 
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of CAE is to minimize the difference between the input and 
output, in other words, to minimize L. 

Other settings are specified in Table 1. Once the training 
procedure is completed, the features in the hidden layer are 
extracted for LSTM regression. 

B.  Long Short-Term Memory Recurrent Neural Network 

The LSTM-RNN, which is superior to the conventional RNN 
for its free from the problem of vanishing and exploding 
gradient, is born for time-series analysis [22]. 

The structure presented in Fig. 3 empowers the network to 
decide what data to be retained or deleted from its storage.  

To manipulate and stable cell state, three different kinds of 
gates, including input, output, and forget gate, are used. The 
following equations illustrate the explicit implementation of 
cells at every step i. 

i

i 1

i 1

iix ih i

ox oh o i

fx fh f

xw w b

w w b h

w w b

 

     
     

      
          

i

o

f

    (3) 

where wix，wox, and wfx are weight coefficients of the input xi for 
the different gates of the cell，while wih，woh, and wfh are that of 
the former input variable hi-1, respectively. bi, bo, and bf denote 
bias of the input, the output, and the forget gate. Moreover,   
is the symbol of the sigmoid function.  

 i 1zx i zh i zw x w h b   z          

i i i i-1 iz c i c f              (4) 

 i i ich o               
where, likewise, wzx, wzh, and bz denote the weight coefficient of 
the input xi, the former input variable hi-1, and bias for the input 
node of the cell, respectively. ci and ci-1 are values of the cell 
state at step i and i-1. In addition,   and  are the symbols of 
tanh function and pointwise multiplication. 

Specifically, the function of each kind of gate is described as 
follows: (1) Whether the cell state will be updated and what 
information will be transited to the next step are determined by 
the input gate ii; (2) The output gate oi filters information and 
modulates certain parts of the output cell state; (3) The forget 
gate fi gathers data and deduces what data to be ruled out. 

For this study, one LSTM layer with 50 cell structure is 
employed after the feature extraction process. In addition, the 
Adam algorithm is also considered to optimize the network 
parameters in the hope of better performance. The flow chart of 
the proposed schematic, including the architecture of the 
integrated network, is given in Fig. 2. 

III. CASE STUDY 
The proposed framework is verified through the degradation 

of a practical circuit, named the main power conditioning 
module (PCM). All the experiments are conducted on a 
computer with Intel Core i5-8400, 16 GB RAM, and simulated 
on MATLAB R2019a and Python 3.7.1 using the package 
“TensorFlow”. Firstly, the degradation process of the PCM is 
described, ensued by the experimental settings of the  
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Fig. 2 Diagram of LSTM memory cell structure 

framework. Then, assessment results are shown and discussed 
in the following section. 

A. Description of the PCM Degradation 

1) Backgrounds of The Main Power Conditioning Module 

The MJ-level PCM, as presented in Fig. 4(a), is an 
indispensable power component of the SG-III energy facility, 
which is a prototype of the Chinese ignition project. Fig. 4(c) 
shows the framework of the facility. As the energy supply 
system of the facility is integrated, vast, and under 
comprehensive inspections, it is almost impossible for us to dive 
into the system and do some field studies, not to mention 
invasive experiments. Therefore, the degradation experiments 
are conducted via simulations. 

Two sub circuits constitute the PCM. First, the main circuit 
comprises ten damping elements, each of which includes a 
resistor, inductor, and a capacitor with the respective values of 
R1−k1, L1−k1, and C1−k1.（k1 denotes the number of the damping 
element.）Then, in the pre circuit, there are capacitor C2-1, 
inductor L2-1, and resistor R2-1. It is worth mentioning that for 
the output part of the circuit, there are ten ballast inductors, i.e., 
L3-1~L3-10, and the relationship between the voltage and current 
of an emitting element is I UK . Additionally, the stimulated 
charging voltages of the pre and main power supply are 12 kV 
and 23 kV, respectively. Besides, the 2nd Sensor within the pre 
circuit monitors the voltage, the 1st and 3rd Sensor are used to 
formulate the current waveform. 

There is a lag of 130 μs between the trigger time of the 1st 
switch and 2nd switch. Specifically, after the main capacitors are 
discharged, the power flow would offer a high voltage power 
flow for the emitting elements with a duration of 480~930μs. As 
a result, it is evident in Fig. 4(b) that two discharge periods are 
separate, which prompts us to analyze them separately. The 
circuit characteristics are specified in Table 2. 

 

Table. 2 The circuit characteristics 

Description Set Value 

The stimulated charging voltage of the 
main circuit 23kV 

The power flow duration of the emitting 
element 480~930μs 

The current power flow duration of the 
main circuit 460×(1±10%)μs 

Maximum stored energy 1.2MJ 
Energy transfer efficiency ≥80% 
The stimulated voltage of the pre circuit 12kV 
The pulse width of the pre-operation 110~230μs 
The current power flow duration of the 
pre-operation 130×(1±10%)μs 
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Fig. 4 (a) A diagram of the circuit, (b)  A discharging voltage curve, (c) 
A bird’s-eye view of the SG-III facility. 

 

Table. 3 Illustration of time-domain features 
No. Features No. Features 
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where ts  is the value for the tth time point, N denotes the total number of the 
sample, and they can be categorized into 2 groups: tf1- tf3 denote the energy and 
cumulative impacts of the signals. For tf4- tf10, they are the instances of 
statistical distribution. 

2) Degradation Settings 

a) Time-domain Feature Extraction 

Time-domain features have already been applied in the 
realm of PHM [23] and proven potent. In this regard, to fully 
grasp the status of the degradation, ten time-domain [24] 
features presented in  

Table. 3 are chosen. 

b) Parameter Setting 

It is considered that the circuit starts a degradation when the 
values of the critical electric components exceed beyond their 
tolerance range, i.e., ± 10% deviation from an element’s 
nominal value [25], and reaches a complete failure once they go 
beyond the threshold, which is 60% deviation from its nominal 
value.  

Since the probability for a single-component fault to happen 
is much higher than that for a multiple-component fault. Only 
different single-component faults are considered in this study. 

Based on the degradation characteristics, it is assumed that 
the value of each selected element decreases directly and 
linearly. In this way, the value of the boundary is given as 
follow: 

Valueft_up  = (1- 60%) Valuen= 0.4 Valuen                       (5) 
Valueft_low= (1- 10%) Valuen= 0.9 Valuen                       (6) 

where Valueft_up refers to the upper limit value of the fault 
component, Valueft_low refers to the lower limit value of the fault 
component, and Valuen denotes the nominal value of that 
element. 

 Furthermore, if the overall number of time cycles, namely 
Cycled, is decided, the stride value (Valuestride) could be 
formulated as follow: 

n ft
stride

d

Value -ValueValue
Cycle

                          (7) 

Simulations with a Cycled of 100 to 200 are conducted in the 
hope of emulating as many disparate scenarios as possible.  

Table. 4 The Degradation Parameter Values  

No. Element Cycled Valuen Valueft_up Valueft_low Valuestride 

1 K1−k*↓ 100~200 94.48 37.792 85.032 0.283~0.567 

2 L1−k*↓ 100~200 140µH 56µH 126µH 0.42µH~0.82µH 

3 L2−1↓ 100~200 100µH 40µH 90µH 0.3µH~0.6µH 

4 L3−k*↓ 100~200 30µH 12µF 27µF 90pH~180pH 

5 C1−i*↓ 100~200 87µF 34.8µF 78.3µF 261pF~522pF 

6 C2−1↓ 100~200 14µF 5.6µF 12.6µF 42pF~84pF 
1 * k = 1,2,3,...,10. refers to the number of the element.  
2↓ symbolizes a decrease in the values of the corresponding circuit element. 

Besides, white Gaussian noise with a signal to noise ratio (SNR) 
of 40 dB is added in the raw signal to reflect the natural 
variations in parameters. In detail, Table 4 presents the 
degradation parameter settings. 

According to the discussions above, the curves of the main 
and the sub charge circuit follow different patterns. Thus, the 
monitored data for every discharge period is divided into two 
segments to analyze two periods independently. As a result, 60 
time-domain features are obtained. (Note that there are three 
sensors in the circuit.) For the proposed framework, a total of 
156 samples are randomly divided into training and test groups 
with 109 and 47 specimens, respectively. 

Additionally, a min-max strategy is used to normalize the 
extracted features, which assures the normalized features to 
distribute from -1 to 1, i.e., 

min2 1
max min

i i
i

i i


 



x x
x

x x

                        (8) 

where xi is the time series of the ith sample, and ix  is the 
normalized time series. 

c) HI Construction 

Simply, the extracted temporal features cannot manifest the 
health state of the analog circuit themselves. Therefore, the 
revised angular distance is used to quantify the difference 
between the operation state and the original healthy state, 
aiming at constructing the HI, which is an indicator of the 
circuit’s health state. In other words, the HI is the angular 
distance of two state vectors. 

Take two vectors as instances, x1=(x
(1) 

1 , x
(2) 

1 ,…, x
(n) 

1 ), which 
denotes the signal vector of healthy state, x2=(x(1) 

2 , x(2) 
2 ,…, x(n) 

2 ), 
the revised angular distance is presented as follow: 

 

1 2
1 2

2 2( ) ( )
1 2

1 1

1dis( , ) 1 arccos
n n

k k

k k



 


  

       

x x
x x

x x
         

(9)  

It is worth noting that the distance distributes between [0,1], 
consistent with the expected system health state. 

B. Health State Estimation 

1) Assessment Metrics 

Two well-known metrics in PHM studies, i.e., scoring 
function and root mean squared error (RMSE), formulated by 
(10) and (11), respectively, are used in this study to evaluate the 
performance of the proposed method. 

       2

1

1 N

i

i

RMSE e
N 

 
                                 (10) 

where N is the total number of the samples, and i iHI -HIie  , i.e., 
the predicted error for the ith sample. 

1

N

i

i

g g


 , where
exp( ) 1, for 0,

13

exp( ) 1, for 0.
10

i
i

i

i
i

e
e

g
e

e


  

 
  
        

(11)

 
where g and gi denote the sum of the score and the score of the ith 
sample. 
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2) The HI Prediction Results 

Fig. 5 shows the estimation results of the proposed method 
for the degradation of PCM. The sharp decline in the beginning 
stage could be ascribed to the transition state of the component 
when a test began. Also, it can be observed in Fig. 5 that the 
predicted results could not track the curve of the test sample 
with 100% accuracy, and the failure inception prognostics are 
not perfectly matched with the original ones. However, the gaps 
between the calculated HIs and the predicted results are 
acceptable. For example, in No.106 Test, the predicted failure 
inception is Cycle 17, while the actual one is Cycle 20. 
Therefore, the prediction error, in this case, is 3 Cycles, which is 
relatively small compared with the range of the degradation 
simulation cycles. Additionally, two curves all follow the 
similar degradation trends, meaning that the proposed method 
could track the health state curve of the PCM effectively. It is 
also worth noting that the endpoints of the two curves are quite 
close, indicating the superiority of the study from another 
perspective. 

Besides, the comparison between existing works, which is 
presented in Table. 5, indicates that the CAE-LSTM method 
outperforms other extant methodologies in terms of both the 
RMSE and the score. Specifically, consider deep CNN [24], the 
RMSE of the proposed method is approximately half of the deep 
CNN, while the score of the CAE-LSTM is lower than that of 
the CNN by 55%. The satisfactory achievements that the 
method yields are possibly attributed to the combination of CAE 
and LSTM. Because the CAE is specialized in feature 
extraction to project the simple input into a higher-order space, 
whereas the LSTM-RNN is more experienced in time-series 
analysis to find the relationship within the discrete while inner 
connected time points. Therefore, the fused network can exploit 
the advantages of the two kinds of networks and circumvent 
some disadvantages. Besides, the results confirm the 
effectiveness of using such a framework to prognosticate the 
health state of the analog circuit. 

IV. CONCLUSIONS 
In this paper, a novel data-driven PHM approach based on 

CAE and LSTM is proposed for a practical circuit, the PCM. 
The study aims to achieve high predictive accuracy and put the 
method into industry applications. In addition, angular distance 
is applied in this study to quantify the health state of the system. 
The CAE-LSTM method is verified through the degradation test 
of the PCM. Comparisons between the proposed method and 
other popular methods prove that the method is superior 
regarding RMSE and the utilized score function. 

The contributions of the paper can be summarized as 
follows: 

1) A comprehensive degradation framework for a real 
analog circuit, PCM, is established using angular distance. 
   2) The integrated deep neural network, namely, 
CAE-LSTM, is built and utilized for prognostics. Also, the 
experimental results lend support to its effectiveness. 

Future research lies in the following orientation: the 
integration of neural networks other than CNN, and the 
integration of other optimization algorithms for better 
performance.                                                                                                                                                          
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Fig. 5 HI estimation results for PCM. (a) No.31 Test, (b) No.62 
Test, (c) No.81 Test, (d) No.106 Test 

Table. 5 Comparison between existing works 

Methodologies RMSE Score 

CAE-LSTM 0.057 17.10 

Deep CNN [26] 0.103 26.43 

LSTM [27] 0.083 18.65 

Support Vector Machine [28] 0.193 98.63 
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