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Abstract—We investigate the derivation of option pricing 

involving several assets following the Geometric Brownian 

Motion (GBM). First, we propose some derivations based on the 

basic ideas of the assets. Next, we consider the trivial case where 

we have n assets. Finally, we consider different drifts, volatilities 

and Wiener processes but now from n stochastic assets taking into 

account a fixed-income. 
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I. INTRODUCTION 

PTION pricing is one of the mathematical processes in 
the financial market that has been utilized in the 

investment analysis. Derivative is a financial security that has 
the prices based on the other underlying assets; consequently, 
the mathematical approach of option pricing derivation can be 
applied in many perspectives. Option is one of the derivatives 
that the researchers have been investigating as an approach of 
evaluation. Fisher Black and Myron Scholes have proposed a 
new aspect of derivative pricing in 1973 [1]. This well-known 
Black-Scholes equation with Geometric Brownian Motion 
(GBM) has altered the way researchers view derivative-pricing 
both in terms of practice and theory [2]. Subsequently, the 
Black-Scholes equation has been applied to European option 
pricing by considering some essential variables such as stock 
price, strike price, interest rate and maturity time [3]. 

The derivations of Black-Scholes equation have been 
discussed for decades by many researchers. As a result, Robert 
Merton proposed the model extension for Black-Scholes 
equation which has taken into account the dividend yield as a 
factor for the mathematical model. In this way, the option 
 

This work was financially supported by Mahidol University and the Centre 
of Excellence in Mathematics, CHE, Thailand.  

N. Phewchean is with the Department of Mathematics, Faculty of Science, 
Mahidol University, Rama 6 Rd., Bangkok 10400, Thailand and is with the 
Centre of Excellence in Mathematics, PERDO, Thailand. (e-mail: 
nattakorn.phe@mahidol.ac.th).  

R. Costa was with the Department of Mathematics, Faculty of Science, 
Mahidol University, Rama 6 Rd., Bangkok 10400, Thailand. (e-mail: 
noldo22@gmail.com). 

M. Misiran. is with the School of Quantitative Sciences, UUM College of 
Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah 
Darul Aman, Malaysia (e-mail: masnita.misiran@gmail.com). 

Y. Lenbury is with the Department of Mathematics, Faculty of Science, 
Mahidol University, Rama 6 Rd., Bangkok 10400, Thailand and is with the 
Centre of Excellence in Mathematics, PERDO, Thailand. (corresponding 
author phone: (662) 201-5448; e-mail: yongwimon.len@mahidol.ac.th). 

pricing model has been improved, providing more accurate 
results for investors. The different ways to derive the Black-
Scholes formula lead to different types of actual practices, for 
instance by replicating the option with underlying bonds or 
stocks. Consequently, many alternative derivations of the 
Black-Sholes-Merton model have been proposed in research 
works such as derivations that apply the capital asset pricing 
model (CAPM), arbitrage pricing or risk neutral pricing 
method [4-6]. 
In order to have the best practice of the Black-Scholes-Merton 
equation, understanding of how to derive the Black-Scholes-
Merton equation in various perspectives is critical. In this 
paper, we propose some different perspectives of the Black-
Scholes-Merton model derivation. We investigate the pricing 
of Options formula involving several assets following the 
Geometric Brownian Motion (GBM). Firstly, we propose 
some derivations based on the basic ideas of the assets. 
Secondly, we consider the trivial case where we have n assets. 
Finally, we consider the model derivation taking into account 
the dividend yield. Specifically, the aim of this research is 
to propose the Black-Scholes-Merton equation with n 
stochastic assets and Black-Scholes-Merton model with 
the proposed extension of n stochastic assets perspective 
with fixed income. 

II. FORMULA BACKGROUND 
The central idea is that the Black-Scholes model may be 
derived by understanding the basic concept of replicating 
portfolio by considering a bond and a stock. It can be shown 
that the returns of this replicating portfolio are equivalent to 
the option payoffs. However, by having the Black-Scholes 
equation, some big assumptions are required for the option 
pricing model derivation such as: 

1. There is no arbitrage opportunity.  
2. There is a constant risk-free interest rate. 
3. Short selling allowance is included. 
4. Efficient market is assumed. 
5. A geometric Brownian motion is assumed. 
6. There are no dividends. 

The derivation of the Black-Scholes model can be carried out 
by the basic concept of investment such as the change of 
investment value in a very tiny time interval can be compared 
to the return value of the investment during that short time. 
Thus, it can be implied mathematically that 
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dV rVdt                                                                           (1) 

which is  

dV
rdt

V
                                                                            (2)      

where V is the amount of investment and r is the rate of return. 
By letting M lnV and inserting the stochastic term of 

 tdW t  , we have the following stochastic differential 
equation 

 dM rdt tdW t                                                          (3) 

where  is volatility and  W t is the Wiener process. The 
mean and standard deviation of a stochastic term of 

 tdW t   are zero and t  respectively. In this case of 
general replication, we can derive the Black-Scholes model by 
applying Ito’s lemma and Taylor’s theorem. Now, if we 
consider the portfolio that is represented by the bond  B t  

and the stock  S t then the option of  (t),P S t can be priced 
by the models of this portfolio. From (2), we can write 

 

 
.

dB t
rdt

B t
                                                                          (4)      

The stock change, derived in the same way as (3), is 

       .dS t S t dt S t dW t                                            (5) 

Then, the option price,  (t),P S t , which depends on the stock 

value ( )S t , by this method can be derived as 

( ( ), ) ( ( ( ), ) ( ( ), ) ( )t SdP S t t P S t t P S t t S t       

2 21 ( ) ( (t), ) )
2 SSS t P S t dt ( ( ), ) ( ) ( ).SP S t t S t dW t             (6) 

This can lead to the way option pricing is done by having the 
Black-Scholes formula.  In fact, there are various methods to 
derive the Black-Scholes equation. With this method, by 
assuming self-financing with the basic concept of portfolio 
replication, the option is replicated by bonds and stocks. By 
different perspective of derivation, the option pricing can be 
obtained by the different aspects of data such as the way to 
replicate the bond with option and stock instead or to replicate 
the stock with option and bond. In such a way, the Black-
Scholes model can be derived [5]. 

III. N STOCHASTIC ASSETS 
Specifically, in this work, a generalization of Black-Scholes 

model derivation is proposed under the extension of n 
stochastic assets perspective. By this concept, the derivative 
price depends on the n uncorrelated underlying assets such as 
commodities, bonds, stocks, currencies, and so on. In reality, 
these assets can be continued as both deterministic and 
stochastic assets. However, in this paper, we suppose that a 

risk-free bond (t)B  is deterministic and the other assets  iS t  
are stochastic assets with the Wiener process. Since the 
derivative price can depend on various types of assets, it can 
be shown mathematically that 

         1 1 2 2 3 3,P S t t x S t x S t x S t                    

   n nx S t yB t                                                                  (7) 

where
ix  and y  are the unit numbers of assets. Next, we 

obtain 

         1 1 2 2 3 3,dP S t t x dS t x dS t x dS t  

   .n nx dS t ydB t                                                  (8) 

Again, from the basic idea of portfolio replication, we assume 
that a bond is the asset that can be defined as  

    .dB t rB t dt                                                                   (9)      

Thus, from (5), we have 

 

 
 .i

i i i

i

dS t
dt dW t

S t
                                                    (10) 

Substituting (9) and (10) into (8), one has 

         1 1 1 1 1, idP S t t x S t dt S t dW t            

      2 2 2 2 2 2x S t dt S t dW t        

      3 3 3 3 3 3x S t dt S t dW t           

        n n n n n nx S t dt S t dW t yrB t dt                          (11)      

Rearranging (11), we have 

       1 1 1 2 2 2,dP S t t x S t x S t  

     3 3 3 n n nx S t x S t dt yrB t dt   

        1 1 1 1 2 2 2 2x S t dW t x S t dW t 

       3 3 3 3 n n n nx S t dW t x S t dW t                             (12) 

By applying Ito’s lemma, we also obtain 

1
( ( ), ) ( ) ( ( ), )

i

n

i i S

i

dP S t t S t P S t t dt


         

2 2

1

1 ( ) ( ( ), ) ( ( ), )
2 i i

n

i i S S t

i

S t P S t t dt P S t t dt


 
  

 


      
1

, .
i

n

i i S i

i

S t P S t t dW t


                                          (13) 

By setting (12) equal to (13), we thus have 
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      1 1 1 2 2 2 3 3 3x S t x S t x S t    

        
1

,
i

n

n n n i i S

i

x S t yrB t S t P S t t 


     

       
22

1

1 , , .
2 i i

n

i i S S t

i

S t P S t t P S t t


 
  

 
                   (14) 

 

Also, we have 

       1 1 1 2 2 2 2ix S t dW t x S t dW t 

       3 3 3 3 n n n nx S t dW t x S t dW t  

      
1

,
i

n

i i S i

i

S t P S t t dW t


                                          (15) 

This yields 

  , .
ii Sx P S t t                                                                  (16) 

From (16), equation (7) becomes 

         
1

, ,
i

n

i S

i

P S t t S t P S t t yB t


                           (17)   

By rearranging, we obtain  yB t as        

         
1

, ,
i

n

i S

i

yB t P S t t S t P S t t


                            (18)   

From (16) and (18), the equation (14) becomes 

       
1

, ,
i

n

i i S

i

S t P S t t rP S t t


   

    
1

,
i

n

i S

i

rS t P S t t


        
1

,
i

n

i i S

i

S t P S t t


   

       
22

1

1 ,    , .
2 i i

n

i i S S t

i

S t P S t t P S t t


 
  

 
                    (19) 

From (19), simplifying leads us to the final equation of 

       
1

, ,
i

n

t i S

i

P S t t rS t P S t t


   

       
22

1

1, , 0
2 i i

n

i i S S

i

rP S t t S t P S t t


 
   

 
                (20) 

The equation (20) is the Black-Scholes equation with the 
extension to n stochastic assets perspective. It can be seen that 
the equation is similar to the original Black-Scholes model; 
however, the extended Black-Scholes equation that we mainly 
propose in this paper is the generalization of assets replication 
which releases the limitation of the number of assets. Thus, 
this proposed model of the Black-Scholes equation with n 
assets can provide the flexibility for investors in their 
calculations. 

IV. N STOCHASTIC ASSETS WITH FIXED-INCOME 
 From the classic model of Black-Scholes, many researchers 
have developed new option pricing models. The most 
important extended model of Black-Scholes is the Black-
Scholes-Merton model that utilizes the dividend factor with the 
original model [3, 4]. The very first extended model of Black-
Scholes is derived by taking into account constant dividend. 
Consequently, in this paper, we apply the classical idea of 
option pricing model including constant dividend yield but 
with our proposed model of n uncorrelated stochastic assets. In 
this case, we let iF  represent a fixed income rate, such as 
dividend yield for the asset i in our proposed model. Thus, we 
derive the Black-Scholes-Merton model under n stochastic 
assets with fixed income by proceeding with the same method 
as in the previous section. As a result, we still have 
 

         1 1 2 2 3 3,P S t t x S t x S t x S t       

   n nx S t yB t                                                                (21) 

where
ix  and y  are the unit numbers of assets.  

We obtain 

         1 1 2 2 3 3,dP S t t x dS t x dS t x dS t    

   .n nx dS t ydB t                                                           (22) 

and the same equation for bonds 

    .dB t rB t dt                                                                 (23)      

We can notice that (21) - (23) have no relation to fixed 
income. However, by considering iF , (10) becomes  
 

 

 
 ( ) .

dS t
i F dt dW t

i i i iS t
i

                                           (24) 

Now, we Substitute (23) and (24) into (22) to obtain 

        1 1 1 1 1 1, ( ) idP S t t x F S t dt S t dW t   

      2 2 2 2 2 2 2( )x F S t dt S t dW t   

      3 3 3 3 3 3 3)x F S t dt S t dW t    

      )n n n n n n nx F S t dt S t dW t      

 yrB t dt                                                                           (25) 

Rearrange (25), we get 

       1 1 1 1 2 2 2 2, ( ) ( )dP S t t x F S t x F S t    

   3 3 3 3( ) ( )n n n nx F S t x F S t dt      yrB t dt

        1 1 1 1 2 2 2 2x S t dW t x S t dW t  

       3 3 3 3 n n n nx S t dW t x S t dW t                         (26) 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.106 Volume 14, 2020

ISSN: 1998-4464 823



 

 

Thus, by applying Ito’s lemma and Taylor’s theorem, we also 
obtain the following result for   ,dP S t t . 

       
1

, ,
i

n

i i S

i

dP S t t S t P S t t dt


   

       
22

1

1 , ,
2 i i

n

i i S S t

i

S t P S t t dt P S t t dt


 
  

 


      
1

,
i

n

i i S i

i

S t P S t t dW t


                                         (27) 

Since (26) is equal to (27), we obtain 

    1 1 1 1 2 2 2 2( ) ( )x F S t x F S t   

   3 3 3 3( ) ( )n n n nx F S t x F S t    

    
1

( ) ,
i

n

i i S

i

yrB t S t P S t t


    

       
22

1

1 , ,   
2 i i

n

i i S S t

i

S t P S t t P S t t


 
  

 
                         (28) 

with the condition 

       1 1 1 2 2 2 2ix S t dW t x S t dW t 

       3 3 3 3 n n n nx S t dW t x S t dW t  

      
1

, .
i

n

i i S i

i

S t P S t t dW t


  
                                       (29) 

From (29), we obtain                 

  , .
ii Sx P S t t                                                                  (30) 

From (30), equation (7) becomes 

         
1

, ,
i

n

i S

i

P S t t S t P S t t yB t


                           (31)   

Then, we have        

         
1

, ,
i

n

i S

i

yB t P S t t S t P S t t


                            (32)   

From (30) and (32), the equation (28) becomes 

       
1

( ) , ,
i

n

i i i S

i

F S t P S t t rP S t t


   

         
1 1

, ,
i i

n n

i S i i S

i i

rS t P S t t S t P S t t
 

        

       
22

1

1 , , .
2 i i

n

i i S S t

i

S t P S t t P S t t


 
  

 
                      (33) 

By simplification, we have         

         
1

, ,
i

n

t i i S

i

P S t t r F S t P S t t


   

       
22

1

1, , 0
2 i i

n

i i S S

i

rP S t t S t P S t t


 
   

 
                     (34) 

In (33) and (34), we have derived an extended model of Black-
Scholes-Merton’s with n stochastic assets and fixed income. In 
comparison, the equation (34), being the Black-Scholes-
Merton model with the proposed extension of n stochastic 
assets perspective with fixed income, is very similar to the 
original Black-Scholes-Merton equation but incorporates the n 
stochastic assets assumption. This extension may lead to more 
general applications based on the assumption of uncorrelated 
assets. 

V.  APPLICATIONS 
The proposed models in this paper represent another aspect 

in the derivation of Black-Scholes-Merton model taking into 
account n stochastic assets as well as Black-Scholes-Merton 
model under the environment of n stochastic assets with fixed 
income such as dividend yield. In the real world application, 
these extended models significantly affect to the actual 
investment calculations and financial analyses. Both the 
classical Black-Scholes model without dividend yield factor, 
and the well-known Black-Scholes-Merton model with 
dividend yield are the outstanding tools that can help investors 
to accurately estimate the value of derivative pricing based on 
one underlying asset. As a simple example, the investor can 
calculate the fair value of an option by using the information 
of underlying stocks. Nevertheless, in some other situations, 
there might be some financial unit prices that rely on more 
than one asset. For example, sometimes the value of a business 
may be mathematically valuated by cash plus real estate value 
and both cash and real estates are certainly based on bonds or 
interest rates. In this case, if you are an investor, you need to 
analyze deeply into the fair value of the business. The 
proposed Black-Scholes-Merton model with n stochastic assets 
may help to satisfy the needs of this investor. Another example 
of applications is in the valuation of current insurance needs. 
Usually, the basic way to calculate insurance needs is to find 
the difference between the present value of the required capital 
and the current assets value. Analytically, our proposed 
formulations of the Black-Scholes-Merton model with n 
stochastic assets with dividend could potentially help in 
making a decision to finalize the number of insurance needs, 
since the required capital and current assets value should be 
calculated by having more than one asset and some assets have 
dividend returns. Thus, in conclusion, our proposed model can 
be applied in various ways depending on the suitability of the 
situation. 

VI. CONCLUSION 
We have discussed the derivation of the Black-Scholes 

model without dividend yield consideration and also the 
Black-Scholes-Merton model with the dividend yield factor. 
Both models can be derived by the method of portfolio 
replication. In this paper, we propose both of the Black-
Scholes model and the Black-Scholes-Merton model under the 
environment of n underlying stochastic assets following the 
Geometric Brownian Motion. Finally, we extend the model by 
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taking into account the fixed income. In this way, the Black-
Scholes-Merton model can be applied in some more 
complicated situations such as a situation that an option 
pricing depends on many stochastic assets with fixed 
dividend. This implies that in future work, in order to develop 
extensions of the model for more varied cases, the stochastic 
parameters should be investigated such as stochastic dividends 
or stochastic volatility. 
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