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Abstract— Pattern Recognition and Classification is 

considered one of the most promising applications in the 

scientific field of Artificial Neural Networks (ANN). 

However, regardless of the vast scientific advances in 

almost every aspect of the technology and mathematics, 

neural networks still need to be fairly large and complex 

(i.e., deep), in order to provide robust results. In this 

article, we propose a novel ANN architecture approach 

that aims to combine two fairly small Neural Networks 

based on an introduced probability term of correct 

classification. Additionally, we present a second ANN, 

used to reclassify the potentially incorrect results by using 

the most probable error-free results as additional training 

data with the predicted labels. The proposed method 

achieves a rapid decrease in the mean square error 

compared to other large and complex ANN architectures 

with a similar execution time. Our approach demonstrates 

increased effectiveness when applied to various databases, 

related to wine, iris, the Modified National Institute of 

Standards and Technology (MNIST) database, the 

Canadian Institute for Advanced Research (Cifar32), and 

Fashion MNIST classification problems. 

 

Keywords— pattern recognition, artificial intelligence, 

classification techniques, Machine learning complexity 

optimization, time reduction.  

I. INTRODUCTION 
ATA classification is frequently performed by Artificial 
Neural Networks (ANN) like [1], [2], [3] consisting of a 

 

number of nodes, termed neurons. These neurons are 
organized in layers. This first layer is the input layer, the last 
layer is the output layer, while the middle layers are termed 
hidden layers. In a feed-forward ANN, the output of each 
neuron is calculated by a weighted combination of the outputs 
of the neurons of the previous layer. This output is also 
passed through a non-linear function, called the activation 
function. The weights of these neurons are estimated by 
minimizing the mean square error between the ANN’s 
outputs to set input-output pairs (training data). This 
procedure is also known as back propagation and is usually 
performed by iterative batch optimization, by iterating over 
the training data multiple times, called epochs, until the error 
is minimized. This is the training phase of the network. By 
quantizing the ANN’s output to highlight the output neuron 
with greatest value as ones and the rest as zeros, we can use 
ANNs to perform classification [4]. In the testing phase, the 
trained ANN is used to classify new, never seen, samples [5]. 
Novel cost functions (i.e. cross-entropy) and activation 
functions like Rectified Linear Unit (ReLU) have been 
recently proposed to facilitate the training of deeper networks 
[6], [7], and [8].  

 Historically, classification accuracy mainly depends on 
the size of the Neural Network, and the number of epochs of 
network training. More specifically, choosing a small number 
of layers/neurons may not provide the network with the 
required degrees of freedom to discriminate between the 
various data classes in complex classification problems. In 
contrast, a larger number of layers/neurons may lead the 
network to overfit. This article examines the classification 
accuracy of an Artificial Neural Network (ANN) architecture 
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that uses two smaller ANN for probabilistic fast training to 
benchmark the properties of an ANN [9]. Recent advances in 
the field shift their efforts into applying probabilistic neural 
networks with deep learning techniques to education [10], 
medicine [11,12], image recognition [13], power cost [14], 
and real life applications like autonomous driving [15], 
memristors [16], electrical machines [17], and crowd 
monitoring [18].  

 Our ANN’s method takes inspiration from these types of 
ANNs but, the technical novelty of our architecture is that we 
use the probability to evaluate the outcome of the system. This 
means that to achieve a high accuracy rate, during each 
batch, an algorithm must evaluate an ANN’s output, and 
instantly recognize potential misclassifications. Many 
researchers have focused their efforts on result evaluation in 
correlation with ANNs’ performance such as hyperparameter 
tuning [19] and changing statistics [20]. Furthermore, as 
most ANNs’ input datasets are usually continuous data 
streams many scientists have researched extensible multiple 
parallel predictions ANNs for raw data streams [21]. 
Analytically, for an ANN to make multiple predictions on the 
fly, it must be capable of evaluating the likelihood of each 
prediction through a distribution of possible future outcomes 
[22]. The first ANNs to use this approach were hidden 
Markov models [23], deep learning generative models [24], 
and Autoregressive Integrated Moving Average forecasting 
methods [25]. In more recent studies like in [26], researchers 
study short term forecasting optimization of weight 
parameters by using complex ANN architectures such as 
multi-layer feed-forward network and recurrent networks.  
 Similarly, our study focuses on reducing the computational 
and memory cost of neural network topologies, like in [27]. 
Specifically, this is achieved by using traditional ANN 
models and activation functions but by introducing a novel 
ANN architecture that evaluates the ANN output using a 
probabilistic algorithmic approach. Our architecture, except 
for minimizing the ANN’s memory requirements [28], it sets 
a trade-off between preserving the ANN’s accuracy ratio and 
optimizing the system’s performance. Lastly, in the next 
sections, we present the aims of this study, the test/training 
phases of our experiments, and the proposed algorithm for 
ANN optimization. 

II. AIMS AND OBJECTIVES 
 In [29], Bishop mentions that classification errors occur in 
the regions of parameter x space, where the largest of all 
posterior probabilities of sample x belonging to the k-th class 
Ck is relatively low. The main reason for this phenomenon is 
that there is a strong overlap between different classes. In 
several applications, it might be better not to make a 
classification decision in such cases. This technique is called 
reject option, where the rejected samples are classified by a 
human expert instead. The reject-option technique can be 
described by the following algorithm: 

    ,    ,    | )k kif max P C x then classify x else reject x  (1)  

where Θ defines a rejection threshold. 
 The larger the value of Θ, the fewer points will be 
classified by the ANN and will need to be labelled by a 
human expert. However, the current explosion of available 
information and unlabeled data renders human intervention 
an unviable option. In addition, an automated definition of Θ, 
based on the given dataset, will also be required. 
 In this article, we propose a direct extension of the reject 
option-idea, where no human intervention will be needed to 
classify the rejected data. Instead, another ANN, trained 
using the successfully trained samples of the first ANN, will 
take on the role of the human expert and will reclassify the 
rejected data. More specifically, we propose to improve the 
performance of traditional ANN architectures, by adding a 
probability term that evaluates the classification results, 
dividing the dataset into possibly correct and incorrect data.  
 The “correctly” classified data are determined by the 
probability function, and by using the corresponding 
predicted labels, are selected to exist alongside the original 
dataset to perform a second round of training of another 
ANN. The outcome is that if “incorrect” results occur, these 
are reclassified by the second ANN thus providing dynamic 
feedback to the proposed system. 

 The proposed scheme features improved performance 
compared to the original architecture, without the extra 
computational cost of larger architectures. In the following 
section, we will analyze the proposed approach. Objective 

 

 
Fig. 1 The proposed ANN architecture, consisting of two ANNs 

connected back to back 
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evaluation for each of the tested datasets indicated an 
improvement offered to the original architecture with 
minimal computational cost.  

III. THE PROPOSED ALGORITHM 
The concept presented aims at increasing the classification 

performance of common ANN architectures (deep or shallow) 
using a simple strategy. The proposed probabilistic fast 
cascade training consists of two ANN connected back to back, 
sharing input data. The second ANN has extra training inputs 
those testing samples that achieved high probability of correct 
classification. Thus, the second ANN aims at reclassifying 
only the most-likely wrong results of the first ANN, while 
leaving the correctly classified data unchanged. 

All experiments conducted were developed using 
MATLAB’s Neural Network toolbox and specifically Deep 
Learning toolbox that provides a framework for designing, 
analyzing, and implementing deep neural networks with 
algorithms, pre-trained models, and applications [30]. 
Additionally, the production code of the ANN proposed was 
also written in Python mainly consuming Keras, a deep 
learning application protocol interface (API) used for 
machine learning and deep learning experimentation [31]. 

Lastly, the architecture of our ANN is shown in Figure 1 
where the red lines indicate results or data points that are 
transferred from the first network to the second. Let us 
examine this architecture with more detail during the training 
and testing phase of the two networks.  

A. Training Phase 

At first, a feed-forward ANN is used to classify coarsely the 
test samples. This ANN is trained and evaluated as an 
independent neural network, using the training dataset that is 
available. This part is the common training any ANN 
architecture (deep or shallow) would require. The output of 
this ANN is Vest. This concludes the first part of the training. 

The second phase of the training would entail the training 
of a second neural network. A typical method would train the 
network using the training dataset. Using a combination of 
the two networks, we can employ more data for training the 
second ANN. We can use the first, coarse ANN, which has 
already been trained, to roughly classify the data from the 
testing dataset. Thus, we can use the data from the training 
dataset plus data from the testing dataset that have been 
correctly classified. 

To achieve this, we need a formula to compute the 
probability of correct classification. This is used to determine, 
whether the aforementioned classification is acceptable or 
not. In the positive case, they will be used as future training 
data, other- wise they will be reclassified again by the second 
ANN, once it is trained. The proposed correct classification 
probability formula is the following: 

  max 2 2)1 ) ((( ) i logsoftmaxp i e            (2) 

where i represents the index of each sample and softmaxmax 
represents the maximum activation of the last softmax neuron 
layer of the ANN.  

Since the final classification is usually based on softmax, 
the probability function must be equal to 0.5 in the middle of 
the two nearest classes. The aim of the function is to provide 
logarithmic 1-1 mapping in the interval [0.5, 1], whereas it is 
less strict in the interval [0, 0.5], where the samples are 
considered improperly classified anyway. 

The training of the first ANN is performed for a fixed 
number of epochs. After training of the first ANN, each 
testing sample is passed through the first ANN and is 
assigned a correct-classification probability, using (2). We use 
a threshold T1, as a probability defining similarity of 
classified samples to training data. The samples that possess a 
probability above this rather strict measure are considered 
almost equivalent to samples belonging to the training 
dataset. These are then used to train the neural network more 
efficiently. Afterwards, through a detailed grid search for all 
datasets in questions, we defined the threshold to be set at:  
   1  1  /classesT N k ScalingFuntcion            (3) 

where Nclasses is the number of classes in the classification task 
and kE[50,120] is a value determined by experimentation. 
The scaling function introduced derived from examination of 
various datasets of different size and shapes. The function is 
calculated as follows: 

    1  200 / 4000samplesScalingFunction N      (4) 

Where Nsamples is the number of samples in the Dataset. This 
threshold value is adaptive to each individual classification 
problem and has shown to work well in our experiments.  

B. Testing Phase 

The training set is augmented with the potentially correctly 
classified samples from the testing dataset and is ready to 
train the second ANN, which is randomly initialized. The 
second ANN is trained for a smaller number of epochs, 
compared to the first ANN, since the training dataset is 
augmented in this case. 

The samples that score a correct probability of over the 
upper limit, are used as a way to skew the training of the 
second neural network slightly. As the second neural network 
only activates when the test data are known, but certainly still 
unlabeled, we are allowed to use the information as training 
data, using the predicted labels of the first neural network. 
That way, only when the complete system is evaluated and 
the training phase is completed, the ground truth of the test 
data is presented. 

This method of enlarging the training dataset of our system 
is completely optional, as it produces a small but still 
noticeable increase in overall accuracy. The majority of the 
improvement however is from reevaluating the potentially 
wrong results of the first coarse neural network by the second 
stage. 
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Once the second ANN is trained, it is ready to reclassify 
the testing dataset or rather a subset of it. To reduce the 
computational cost, the second network is forced to re-classify 
only those testing samples that have scored a probability 
below a second threshold T2 by the first coarse ANN during 
the previous phase. The second threshold T2 is set at: 
  2   1  /10classesT q N ScalingFunction            (5) 

where qE [1, 2] is also determined by extensive testing. The 
remaining samples retain their original classification from the 
first coarse network. This second threshold is less strict and 
enables several samples to be reclassified, especially those 
who are not confidently attributed to any category or class. As 
a result, this has a positive effect on the proposed system’s 
performance and accuracy. 
  Additionally, we have decided to focus their experiments 
on a broad array of different datasets to provide more accurate 
results. Using exactly the same architecture for various 
datasets is not proposed as every problem has an appropriate 
ANN solution. Specifically, it is noted that the tests 
performed do not use exactly the same architecture per-se, as 
in each dataset different data cleansing and preparation 
techniques were used. The functions presented were 
thoroughly tested to perform optimally for all of the tested 
scenarios regardless of the small changes to the ANN.  
 Lastly, we clarify that regarding all the above-mentioned 
equations, the activation functions used to develop our ANN 
were the following:  

  
1

1 x
f x

e



 for softmax activation function   (6) 

       if  x 0
  if

0
  x 0max 0, xf x x 

    for ReLU function  (7) 

IV. BENEFITS OF THE PROPOSED SCHEME 
The proposed scheme features several benefits. Using the 

above method, the ANN reduces the chance to fall into local 
minima, due to the random initialization of the second ANN. 

At the same time, there exists minimal danger of discarding 
very good classification results, since these samples retain 
their classification in the second ANN. The second ANN with 
a random initialization offers a “fresh” look at the incorrectly 
classified testing data, with an augmented training dataset. 
Some testing samples that lie below threshold T1 and might 
be incorrectly classified are reclassified by the second 
network, using a less strict threshold T2. 

Equations (3) and (5), regarding thresholds T1 and T2 act 
effectively to encapsulate the notion of larger datasets 
containing a priori more information. As a result, the 
possibility of integrating potentially correctly classified 
samples as a way of enriching the training dataset is 
increased. Accordingly, the possibility of potential 
misclassifications is reduced proportionally to the total 
number of samples contained in the given dataset. 

Another advantage of the proposed scheme is that this 
concept can be used and can improve almost any ANN 
architecture, including deep architectures, such as 
convolutional neural networks and recurrent neural networks. 
The only extra computational cost entails the calculation 
probability of correct classification for each sample. Another 
advantage is that this approach can be applied only when 
needed to increase the classification performance of a given 
ANN. One can run the simple ANN, get coarse results very 
quickly, and improve these results only when needed or extra 
time is available. Probabilistic Cascade ANN can thus 
improve the performance on any problem while having the 
flexibility of not being computationally expensive compared 
to longer and deeper ANNs. 
 The most important advantage of the proposed twin ANN 
topology is the fact that similarly performing typical single-
ANN as presented in Figure 2 tend to be much more complex, 
requiring up to 4 times more trainable parameters. In fact, the 
twin ANN structure is more symbolic than real. That is to 
say, the first ANN can be discarded after performing the 
coarse classification. The second ANN will occupy the same 
memory allocation as the first one. The only extra 
computational cost are the first classification results and their 
evaluation as “correct” or “incorrect” classifications. These 
claims will be verified in the experimental section. 
Consequently, the proposed ANN structure generally leads to 
lower training time, smaller models, which can “fit” in 
smaller GPUs, thus being less computationally expensive. 
 Furthermore, this combination of two coarse - finer ANN 
may be regarded either as adding a post-processing step to a 
coarse ANN. The fine ANN can be considered as a post-
processing refinement to a simple-coarse ANN that is used to 
reclassify data that have been possibly incorrectly classified 
by the first network. Moreover, it is noted that the ANN 
proposed can be regarded as an expansion of the typical 
single ANN used providing similar and in many cases better 
output results. Finally, the suggested approach may also fall 
into the category of data distillation and augmentation 

 
Fig. 2 The architecture of a typical single ANN topology 
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approaches [31]. The difference is that here we use the testing 
dataset to augment the training dataset and thus improve the 
classification performance of any given ANN architecture. 

V. EXPERIMENTAL RESULTS 
In this section, we benchmark the proposed probabilistic 

two-stage ANN and compare its performance with a single- 
stage ANN. The datasets that will be used in our experiments 
are five popular datasets: the IRIS, MNIST, Wine, Fashion 
MNIST and Cifar32 datasets. These datasets are available on- 
line from the UC Irvine Machine Learning Repository 
[32].We create the training and testing datasets using the 
complete datasets in the following fashion. We randomly 
choose 70% of the total samples for training, while the 
remaining 30% are used as testing data. This procedure was 
conducted 20 times in random, thus creating 20 different data 
sets. These 20 different data sets were used by all competing 
ANN architectures.  
 In this experiment, we tested the performance of a single 
ANN against the proposed probabilistic cascade architecture, 
where the second ANN features the same architecture as the 
first one. For the Wine and IRIS dataset, we used a Fully- 
Connected Network (FCN) consisting of 2 hidden layers with 
20 neurons each. For the Fashion MNIST and MNIST 
datasets, we used a deep ANN, consisting of two 
convolutional layers and a FCN. The first convolutional layer 
consisted of 32 3 X 3 filters and a max- pooling layer. The 
second convolutional layer consisted of 64 3 X 3 layers and a 
max-pooling layer, while the FCN layer consisted of 128 
neurons. For the Cifar32 dataset, we used a deep ANN 
consisting of three convolutional and a fully-connected layer. 
The first convolutional layer consisted of 32 3 X 3 filters and 
a max-pooling layer. The second convolutional layer 
consisted of 64 3 X 3 layers and a max-pooling layer. The 
third convolutional layer consisted of 128 3 X 3 layers and a 
max-pooling layer, while the FCN layer consisted of 1024 
neurons.  
 All ANNs used the same training and optimization 
methods. The activation function for all hidden layer nodes 
was the ReLU and for the output layers was the softmax 
function. The network’s cost function was categorical cross-
entropy [33], which was then optimized via the Adam 
optimizer [34]. The training of each network was only 
terminated after a fixed number of epochs, in order to 
compare their time complexity. At the end of each ANN, an 
accuracy metric is calculated, based on the percentage of 
correctly classified samples, to the sum of the test data. The 
ANNs were implemented in Python using the Keras library.  
 Firstly, we conducted some experiments to identify optimal 
values for the parameters K and q in thresholds T1 and T2. 
For this purpose, we used the Wine dataset, but the 
conclusions hold for the other datasets as well. We set K=20 
and we estimated the average accuracy for 20 versions of the 
Wine dataset for various values of q. Some indicative results 

are shown in Table 1, where it is clear that a value of q=1.2 
yields the best results. Consequently, we set q=1.2 and we 
explore the average ac- curacy for various values of K. The 
indicative results of Table 2 recommend an optimal value of 
K=20. These values for q and K has shown to perform best at 
the other two datasets. 
 The next step was to evaluate the performance gain 
acquired by the proposed scheme, compared to the original 
ANN (Single ANN) that was designed to perform 
classification for each of the three datasets. Table 3 contains 
the average accuracy for the 20 versions for each of the three 
datasets. In the case of the IRIS dataset, the proposed 
approach yields an improvement of 4.66% in classification 
accuracy. In the case of the MNIST dataset, the proposed 
approach yields a slight improvement 0.57%. The small 
improvement is due to the fact that the single ANN for the 
MNIST dataset already performs very well, thus there is very 
little room for improvement. In the case of the Wine dataset, 
we get an improvement of 7.77%. In the case of the Cifar32 
and Fashion MNIST datasets, we get an improvement of 
3.82% and 6.08% respectively.  
 

Table 1. Average Classification Accuracy for various 
values of q and K=100 for the proposed ANN and the Wine 
Dataset. NA denotes that the network didn’t train.  

q 1 1.2 1.5 1.7 2 

Accuracy 94.4% 98.76% 95.67% 96.29% NA 

 

Table 2. Average Classification Accuracy for various 
values of K and q = 1.2 of the proposed ANN for the Wine 
Dataset. 

K 50 70 100 120 
Accuracy 96.29% 93.21% 98.76% 95.67% 

 
Table 3. Average Classification Accuracy for 20 random 

segmentations of the IRIS, MNIST, Wine, Cifar32 and 
Fashion MNIST Datasets. 

Datasets IRIS MNIST Wine Cifar32 Fashion 

MNIST 

Single  

ANN 
92.33% 96.34% 90.98% 71.1% 89.46% 

Proposed 

Topology 
96.99% 96.91% 98.76% 74.92% 95.54% 

  
 The Cifar32 Dataset’s complexity almost makes the use of 
a pre-trained model a necessity for good accuracy, which is 
out of scope of this research. In total, we get an average 
classification accuracy improvement of 4.582%. In essence, 
the proposed approach can boost the performance of ANN 
architectures and it seems to perform better when the original 
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ANN leaves enough room for performance improvement. 
 Another strong point of the proposed method emerges, 
when we compare the proposed network architecture with an 
equally performing larger ANN. One could easily register a 
strong difference in computational complexity between a 
single ANN and the proposed method for similar performance 
levels. To verify this, we used the Fashion MNIST dataset 
and a fully-connected network as a workbench. The proposed 
algorithm used two networks, featuring two hidden layers 
with 10 neurons each, both trained for 20 epochs. The 
proposed network featured the same, if not slightly better, 
accuracy compared to a two-layer network, with 35 neurons at 
each layer that was trained for 50 epochs. In summary, 
training twice 8,070 variables (i.e. 16,140 variables) for 20 
epochs with the use of the proposed topology, the 
performance is similar to training 27,475 variables for 50 
epochs, a rather much more computationally demanding task. 
Similar conclusions can be gathered from the other datasets, 
such as the Cifar dataset.  
 On the one hand, it is important to note that the simple 
ANN topology tries to model the given problem all in one go, 
no matter how difficult some training examples are to 
simulate/understand. On the other hand, the suggested 
topology models the majority of the training examples more 
coarsely, while the rest more “difficult” examples are 
modeled in a second neural network. This discrimination 
leads to overall better modeling of the problem as shown in 
the results of Table 4.  

 Additionally, it must be underlined that the single ANN 
topology aims to match the accuracy levels presented in 
Tables 1, 2, 3 and 4. Lastly, the architectural topologies of 
our test cases are presented in Figure 3 while the results of 
our experiments for each dataset are presented in Table 5. 
 

Table 4. Computational Requirements for equal 
performance to proposed topology results. 

Fashion MNIST Dataset 
Single ANN 27,475 variables 50 epochs 
Proposed 

Topology 
8,070 x2 variables 20 epochs 

                        Cifar Dataset 
Single ANN 19,016,778 variables 50 epochs 
Proposed 

Topology 
628,810 x2 variables 50 epochs 

 

Table 5. Statistical results of the tested topologies. 

Dataset 

ANN 

Comparison 

Mean  

Square 

 Error 

Categorical 

 Cross  

Entropy 

Cifar 

Typical   0,1550  1,3600 
Proposed   0,1280  1,2376 
Improvement 17,4193548 % 9,0000 % 

        

MNIST 

Typical  0,0482  0,3160 
Proposed   0,0329  0,1434 
Improvement 31,7427386 % 54,6202532 % 

        

Fashion 

MNIST 

Typical  0,0691  0,4080 
Proposed   0,0547  0,1799 
Improvement 20,8393632 % 55,9068627 % 

        

Wine 

Typical  0,0458  0,1640 
Proposed   0,0331  0,1170 
Improvement 27,7292576 % 28,6585366 % 

        

Iris 

Typical  0,1470  0,1543 
Proposed   0,1150  0,1299 
Improvement 21,7687075 % 15,8133506 % 

        
Overall Improvement 23 % 25,98 % 

VI. CONCLUSIONS 
In this paper, we propose a strategy to improve the 

performance of any ANN architecture. The original ANN 
architecture is used to classify the original testing data. A 
probabilistic evaluation of the accuracy of each classification 
is then performed. The most trustworthy classifications of the 
testing samples are augmenting the training set and are used 
to train a second version of the original ANN architecture 
with a random initialization. The second network then 
reclassifies the poorly classified samples, and the combination 
of the correctly classified samples from the first neural 

 
Fig. 3 The topology of the networks used in our test cases 
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network are combined with the newly classified samples from 
the second network. The result features improved 
classification accuracy compared to the original trained 
network as a single unit. 

This article shows merit as it proposes a novel ANN 
architecture approach that aims to combine two smaller 
classifications ANNs and create on the fly a new ANN that 
monitors and classifies incorrect results. The suggested 
approach uses several innovative ideas not particularly 
studied in the current bibliography like the use of connected 
back-to-back ANNs combined with other ANNs using 
cascade training.  Furthermore, we argue that the 
equalization factor in our experiments is accuracy’s level as it 
is a crucial factor to develop a fast but also reliable ANN 
model. 
 The proposed strategy has no limitation and thus can be 
used with any deep or shallow ANN architecture. Finally, it 
can boost performance without increasing the memory 
requirements of the network, which is extremely important 
for modern deep machine learning architectures. 

VII. FUTURE WORK 
The future work of this publication lies in the optimization 

of the ANN introduced which is a viable, fast, and 
computationally efficient method to boost classification 
performance in several neural network architectures. Firstly, 
a network topology optimization is currently under research, 
mainly focusing on machine learning as a mean to mine the 
input data. Secondly, we argue that after several experiments 
conducted, the aforementioned ANN topology could be 
expanded to more complex detests. For example, an idea for 
future research would be to use an ANN of similar size to 
study the optimization of algorithmic information theory 
axioms, such as the Solomonoff–Kolmogorov–Chaitin 
complexity. These types of algorithms simulate the Entropia 
(i.e. “randomness”) of a real-world dataset, i.e., short datasets 
characterized by random data samples and an unknown 
amount of noise [35].  We could apply these algorithms as a 
means to optimize the computational resources of the 
proposed ANN by examining different datasets. Moreover, 
with trial and error unsupervised learning, we could further 
tweak the probability prediction of our ANN to include more 
possible random states and avoid overfitting the tested 
dataset. 

Thirdly, we could create a new module to be added to 
MATLAB’s Deep Learning toolbox documentation. 
Specifically, we may write simple instructions on the 
variables and libraries used in our ANN code, create a new 
package in MATLAB, and generate a single installation file 
to be shared in the toolbox. Furthermore, given that 
MATLAB is not an open-source software, we could use its 
integration tool to convert our code to a “lower level”, that is 
much closer to the hardware programming language. We 
propose the use of C programming as it is robust, available 

for existing processor architecture, and flexible for future 
developers and researchers, as the default language for UNIX, 
and UNIX-flavored systems. Lastly, we could focus our efforts 
on developing an API that can be used by other researchers, 
who are unfamiliar with complex programming languages. A 
useful solution would be to create a library for Python, R, or 
Java, which are the de-facto programming languages used in 
machine learning and statistical analysis. 

ACKNOWLEDGMENT 
We gratefully acknowledge the support of NVIDIA 

Corporation with the donation of the Titan X Pascal GPU 
used for this research. 

References   
[1] B. S. Aloysius N., Geetha M., “A review on deep 

convolutional neural networks”, International Conference 
on Communication and Signal Processing, 2017, pp. 
588-592,  doi:10.1109/ICCSP.2017.8286426. 

[2] O. I. Abiodun, A. Jantan, A. E. Omolara, K.V.  Dada, A. 
M. Umar, O.U. Linus, et al., “Comprehensive Review of 
Artificial Neural Network Applications to Pattern 
Recognition”, IEEE Access, vol. 7, 2019, pp. 158820-
158846, doi:10.1109/ACCESS.2019.2945545. 

[3] S. Theodoridis, K. Koutroumbas, “Pattern Recognition”, 
Academic Press, 2019,  doi:10.1016/B978-1-59749-272-
0.X0001-2. 

[4] R. O. Duda, P. E. Hart, D.G. Stork, “Pattern 
classification”, John Wiley and Sons, 2012, isbn:978-0-
471-05669-0. 

[5] T. Nagpal, Y.S. Brar, “Artificial neural network 
approaches for fault classification: comparison and 
performance”, Springer Neural Computing and 
Applications, vol. 25, 2014, pp. 1863–1870, 
doi:0.1007/s00521-014-1677-y. 

[6] S. Theodoridis, “Machine learning: a Bayesian and 
optimization perspective”, Academic press, 2015, 
isbn:978-0-12-801522-3. 

[7] Z. Qin, D. Kim, T.Gedeon, “Rethinking Softmax with 
Cross-Entropy: Neural Network Classifier as Mutual 
Information Estimator”, arXiv, 2020, preprint: 
arXiv:1911.10688. 

[8] T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, J. Zhu, 
“Rethinking Softmax Cross-Entropy Loss for Adversarial 
Robustness”, arXiv, 2020, preprint: arXiv:1905.10626. 

[9] Y. Zeinali, B. Story, “Competitive probabilistic neural 
network”, Ios Press Integrated Computer Aided 
Engineering, vol. 24, 2017, pp. 105-118, 
doi:10.3233/ICA-170540. 

[10] C. Wu, H. Jiang, P. Wang, “Education quality detection 
method based on the probabilistic neural network 
algorithm” Diagnostyka, vol.21, 2020, pp. 79-86, 
doi:10.29354/diag/127194. 

[11] N. Feng, S. Xu, Y. Liang, K. Liu, “A Probabilistic 
Process Neural Network and Its Application in ECG 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 853



Classification”, IEEE Access, vol. 7, 2019, pp. 50431-
50439, doi:10.1109/ACCESS.2019.2910880. 

[12]  C. Yang, J. Yang, Y. Liu, X. Geng, “Cancer Risk 
Analysis Based on Improved Probabilistic Neural 
Network”, Frontiers in Computational Neuroscience, 
vol.14, 2020, doi:10.3389/fncom.2020.00058. 

[13] A.V. Savchenko, “Probabilistic neural network with 
complex exponential activation functions in image 
recognition”, IEEE Transactions on Neural Networks 
and Learning Systems, vol.31, num.2, 2019, pp. 651-60, 
doi:10.1109/TNNLS.2019.2908973. 

[14] M. Xiang, J. Yu, Z. Yang, Y. Yang, H. Yu, H. He, 
“Probabilistic power flow with topology changes based on 
deep neural network”, International Journal of Electrical 
Power and Energy Systems, vol.117, 2020, pp. 105650, 
doi:10.1016/j.ijepes.2019.105650. 

[15] N. Aljeri, A. Boukerche, “A Probabilistic Neural 
Network-Based Road Side Unit Prediction Scheme for 
Autonomous Driving”, IEEE International Conference 
on Communications, 2019, pp. 1-6, 
doi:10.1109/ICC.2019.8761749. 

[16] Y. Akhmetov, A.P. James, “Probabilistic neural network 
with memristive crossbar circuits”, IEEE International 
Symposium on Circuits and Systems, 2019, pp. 1-5, 
doi:10.1109/ISCAS.2019.8702153. 

[17] F. Min, J. Xue, F. Ma, “Probabilistic Neural Network 
Motor Bearing Fault Diagnosis Based on Improved 
Feature Extraction”, IOP Journal of Physics, vol. 1684, 
num. 1, 2020, pp. 012158, doi:10.1088/1742-
6596/1684/1/012158. 

[18] B.H. Lohithashva, Manjunath Aradhya V.N., Basavaraju 
H.T., Harish B.S., “Unusual Crowd Event Detection: An 
Approach Using Probabilistic Neural Network”, Springer 
Information Systems Design and Intelligent 
Applications: Advances in Intelligent Systems and 
Computing”, vol.862, 2020, pp. 012158, 
doi:10.1007/978-981-13-3329-3_50. 

[19] A.K. Sahoo, C. Pradhan, H. Das, “Performance 
evaluation of different machine learning methods and 
deep-learning based convolutional neural network for 
health decision making”, Springer Nature Inspired 
Computing for Data Science, vol.871, 2020, pp. 201-212, 
doi:10.1007/978-3-030-33820-6_8. 

[20] M. Sayed-Mouchaweh, E. Lughofer, “Learning in non-
stationary environments: methods and applications”, 
Springer Science and Business Media, 2012, 
doi:10.1007/978-1-4419-8020-5. 

[21] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, 
“Deep learning for IoT big data and streaming analytics: 
A survey”, IEEE Communications Surveys and Tutorials, 
vol.20, num.4, 2018, pp. 2923-2960, 
doi:10.1109/COMST.2018.2844341. 

[22] Y. Cui, S. Ahmad, J. Hawkins, “Continuous online 
sequence learning with an unsupervised neural network 
model”, Neural computation, vol.28, num.11, 2016, pp. 
2474-2504, doi:10.1162/NECO_a_00893. 

[23] L.Rabiner, B. Juang, “An introduction to hidden Markov 
models”, IEEE ASSP Magazine, vol.3, num.1, 1986 pp. 
4-16, doi:10.1109/MASSP.1986.1165342. 

[24] A. Oussidi, A. Elhassouny, “Deep generative models: 
Survey”,  IEEE International Conference on Intelligent 
Systems and Computer Vision, 2018, pp. 1-8, 
doi:10.1109/ISACV.2018.8354080. 

[25] G.P. Zhang, “Time series forecasting using a hybrid 
ARIMA and neural network model”, Neurocomputing, 
vol.50, 2003 pp. 159-175, doi:10.1016/S0925-
2312(01)00702-0. 

[26] A. Olawoyin, Y. Chen, “Predicting the future with 
artificial neural network”, Elsevier Procedia Computer 
Science, vol.140, 2018, doi: 10.1016/j.procs.2018.10.300. 

[27] F.P. Casale, J. Gordon, N. Fusi, “Probabilistic neural 
architecture search”, arXiv, 2020, preprint 
arXiv:1902.05116. 

[28] N.S. Sohoni, C.R. Aberger, M. Leszczynski, J. Zhang, C. 
Ré, “Low-memory neural network training: A technical 
report”, 2019, preprint arXiv:1904.10631. 

[29] C. M. Bishop, “Neural Networks for Pattern 
Recognition”, Oxford University Press, 1995, isbn:978-0-
19-853864-6. 

[30] MATLAB, “Deep Learning Toolbox Documentation” 
(2020), Available: 
https://mathworks.com/help/deeplearning/. 

[31] F. Chollet et al. (2015), “Python Keras Api”, Available: 
https://keras.io. 

[32] D. Dua, C. Graff, “UCI Machine Learning Repository”, 
Irvine, CA: University of California, School of 
Information and Computer Science, 2017, 
Available:https://archive.ics.uci.edu/ml. 

[33] S. Zhang, L. Yao, A. Sun, Y. Tay, “Deep Learning Based 
Recommender System: A Survey and New Perspectives”, 
ACM Computer Surveys, vol.52, no.1, 2019, 
doi:10.1145/3285029. 

[34] A. Shrestha, A. Mahmood, “Review of Deep Learning 
Algorithms and Architectures”, IEEE Access, vol.7, pp. 
53040-53065, 2019,  doi:10.1109/ACCESS.2019.  

[35] G. Ruffini, “Models, Networks and Algorithmic 
Complexity”, Starlab technical note, TN00339, 2016, pp. 
12-15, doi:10.13140/RG.2.2.19510.50249. 

 
Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 854




