

Abstract— Pattern Recognition and Classification is

considered one of the most promising applications in the

scientific field of Artificial Neural Networks (ANN).

However, regardless of the vast scientific advances in

almost every aspect of the technology and mathematics,

neural networks still need to be fairly large and complex

(i.e., deep), in order to provide robust results. In this

article, we propose a novel ANN architecture approach

that aims to combine two fairly small Neural Networks

based on an introduced probability term of correct

classification. Additionally, we present a second ANN,

used to reclassify the potentially incorrect results by using

the most probable error-free results as additional training

data with the predicted labels. The proposed method

achieves a rapid decrease in the mean square error

compared to other large and complex ANN architectures

with a similar execution time. Our approach demonstrates

increased effectiveness when applied to various databases,

related to wine, iris, the Modified National Institute of

Standards and Technology (MNIST) database, the

Canadian Institute for Advanced Research (Cifar32), and

Fashion MNIST classification problems.

Keywords— pattern recognition, artificial intelligence,

classification techniques, Machine learning complexity

optimization, time reduction.

I. INTRODUCTION
ATA classification is frequently performed by Artificial
Neural Networks (ANN) like [1], [2], [3] consisting of a

number of nodes, termed neurons. These neurons are
organized in layers. This first layer is the input layer, the last
layer is the output layer, while the middle layers are termed
hidden layers. In a feed-forward ANN, the output of each
neuron is calculated by a weighted combination of the outputs
of the neurons of the previous layer. This output is also
passed through a non-linear function, called the activation
function. The weights of these neurons are estimated by
minimizing the mean square error between the ANN’s
outputs to set input-output pairs (training data). This
procedure is also known as back propagation and is usually
performed by iterative batch optimization, by iterating over
the training data multiple times, called epochs, until the error
is minimized. This is the training phase of the network. By
quantizing the ANN’s output to highlight the output neuron
with greatest value as ones and the rest as zeros, we can use
ANNs to perform classification [4]. In the testing phase, the
trained ANN is used to classify new, never seen, samples [5].
Novel cost functions (i.e. cross-entropy) and activation
functions like Rectified Linear Unit (ReLU) have been
recently proposed to facilitate the training of deeper networks
[6], [7], and [8].

 Historically, classification accuracy mainly depends on
the size of the Neural Network, and the number of epochs of
network training. More specifically, choosing a small number
of layers/neurons may not provide the network with the
required degrees of freedom to discriminate between the
various data classes in complex classification problems. In
contrast, a larger number of layers/neurons may lead the
network to overfit. This article examines the classification
accuracy of an Artificial Neural Network (ANN) architecture

Artificial Neural Network Performance Boost
using Probabilistic Recovery with Fast Cascade

Training
Andreas Maniatopoulos, Alexandros Gazis, Venetis P. Pallikaras, Nikolaos Mitianoudis

Democritus University of Thrace
Xanthi, 67100

Greece

Received: January 1, 2020. Revised: July 24, 2020. 2nd Revised: November 16, 2020. Accepted: November 16, 2020.
Accepted: November 23, 2020. Published: November 24, 2020.

D

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 847

that uses two smaller ANN for probabilistic fast training to
benchmark the properties of an ANN [9]. Recent advances in
the field shift their efforts into applying probabilistic neural
networks with deep learning techniques to education [10],
medicine [11,12], image recognition [13], power cost [14],
and real life applications like autonomous driving [15],
memristors [16], electrical machines [17], and crowd
monitoring [18].

 Our ANN’s method takes inspiration from these types of
ANNs but, the technical novelty of our architecture is that we
use the probability to evaluate the outcome of the system. This
means that to achieve a high accuracy rate, during each
batch, an algorithm must evaluate an ANN’s output, and
instantly recognize potential misclassifications. Many
researchers have focused their efforts on result evaluation in
correlation with ANNs’ performance such as hyperparameter
tuning [19] and changing statistics [20]. Furthermore, as
most ANNs’ input datasets are usually continuous data
streams many scientists have researched extensible multiple
parallel predictions ANNs for raw data streams [21].
Analytically, for an ANN to make multiple predictions on the
fly, it must be capable of evaluating the likelihood of each
prediction through a distribution of possible future outcomes
[22]. The first ANNs to use this approach were hidden
Markov models [23], deep learning generative models [24],
and Autoregressive Integrated Moving Average forecasting
methods [25]. In more recent studies like in [26], researchers
study short term forecasting optimization of weight
parameters by using complex ANN architectures such as
multi-layer feed-forward network and recurrent networks.
 Similarly, our study focuses on reducing the computational
and memory cost of neural network topologies, like in [27].
Specifically, this is achieved by using traditional ANN
models and activation functions but by introducing a novel
ANN architecture that evaluates the ANN output using a
probabilistic algorithmic approach. Our architecture, except
for minimizing the ANN’s memory requirements [28], it sets
a trade-off between preserving the ANN’s accuracy ratio and
optimizing the system’s performance. Lastly, in the next
sections, we present the aims of this study, the test/training
phases of our experiments, and the proposed algorithm for
ANN optimization.

II. AIMS AND OBJECTIVES
 In [29], Bishop mentions that classification errors occur in
the regions of parameter x space, where the largest of all
posterior probabilities of sample x belonging to the k-th class
Ck is relatively low. The main reason for this phenomenon is
that there is a strong overlap between different classes. In
several applications, it might be better not to make a
classification decision in such cases. This technique is called
reject option, where the rejected samples are classified by a
human expert instead. The reject-option technique can be
described by the following algorithm:

   , , |)k kif max P C x then classify x else reject x  (1)

where Θ defines a rejection threshold.
 The larger the value of Θ, the fewer points will be
classified by the ANN and will need to be labelled by a
human expert. However, the current explosion of available
information and unlabeled data renders human intervention
an unviable option. In addition, an automated definition of Θ,
based on the given dataset, will also be required.
 In this article, we propose a direct extension of the reject
option-idea, where no human intervention will be needed to
classify the rejected data. Instead, another ANN, trained
using the successfully trained samples of the first ANN, will
take on the role of the human expert and will reclassify the
rejected data. More specifically, we propose to improve the
performance of traditional ANN architectures, by adding a
probability term that evaluates the classification results,
dividing the dataset into possibly correct and incorrect data.
 The “correctly” classified data are determined by the
probability function, and by using the corresponding
predicted labels, are selected to exist alongside the original
dataset to perform a second round of training of another
ANN. The outcome is that if “incorrect” results occur, these
are reclassified by the second ANN thus providing dynamic
feedback to the proposed system.

 The proposed scheme features improved performance
compared to the original architecture, without the extra
computational cost of larger architectures. In the following
section, we will analyze the proposed approach. Objective

Fig. 1 The proposed ANN architecture, consisting of two ANNs

connected back to back

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 848

evaluation for each of the tested datasets indicated an
improvement offered to the original architecture with
minimal computational cost.

III. THE PROPOSED ALGORITHM
The concept presented aims at increasing the classification

performance of common ANN architectures (deep or shallow)
using a simple strategy. The proposed probabilistic fast
cascade training consists of two ANN connected back to back,
sharing input data. The second ANN has extra training inputs
those testing samples that achieved high probability of correct
classification. Thus, the second ANN aims at reclassifying
only the most-likely wrong results of the first ANN, while
leaving the correctly classified data unchanged.

All experiments conducted were developed using
MATLAB’s Neural Network toolbox and specifically Deep
Learning toolbox that provides a framework for designing,
analyzing, and implementing deep neural networks with
algorithms, pre-trained models, and applications [30].
Additionally, the production code of the ANN proposed was
also written in Python mainly consuming Keras, a deep
learning application protocol interface (API) used for
machine learning and deep learning experimentation [31].

Lastly, the architecture of our ANN is shown in Figure 1
where the red lines indicate results or data points that are
transferred from the first network to the second. Let us
examine this architecture with more detail during the training
and testing phase of the two networks.

A. Training Phase

At first, a feed-forward ANN is used to classify coarsely the
test samples. This ANN is trained and evaluated as an
independent neural network, using the training dataset that is
available. This part is the common training any ANN
architecture (deep or shallow) would require. The output of
this ANN is Vest. This concludes the first part of the training.

The second phase of the training would entail the training
of a second neural network. A typical method would train the
network using the training dataset. Using a combination of
the two networks, we can employ more data for training the
second ANN. We can use the first, coarse ANN, which has
already been trained, to roughly classify the data from the
testing dataset. Thus, we can use the data from the training
dataset plus data from the testing dataset that have been
correctly classified.

To achieve this, we need a formula to compute the
probability of correct classification. This is used to determine,
whether the aforementioned classification is acceptable or
not. In the positive case, they will be used as future training
data, other- wise they will be reclassified again by the second
ANN, once it is trained. The proposed correct classification
probability formula is the following:

  max 2 2)1) ((() i logsoftmaxp i e  (2)

where i represents the index of each sample and softmaxmax
represents the maximum activation of the last softmax neuron
layer of the ANN.

Since the final classification is usually based on softmax,
the probability function must be equal to 0.5 in the middle of
the two nearest classes. The aim of the function is to provide
logarithmic 1-1 mapping in the interval [0.5, 1], whereas it is
less strict in the interval [0, 0.5], where the samples are
considered improperly classified anyway.

The training of the first ANN is performed for a fixed
number of epochs. After training of the first ANN, each
testing sample is passed through the first ANN and is
assigned a correct-classification probability, using (2). We use
a threshold T1, as a probability defining similarity of
classified samples to training data. The samples that possess a
probability above this rather strict measure are considered
almost equivalent to samples belonging to the training
dataset. These are then used to train the neural network more
efficiently. Afterwards, through a detailed grid search for all
datasets in questions, we defined the threshold to be set at:
   1 1 /classesT N k ScalingFuntcion   (3)

where Nclasses is the number of classes in the classification task
and kE[50,120] is a value determined by experimentation.
The scaling function introduced derived from examination of
various datasets of different size and shapes. The function is
calculated as follows:

    1 200 / 4000samplesScalingFunction N   (4)

Where Nsamples is the number of samples in the Dataset. This
threshold value is adaptive to each individual classification
problem and has shown to work well in our experiments.

B. Testing Phase

The training set is augmented with the potentially correctly
classified samples from the testing dataset and is ready to
train the second ANN, which is randomly initialized. The
second ANN is trained for a smaller number of epochs,
compared to the first ANN, since the training dataset is
augmented in this case.

The samples that score a correct probability of over the
upper limit, are used as a way to skew the training of the
second neural network slightly. As the second neural network
only activates when the test data are known, but certainly still
unlabeled, we are allowed to use the information as training
data, using the predicted labels of the first neural network.
That way, only when the complete system is evaluated and
the training phase is completed, the ground truth of the test
data is presented.

This method of enlarging the training dataset of our system
is completely optional, as it produces a small but still
noticeable increase in overall accuracy. The majority of the
improvement however is from reevaluating the potentially
wrong results of the first coarse neural network by the second
stage.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 849

Once the second ANN is trained, it is ready to reclassify
the testing dataset or rather a subset of it. To reduce the
computational cost, the second network is forced to re-classify
only those testing samples that have scored a probability
below a second threshold T2 by the first coarse ANN during
the previous phase. The second threshold T2 is set at:
  2 1 /10classesT q N ScalingFunction   (5)

where qE [1, 2] is also determined by extensive testing. The
remaining samples retain their original classification from the
first coarse network. This second threshold is less strict and
enables several samples to be reclassified, especially those
who are not confidently attributed to any category or class. As
a result, this has a positive effect on the proposed system’s
performance and accuracy.
 Additionally, we have decided to focus their experiments
on a broad array of different datasets to provide more accurate
results. Using exactly the same architecture for various
datasets is not proposed as every problem has an appropriate
ANN solution. Specifically, it is noted that the tests
performed do not use exactly the same architecture per-se, as
in each dataset different data cleansing and preparation
techniques were used. The functions presented were
thoroughly tested to perform optimally for all of the tested
scenarios regardless of the small changes to the ANN.
 Lastly, we clarify that regarding all the above-mentioned
equations, the activation functions used to develop our ANN
were the following:

  
1

1 x
f x

e



 for softmax activation function (6)

     if x 0
 if

0
 x 0max 0, xf x x 

   for ReLU function (7)

IV. BENEFITS OF THE PROPOSED SCHEME
The proposed scheme features several benefits. Using the

above method, the ANN reduces the chance to fall into local
minima, due to the random initialization of the second ANN.

At the same time, there exists minimal danger of discarding
very good classification results, since these samples retain
their classification in the second ANN. The second ANN with
a random initialization offers a “fresh” look at the incorrectly
classified testing data, with an augmented training dataset.
Some testing samples that lie below threshold T1 and might
be incorrectly classified are reclassified by the second
network, using a less strict threshold T2.

Equations (3) and (5), regarding thresholds T1 and T2 act
effectively to encapsulate the notion of larger datasets
containing a priori more information. As a result, the
possibility of integrating potentially correctly classified
samples as a way of enriching the training dataset is
increased. Accordingly, the possibility of potential
misclassifications is reduced proportionally to the total
number of samples contained in the given dataset.

Another advantage of the proposed scheme is that this
concept can be used and can improve almost any ANN
architecture, including deep architectures, such as
convolutional neural networks and recurrent neural networks.
The only extra computational cost entails the calculation
probability of correct classification for each sample. Another
advantage is that this approach can be applied only when
needed to increase the classification performance of a given
ANN. One can run the simple ANN, get coarse results very
quickly, and improve these results only when needed or extra
time is available. Probabilistic Cascade ANN can thus
improve the performance on any problem while having the
flexibility of not being computationally expensive compared
to longer and deeper ANNs.
 The most important advantage of the proposed twin ANN
topology is the fact that similarly performing typical single-
ANN as presented in Figure 2 tend to be much more complex,
requiring up to 4 times more trainable parameters. In fact, the
twin ANN structure is more symbolic than real. That is to
say, the first ANN can be discarded after performing the
coarse classification. The second ANN will occupy the same
memory allocation as the first one. The only extra
computational cost are the first classification results and their
evaluation as “correct” or “incorrect” classifications. These
claims will be verified in the experimental section.
Consequently, the proposed ANN structure generally leads to
lower training time, smaller models, which can “fit” in
smaller GPUs, thus being less computationally expensive.
 Furthermore, this combination of two coarse - finer ANN
may be regarded either as adding a post-processing step to a
coarse ANN. The fine ANN can be considered as a post-
processing refinement to a simple-coarse ANN that is used to
reclassify data that have been possibly incorrectly classified
by the first network. Moreover, it is noted that the ANN
proposed can be regarded as an expansion of the typical
single ANN used providing similar and in many cases better
output results. Finally, the suggested approach may also fall
into the category of data distillation and augmentation

Fig. 2 The architecture of a typical single ANN topology

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 850

approaches [31]. The difference is that here we use the testing
dataset to augment the training dataset and thus improve the
classification performance of any given ANN architecture.

V. EXPERIMENTAL RESULTS
In this section, we benchmark the proposed probabilistic

two-stage ANN and compare its performance with a single-
stage ANN. The datasets that will be used in our experiments
are five popular datasets: the IRIS, MNIST, Wine, Fashion
MNIST and Cifar32 datasets. These datasets are available on-
line from the UC Irvine Machine Learning Repository
[32].We create the training and testing datasets using the
complete datasets in the following fashion. We randomly
choose 70% of the total samples for training, while the
remaining 30% are used as testing data. This procedure was
conducted 20 times in random, thus creating 20 different data
sets. These 20 different data sets were used by all competing
ANN architectures.
 In this experiment, we tested the performance of a single
ANN against the proposed probabilistic cascade architecture,
where the second ANN features the same architecture as the
first one. For the Wine and IRIS dataset, we used a Fully-
Connected Network (FCN) consisting of 2 hidden layers with
20 neurons each. For the Fashion MNIST and MNIST
datasets, we used a deep ANN, consisting of two
convolutional layers and a FCN. The first convolutional layer
consisted of 32 3 X 3 filters and a max- pooling layer. The
second convolutional layer consisted of 64 3 X 3 layers and a
max-pooling layer, while the FCN layer consisted of 128
neurons. For the Cifar32 dataset, we used a deep ANN
consisting of three convolutional and a fully-connected layer.
The first convolutional layer consisted of 32 3 X 3 filters and
a max-pooling layer. The second convolutional layer
consisted of 64 3 X 3 layers and a max-pooling layer. The
third convolutional layer consisted of 128 3 X 3 layers and a
max-pooling layer, while the FCN layer consisted of 1024
neurons.
 All ANNs used the same training and optimization
methods. The activation function for all hidden layer nodes
was the ReLU and for the output layers was the softmax
function. The network’s cost function was categorical cross-
entropy [33], which was then optimized via the Adam
optimizer [34]. The training of each network was only
terminated after a fixed number of epochs, in order to
compare their time complexity. At the end of each ANN, an
accuracy metric is calculated, based on the percentage of
correctly classified samples, to the sum of the test data. The
ANNs were implemented in Python using the Keras library.
 Firstly, we conducted some experiments to identify optimal
values for the parameters K and q in thresholds T1 and T2.
For this purpose, we used the Wine dataset, but the
conclusions hold for the other datasets as well. We set K=20
and we estimated the average accuracy for 20 versions of the
Wine dataset for various values of q. Some indicative results

are shown in Table 1, where it is clear that a value of q=1.2
yields the best results. Consequently, we set q=1.2 and we
explore the average ac- curacy for various values of K. The
indicative results of Table 2 recommend an optimal value of
K=20. These values for q and K has shown to perform best at
the other two datasets.
 The next step was to evaluate the performance gain
acquired by the proposed scheme, compared to the original
ANN (Single ANN) that was designed to perform
classification for each of the three datasets. Table 3 contains
the average accuracy for the 20 versions for each of the three
datasets. In the case of the IRIS dataset, the proposed
approach yields an improvement of 4.66% in classification
accuracy. In the case of the MNIST dataset, the proposed
approach yields a slight improvement 0.57%. The small
improvement is due to the fact that the single ANN for the
MNIST dataset already performs very well, thus there is very
little room for improvement. In the case of the Wine dataset,
we get an improvement of 7.77%. In the case of the Cifar32
and Fashion MNIST datasets, we get an improvement of
3.82% and 6.08% respectively.

Table 1. Average Classification Accuracy for various
values of q and K=100 for the proposed ANN and the Wine
Dataset. NA denotes that the network didn’t train.

q 1 1.2 1.5 1.7 2

Accuracy 94.4% 98.76% 95.67% 96.29% NA

Table 2. Average Classification Accuracy for various
values of K and q = 1.2 of the proposed ANN for the Wine
Dataset.

K 50 70 100 120
Accuracy 96.29% 93.21% 98.76% 95.67%

Table 3. Average Classification Accuracy for 20 random

segmentations of the IRIS, MNIST, Wine, Cifar32 and
Fashion MNIST Datasets.

Datasets IRIS MNIST Wine Cifar32 Fashion

MNIST

Single

ANN
92.33% 96.34% 90.98% 71.1% 89.46%

Proposed

Topology
96.99% 96.91% 98.76% 74.92% 95.54%

 The Cifar32 Dataset’s complexity almost makes the use of
a pre-trained model a necessity for good accuracy, which is
out of scope of this research. In total, we get an average
classification accuracy improvement of 4.582%. In essence,
the proposed approach can boost the performance of ANN
architectures and it seems to perform better when the original

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 851

ANN leaves enough room for performance improvement.
 Another strong point of the proposed method emerges,
when we compare the proposed network architecture with an
equally performing larger ANN. One could easily register a
strong difference in computational complexity between a
single ANN and the proposed method for similar performance
levels. To verify this, we used the Fashion MNIST dataset
and a fully-connected network as a workbench. The proposed
algorithm used two networks, featuring two hidden layers
with 10 neurons each, both trained for 20 epochs. The
proposed network featured the same, if not slightly better,
accuracy compared to a two-layer network, with 35 neurons at
each layer that was trained for 50 epochs. In summary,
training twice 8,070 variables (i.e. 16,140 variables) for 20
epochs with the use of the proposed topology, the
performance is similar to training 27,475 variables for 50
epochs, a rather much more computationally demanding task.
Similar conclusions can be gathered from the other datasets,
such as the Cifar dataset.
 On the one hand, it is important to note that the simple
ANN topology tries to model the given problem all in one go,
no matter how difficult some training examples are to
simulate/understand. On the other hand, the suggested
topology models the majority of the training examples more
coarsely, while the rest more “difficult” examples are
modeled in a second neural network. This discrimination
leads to overall better modeling of the problem as shown in
the results of Table 4.

 Additionally, it must be underlined that the single ANN
topology aims to match the accuracy levels presented in
Tables 1, 2, 3 and 4. Lastly, the architectural topologies of
our test cases are presented in Figure 3 while the results of
our experiments for each dataset are presented in Table 5.

Table 4. Computational Requirements for equal
performance to proposed topology results.

Fashion MNIST Dataset
Single ANN 27,475 variables 50 epochs
Proposed

Topology
8,070 x2 variables 20 epochs

 Cifar Dataset
Single ANN 19,016,778 variables 50 epochs
Proposed

Topology
628,810 x2 variables 50 epochs

Table 5. Statistical results of the tested topologies.

Dataset

ANN

Comparison

Mean

Square

 Error

Categorical

 Cross

Entropy

Cifar

Typical 0,1550 1,3600
Proposed 0,1280 1,2376
Improvement 17,4193548 % 9,0000 %

MNIST

Typical 0,0482 0,3160
Proposed 0,0329 0,1434
Improvement 31,7427386 % 54,6202532 %

Fashion

MNIST

Typical 0,0691 0,4080
Proposed 0,0547 0,1799
Improvement 20,8393632 % 55,9068627 %

Wine

Typical 0,0458 0,1640
Proposed 0,0331 0,1170
Improvement 27,7292576 % 28,6585366 %

Iris

Typical 0,1470 0,1543
Proposed 0,1150 0,1299
Improvement 21,7687075 % 15,8133506 %

Overall Improvement 23 % 25,98 %

VI. CONCLUSIONS
In this paper, we propose a strategy to improve the

performance of any ANN architecture. The original ANN
architecture is used to classify the original testing data. A
probabilistic evaluation of the accuracy of each classification
is then performed. The most trustworthy classifications of the
testing samples are augmenting the training set and are used
to train a second version of the original ANN architecture
with a random initialization. The second network then
reclassifies the poorly classified samples, and the combination
of the correctly classified samples from the first neural

Fig. 3 The topology of the networks used in our test cases

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 852

network are combined with the newly classified samples from
the second network. The result features improved
classification accuracy compared to the original trained
network as a single unit.

This article shows merit as it proposes a novel ANN
architecture approach that aims to combine two smaller
classifications ANNs and create on the fly a new ANN that
monitors and classifies incorrect results. The suggested
approach uses several innovative ideas not particularly
studied in the current bibliography like the use of connected
back-to-back ANNs combined with other ANNs using
cascade training. Furthermore, we argue that the
equalization factor in our experiments is accuracy’s level as it
is a crucial factor to develop a fast but also reliable ANN
model.
 The proposed strategy has no limitation and thus can be
used with any deep or shallow ANN architecture. Finally, it
can boost performance without increasing the memory
requirements of the network, which is extremely important
for modern deep machine learning architectures.

VII. FUTURE WORK
The future work of this publication lies in the optimization

of the ANN introduced which is a viable, fast, and
computationally efficient method to boost classification
performance in several neural network architectures. Firstly,
a network topology optimization is currently under research,
mainly focusing on machine learning as a mean to mine the
input data. Secondly, we argue that after several experiments
conducted, the aforementioned ANN topology could be
expanded to more complex detests. For example, an idea for
future research would be to use an ANN of similar size to
study the optimization of algorithmic information theory
axioms, such as the Solomonoff–Kolmogorov–Chaitin
complexity. These types of algorithms simulate the Entropia
(i.e. “randomness”) of a real-world dataset, i.e., short datasets
characterized by random data samples and an unknown
amount of noise [35]. We could apply these algorithms as a
means to optimize the computational resources of the
proposed ANN by examining different datasets. Moreover,
with trial and error unsupervised learning, we could further
tweak the probability prediction of our ANN to include more
possible random states and avoid overfitting the tested
dataset.

Thirdly, we could create a new module to be added to
MATLAB’s Deep Learning toolbox documentation.
Specifically, we may write simple instructions on the
variables and libraries used in our ANN code, create a new
package in MATLAB, and generate a single installation file
to be shared in the toolbox. Furthermore, given that
MATLAB is not an open-source software, we could use its
integration tool to convert our code to a “lower level”, that is
much closer to the hardware programming language. We
propose the use of C programming as it is robust, available

for existing processor architecture, and flexible for future
developers and researchers, as the default language for UNIX,
and UNIX-flavored systems. Lastly, we could focus our efforts
on developing an API that can be used by other researchers,
who are unfamiliar with complex programming languages. A
useful solution would be to create a library for Python, R, or
Java, which are the de-facto programming languages used in
machine learning and statistical analysis.

ACKNOWLEDGMENT
We gratefully acknowledge the support of NVIDIA

Corporation with the donation of the Titan X Pascal GPU
used for this research.

References
[1] B. S. Aloysius N., Geetha M., “A review on deep

convolutional neural networks”, International Conference
on Communication and Signal Processing, 2017, pp.
588-592, doi:10.1109/ICCSP.2017.8286426.

[2] O. I. Abiodun, A. Jantan, A. E. Omolara, K.V. Dada, A.
M. Umar, O.U. Linus, et al., “Comprehensive Review of
Artificial Neural Network Applications to Pattern
Recognition”, IEEE Access, vol. 7, 2019, pp. 158820-
158846, doi:10.1109/ACCESS.2019.2945545.

[3] S. Theodoridis, K. Koutroumbas, “Pattern Recognition”,
Academic Press, 2019, doi:10.1016/B978-1-59749-272-
0.X0001-2.

[4] R. O. Duda, P. E. Hart, D.G. Stork, “Pattern
classification”, John Wiley and Sons, 2012, isbn:978-0-
471-05669-0.

[5] T. Nagpal, Y.S. Brar, “Artificial neural network
approaches for fault classification: comparison and
performance”, Springer Neural Computing and
Applications, vol. 25, 2014, pp. 1863–1870,
doi:0.1007/s00521-014-1677-y.

[6] S. Theodoridis, “Machine learning: a Bayesian and
optimization perspective”, Academic press, 2015,
isbn:978-0-12-801522-3.

[7] Z. Qin, D. Kim, T.Gedeon, “Rethinking Softmax with
Cross-Entropy: Neural Network Classifier as Mutual
Information Estimator”, arXiv, 2020, preprint:
arXiv:1911.10688.

[8] T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, J. Zhu,
“Rethinking Softmax Cross-Entropy Loss for Adversarial
Robustness”, arXiv, 2020, preprint: arXiv:1905.10626.

[9] Y. Zeinali, B. Story, “Competitive probabilistic neural
network”, Ios Press Integrated Computer Aided
Engineering, vol. 24, 2017, pp. 105-118,
doi:10.3233/ICA-170540.

[10] C. Wu, H. Jiang, P. Wang, “Education quality detection
method based on the probabilistic neural network
algorithm” Diagnostyka, vol.21, 2020, pp. 79-86,
doi:10.29354/diag/127194.

[11] N. Feng, S. Xu, Y. Liang, K. Liu, “A Probabilistic
Process Neural Network and Its Application in ECG

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 853

Classification”, IEEE Access, vol. 7, 2019, pp. 50431-
50439, doi:10.1109/ACCESS.2019.2910880.

[12] C. Yang, J. Yang, Y. Liu, X. Geng, “Cancer Risk
Analysis Based on Improved Probabilistic Neural
Network”, Frontiers in Computational Neuroscience,
vol.14, 2020, doi:10.3389/fncom.2020.00058.

[13] A.V. Savchenko, “Probabilistic neural network with
complex exponential activation functions in image
recognition”, IEEE Transactions on Neural Networks
and Learning Systems, vol.31, num.2, 2019, pp. 651-60,
doi:10.1109/TNNLS.2019.2908973.

[14] M. Xiang, J. Yu, Z. Yang, Y. Yang, H. Yu, H. He,
“Probabilistic power flow with topology changes based on
deep neural network”, International Journal of Electrical
Power and Energy Systems, vol.117, 2020, pp. 105650,
doi:10.1016/j.ijepes.2019.105650.

[15] N. Aljeri, A. Boukerche, “A Probabilistic Neural
Network-Based Road Side Unit Prediction Scheme for
Autonomous Driving”, IEEE International Conference
on Communications, 2019, pp. 1-6,
doi:10.1109/ICC.2019.8761749.

[16] Y. Akhmetov, A.P. James, “Probabilistic neural network
with memristive crossbar circuits”, IEEE International
Symposium on Circuits and Systems, 2019, pp. 1-5,
doi:10.1109/ISCAS.2019.8702153.

[17] F. Min, J. Xue, F. Ma, “Probabilistic Neural Network
Motor Bearing Fault Diagnosis Based on Improved
Feature Extraction”, IOP Journal of Physics, vol. 1684,
num. 1, 2020, pp. 012158, doi:10.1088/1742-
6596/1684/1/012158.

[18] B.H. Lohithashva, Manjunath Aradhya V.N., Basavaraju
H.T., Harish B.S., “Unusual Crowd Event Detection: An
Approach Using Probabilistic Neural Network”, Springer
Information Systems Design and Intelligent
Applications: Advances in Intelligent Systems and
Computing”, vol.862, 2020, pp. 012158,
doi:10.1007/978-981-13-3329-3_50.

[19] A.K. Sahoo, C. Pradhan, H. Das, “Performance
evaluation of different machine learning methods and
deep-learning based convolutional neural network for
health decision making”, Springer Nature Inspired
Computing for Data Science, vol.871, 2020, pp. 201-212,
doi:10.1007/978-3-030-33820-6_8.

[20] M. Sayed-Mouchaweh, E. Lughofer, “Learning in non-
stationary environments: methods and applications”,
Springer Science and Business Media, 2012,
doi:10.1007/978-1-4419-8020-5.

[21] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani,
“Deep learning for IoT big data and streaming analytics:
A survey”, IEEE Communications Surveys and Tutorials,
vol.20, num.4, 2018, pp. 2923-2960,
doi:10.1109/COMST.2018.2844341.

[22] Y. Cui, S. Ahmad, J. Hawkins, “Continuous online
sequence learning with an unsupervised neural network
model”, Neural computation, vol.28, num.11, 2016, pp.
2474-2504, doi:10.1162/NECO_a_00893.

[23] L.Rabiner, B. Juang, “An introduction to hidden Markov
models”, IEEE ASSP Magazine, vol.3, num.1, 1986 pp.
4-16, doi:10.1109/MASSP.1986.1165342.

[24] A. Oussidi, A. Elhassouny, “Deep generative models:
Survey”, IEEE International Conference on Intelligent
Systems and Computer Vision, 2018, pp. 1-8,
doi:10.1109/ISACV.2018.8354080.

[25] G.P. Zhang, “Time series forecasting using a hybrid
ARIMA and neural network model”, Neurocomputing,
vol.50, 2003 pp. 159-175, doi:10.1016/S0925-
2312(01)00702-0.

[26] A. Olawoyin, Y. Chen, “Predicting the future with
artificial neural network”, Elsevier Procedia Computer
Science, vol.140, 2018, doi: 10.1016/j.procs.2018.10.300.

[27] F.P. Casale, J. Gordon, N. Fusi, “Probabilistic neural
architecture search”, arXiv, 2020, preprint
arXiv:1902.05116.

[28] N.S. Sohoni, C.R. Aberger, M. Leszczynski, J. Zhang, C.
Ré, “Low-memory neural network training: A technical
report”, 2019, preprint arXiv:1904.10631.

[29] C. M. Bishop, “Neural Networks for Pattern
Recognition”, Oxford University Press, 1995, isbn:978-0-
19-853864-6.

[30] MATLAB, “Deep Learning Toolbox Documentation”
(2020), Available:
https://mathworks.com/help/deeplearning/.

[31] F. Chollet et al. (2015), “Python Keras Api”, Available:
https://keras.io.

[32] D. Dua, C. Graff, “UCI Machine Learning Repository”,
Irvine, CA: University of California, School of
Information and Computer Science, 2017,
Available:https://archive.ics.uci.edu/ml.

[33] S. Zhang, L. Yao, A. Sun, Y. Tay, “Deep Learning Based
Recommender System: A Survey and New Perspectives”,
ACM Computer Surveys, vol.52, no.1, 2019,
doi:10.1145/3285029.

[34] A. Shrestha, A. Mahmood, “Review of Deep Learning
Algorithms and Architectures”, IEEE Access, vol.7, pp.
53040-53065, 2019, doi:10.1109/ACCESS.2019.

[35] G. Ruffini, “Models, Networks and Algorithmic
Complexity”, Starlab technical note, TN00339, 2016, pp.
12-15, doi:10.13140/RG.2.2.19510.50249.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.110 Volume 14, 2020

ISSN: 1998-4464 854

