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Abstract—Time-delay systems arise in many important
applications in science and engineering and optimal control
of delay differential equations are of theoretical and
practical importance. This paper presents discontinuous
Legendre wavelet Galerkin (DLWG) approach for solving
optimal control problem of time-delayed systems. This new
method demonstrates that operational matrices of
derivative, delay and product are lower dimensions and
sparse because of calculation only on each subinterval. The
advantages are implemented to solve algebraic equations
transformed from the time-delayed systems with less
storage space and execution time. Finally, an experiment is
included to illustrate the effectiveness and applicability of
the proposed method.

Keywords—Time-delayed system, Optimal control,
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I. INTRODUCTION

In general, delays occur frequently in biological, chemical,
transportation and electronic systems, etc [1-9]. The optimal
control problem of the time-delayed systems is very important
to be investigated and has attracted the interest of many
researchers [2-6]. Recently, orthogonal functions especially
wavelet bases such as Walsh functions, block-pulse functions,
Legendre polynomials, Haar wavelets and Legendre
multiwavelets, etc. are adopted to do with the above optimal
control of the dynamic systems [5-19]. Although the accuracy
of computation can be improved by adding more orthogonal
series, the more terms of orthogonal series enlarge the
dimensions of the above operational matrices. This
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disadvantage increases the computational complexity when
solving the systems.

The aim of the present paper is to design a new computational
technique based on Legendre wavelet and discontinuous
Galerkin (DG) method to overcome the above disadvantage [9].
Specifically, the operators of derivative, delay and product are
calculated by Legendre wavelet on the subinterval. It is noted
that the operational matrices obtained by this means are the
same in each subinterval. Consequently, the operational
matrices are lower dimensions and sparse because of the
orthogonal property of Legendre wavelet. The advantages of
the operational matrices are used to transform the time delayed
systems into lower dimensions algebraic equations by the
variational formulation.

The essential features and advantages of the new approach
are briefly described as follows:

i. The time delayed systems are transformed into variational
formulation by the DG method.

ii. The lower dimensional and sparse matrices of the
derivative, delay and product are the same on each subinterval
and utilized to elaborately evaluate each term of the variational

formulation and the quadratic cost function, respectively.

iii. The discontinuity of Legendre wavelet at interface of
element to element and the initial conditions are easier to be
coped with through the numerical flux.

iv. The approach of the discontinuous element approximation
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is implemented to convert the optimal control of the delay
systems to solve systems of algebraic equations on each
subinterval.

v. The DLWG approach has the advantages of Legendre
wavelet method and the DG method.

Finally, the DLWG method containing the above advantages
is applied to solving optimal control of the systems. A
numerical experiment illustrates the present approach is very
effective.

II. VARIATIONAL FORMULATION OF TIME-DELAYED SYSTEMS

In this section, we first briefly introduce Legendre wavelet
bases and our notations. Second, we derive the variational
formulation of the time-delayed systems.

2.1 LEGENDRE WAVELET

For level n=0,1,2,...
1=01,..2"-1
Iy =[27"1L,27"(1+1)). For p=1,2,..., we define a subspace as

of resolution and translation

we define  the subinterval

>

Vo ={f: f‘lm is a polynomial of degree strictly less than p

;and § vanishes elsewhere}.

Let @, (t) denote Legendre wavelet bases at decomposition

level N=0 as

2k +1L, (2t -1),
0,

tef0,1),

1
te[0,1), M

o]

where L, (t)is Legendre polynomial of degree K . Then Voo
is spanned by 2"p functions which are obtained from

Dys-- e ¢p71 by dilation and translation, i.e.,

V.o =span{g o () =2"2¢ 2"t-),0<k<p-10<I<2" -
which satisfies V,,cV,, c...cV,,c... and forms an
orthonormal basis for L,([0,1]).A function X(t) € L, ([0,1]) is

approximated by Legendre wavelet bases as follows

p-12"-1

an(t) = Z ch,nl¢k,nl(t) = CTq) .

k=0 1=0

2

where P_ is projection at the finest scale n, and C,,,

&, (1) are denoted by vectors as
C =1[Con0>++sCp1n05Comia-+>Cpoints===>Copyn_ysee-

D= [¢0,n0 e '9¢p71,n0 ’¢0,n] e "¢p—l,nl ERREYS ¢0,n,2"—1 EERE

T
,C p-1,n,2"-1 I

T
’¢p—1,n,2"—1] :
The aproximation of (4) is estimated as [19]
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p-12"-1

X0=>" > Cunienm®)] ~02 ™).

k=0 1=0 P

A3)

which is exponential convergence with respectto P and N.

2.2 Weak Formulation of The Delay Systems

Consider the linear systems with time delay in the state
vector as follows:

% =AOX O+ A OX(E-7)+BOUR), 4)
with the initial conditions
X(0)=X,, X(@®)=7(), te[-7,0). %)

where X (t)and U (t) are (], and (, dimensional vectors of the
state and control input, respectively. The A(t), A (1) , B(t)
are continuous matrix functions with appropriate dimensions
and 7 > 0is the constant time delay. X, y(t)are constant
specified vector and continuous vector function, respectively.
Under the above assumptions, existence of unique solution of
(4) with zero input is assured by the results given in [2]. The
objective is to find the optimal control law U *(t) for
t €[0, 1] which minimizes the quadratic cost function defined
as

J =%XT(1)SX(I)+% jol (XT QX +UT OROU®)t>  (6)

where s is a positive semi-definite symmetric matrix, Q(t),

R(t) are positive semi-definite and positive-definite symmetric
continuous an ¢, X {;, 4, X {, matrices functions, respectively.

First, we introduce some standard notations of the DLWG
approach. Let X", X denote the values of the vector function

X att = 27" from right and left, respectively,

X\ =

Iim Xt +¢),

£—>0+

= X,‘zgl_i)%1+X(t|—g).

Let {{X}}=(X"+X7)/2,[[X]]=X"—X" represent
the mean and the jump of X at boundary of element, i.e.,
subinterval ||, respectively. Second, we multiply Eq.(4) by
test functions ¢  and replace X by approximation solution
X,,» and integrate over the element and use a simple formal

integration by parts. Then we obtain the variational formulation

as

| XnOdndts | AOX,Oudt+ | Ay OXp -2 et
| nl

n Iﬂ|
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=, BOUOudt+ Xy, B =K @i D

where h is the size of the element, X, is the flux and
suitably chosen as

X, = {{X, 11 —ol[X, 11, ®)

>

which is the local Lax—Friedrichs flux and o = max|X'

refer to [9] for more details.

III. COMPUTATION OF THE VARIATIONAL FORMULATION AND
OPTIMAL CONTROL

In this section, we first calculate the lower dimensions
operational matrices of the derivative, delay and product on
subinterval. Second, we evaluate each term of the variational
formulation of Eq.(7). Third, we consider the approximation of
the quadratic cost function and the corresponding optimal
control.

3.1 Computations of the operational matrices

Derivative operational matrix: Define the derivative
operational matrix on the | st element as
@ (t) = RD, (1), )

T
where q)| :[¢0,n|a"'9¢p—l,nl] R

calculated explicitly by

The matrix is

27" (1+1

L B (O (Ot =27 [ 4, (O (Dt
= 2™12k + 142K+ 1v,, .,

where K,k'=0,1,...,p—1 .When k'-k is odd, V. =1,

(R)k+1,k'+1 = _[

-n)

otherwise Vi, =0 .For example, let p=3 and N=0,

respectively, we can obtain the derivative operational matrix
as

0 V3 0
R=210 0 15]
0 0 0

Delay operational matrix: Define

operational matrix as

@, (t—7) = D(@)P, (D),

the time-delayed

(10)

where the matrix D(r) is computed as

27" (1+1)

(Dcrsert = oy B O (T =)t

-n

- %(1/2k VKD L )L, -2 r)du
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where L, (U) is Legendre polynomial and 0 <7 <2™" .For

example, let P =3, N =0, respectively, we obtain the delay
operational matrix as

1 —2v37 34572
D(r)=|0 1 0
0 0 1

Product operational matrix: Define the product operational
matrix as

@, ()P, (1)" P, = PD, (1) (11)

where Py =[9o.n1>91n15---0 p_Lm]T is a known vector and
each element of the product operator P with the property of
symmetry is computed clearly by

27 (141 p-1
Pl = ooy Bt OL 0y Ot (DL
j=0

where element of the P matrix is composed of linear
combinations of elements of the vector P . For example , let

p=3, n=1, | =0, respectively [2]

\/Eg(),l() \/Egl,l() \/Egz,lo
4 4
P={ V20, V20qu0+ 4
g],l() g(uo m gz,m \/E gl,l()
4 20
ﬁgZ,lO Egl,lo \/Eg(),l() +W92,10

Comment 1: For each element, i.e., every |, the above
operational matrices are the same, which are proved by using
simple variable substitute.

Comment 2: If the level n of resolution is enough large, the
Ppxp dimensional matrices compared with

2"px2"p dimensions [9] can simplify the storage and

lower

computational complexity when solving the systems.
3.2 Computation of variational formulation
We first introduce the Kroneker product: L4, @D, where

1%,
solution
Xp® =1

is Q, X0, identity matrix. Then the approximation

of the delay system is represented as
®(Cl®,) , where I denotes the I th

a4, ><q;

system of the delay systems (4) and I =1,...,(;.

For all k=0,1,...,p-1, we elaborately calculate the first

term of Eq. (7) by utilizing the derivative operational matrix in
(9) to obtain
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Lnl Xh (t)¢lznldt = Lnl Iqlxq, ® (:t-’rlq)l¢l:nld't

. G, %0

:Ln

where C,, denotes the Legendre wavelet approximation

®C D0 t)®1,,dt=1,, ®R'C, . (12)

coefficients of the I th system of the delay systems and
T
C :[Cr,o,nl"' c Cr,p—l,nl] .

rl oMr.k,nloc o

For the second, third and fourth terms in (7), we let A, A,
and B, denote the approximation coefficient matrices of the

known functions A(t) , A;(t) and B(t), respectively.

Then, we compute the second term by using the product
operational matrix (11) as

[, AOX O udt = 1., ©@APLCIO OO O ©1,dt

= Iqlqu ®(A\)r I:>ACrI)’ (13)

where the element of A, is composed of linear combinations
of elements of the matrix A . For the delay term (4), we need
to compute the delay term by two parts according to the delay
operator (10), which is defined as

Yt—1) =1y, ®K D (1), 0<t<rz,
® (D(0)Ch@, (1)),

(14)

T<t<l1.

Xh(t'[)—{

I Gixay

where K, denotes the approximation coefficients of the known
function y(t —7). Similar to (13), we obtain the calculations
of the third and fourth terms by using (10), respectively,

Iq‘xq‘ ®(AdrPAd KrI )’
Iq‘xq‘ ®(AdrPAd D(T)Crl )7

0<t<r,

r<t<l,

_[I Ad(t)xh(t_7)¢k.nldt:{ (15)

[ BOW M, Odt=—1,., ®(B,PU,) (16)

where U, isthe approximation vector of the function U (t).

Up to now, in order to effectively calculate the flux terms in
(7), we should adequately evaluate the {{g (I/ 2"} and

[[.ni(1/2™)11, respectively,

{{@n|(|/2n)}}=2n/2{m’ k odd,

| 0, k even,
[[¢1<n|(|/2”)]]:2n/2{—2m, k odd, -
| 0, k even.

Using (8) and (17), we obtain the calculations of the fifth and
sixth terms as
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(Xh)|+1 (¢k_,nl)l+l - (Xh)| (¢l:—,nl)l

==y ®[2” I, ®{

® I.x,,]c,. 1 8cc, (18
where

c0=[2n|w®{ ®|lxp]

Note that when | =0, 2" —1, we compute Eq.(18) by using
the initial condition X (0) = X, .

(2+40)k+20+1, k odd

0, k even

2+40)k+20+1, k odd

0, k even

According to (12), (13), (15), (16) and (18), we convert the
variational formulation (7) into the systems of algebraic
equations which are solved for the approximate coefficients

C,, of X(t) intermsof U(t) as

Cg,pxl,o = Iqlxq, ®[RT + APy +C0]71 [_ AuPuKy = BOrPBUrO] ’ (19)
-1

[:lpxl,l = Iqlxq] ® [RT + A, Py + APy D(2) "’Co] [_ B, U ]’ (20)

where cg o0 Ccl41 oLl denote the solutions defined on the

intervals [0,7) and [7,1], respectively.
3.3 Optimal control of the time-delayed systems

For the quadratic cost function in (6), the Q(t), R(t) are first

expanded by Legendre wavelet as
Q(t) = ququp ( | q ® q>I (t)) >

R(t) =R (I, ®D (1)), (21)

42xq2 P

Q%qu p

coefficient matrices of the function matrices Q(t) , R(t) ,

where quxqu denote the approximation

respectively. Similarly, the term X7 (1)Sx (1) in (6) is

denoted by s, 1., ® (€L, W) Sl ®Cr0 1)) - Then,

using the product operator (11), we have

G0 4%

Qquqplly ®P, O, @D O] =[l ., ®CiP)I' Q>

Reaplle, @O, @D, O =[14,q, ®CLONR>  (22)
Let CO = Cc?lpxl,o > CI1 = C;,pxl,l > UI = qupxl,l : USiIlg
(19), (20) and (22), we obtain the cost function as
.(23)

2"—1 2"—1
IE.CLUN) =€) 8,QC"+ LC)'(@ +5.)¢! + TUIRY,
1=1 1=0

Now, the essential process of the optimal control of the

systems is to find the wavelet coefficient vectors C°, C/ |

UI in (23) to minimize J subject to the constraints (19) and

(20), which is solved by using Lagrange multiplier method as
[2].
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J*=J(C",Cl,U)+A[G,(C",C,U) +1;G,(C",C/,U))  (24)

where the vectors A, , A, denote the unknown Lagrange
multipliers, G,,G, are functions constructed by the constraints

(19) and (20), respectively. Then, the necessary conditions for
minimizing (24) are represented as

d
aco

0
e

)
au,

3e=0, <L gu=,
o

B
ay

J*=0.

J*=0 J*=0, (25)

Solving the algebraic systems (25), we obtain the explicit
formulas of the wavelet coefficient vectors of approximate
solution and the optimal control, respectively,

1

i

U, =2(2f"bf —R ) 'd"aC®.

—1
-1
Ry — fbej dTa—I} v

(26)

C' =-1U,, 27

where a=Q,, b=Q,+S,> d=[R" +A,P,+C,]"'B,,P; >
V:[RT+A()rPA+C0]7IAdrPAdKrI’

f= [RT + Ay Pa + Ay Py D(2) +C, ]7l BorPs
Comment 3: For each subinterval, we need to solve smaller
the (,p algebraic systems with higher efficiency rather than

larger Q, p2" systems compared with [2].

IV. NUMERICAL EXPERIMENT

In this section, in order to verify our approach, a numerical
experiment is implemented. Consider the time delayed systems
described by [2, 17].

|

X@®=[L1]T",

1
0

0
1

dx(t) _

X(t 0 1Xt025 0 ), 0<t<1>
. O+ 5, [XA-029)+] u). 0<t<

—025<t<0. 28)

The optimal control of this delay systems is to minimize the
cost function

1 ¢ 1 1

—|| X"t X (t)+u’(t) dt.
2]{ <){1 J ® <)j
For this optimal control of time delayed systems, the

) el

0 -5 -1
} , R=1, respectively,

J 29

coefficient matrices are A, = [

5o
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which simplify the computations of solving the algebraic

systems (25).
We let the order of Legendre wavelet p =3 and the

decomposition level N =2, respectively, and the parameter in
(8) be o=1/2. The optimal control solution U(t) is

approximated by
2 3
U@ = chk,zl¢k.2| ®.
k=0 1=0

Using operational matrices of the derivative, delay and
product and the optimal control solution (26), we obtain
Legendre wavelet coefficient c,, of the optimal control

solution U as

U=[0.7552, 0.1033, 0; 0.8897, -0.0256, 0; 0.7309, -0.0662, 0;
0.3102, -0.1797, 0],

which is illustrated in Figure.1.

Figure.1. Optimal control solution by DLWG method
Similarly, the vector X(t) is obtained. Then , we obtain the

better optimal J = 2.0059 by substituting X(t) and U(t)

into the cost function (6) compared with the results in [2, 17].

V. CONCLUSION

The DLWG approach is applied to the delay systems. The
derivative, delay and product operational matrices with lower
dimensions are implemented to calculate each term for the
variational formulation. The optimal control of the delay
systems is transformed to solve the algebraic systems. The
method proposed in this paper decreases the computational
complexity because of the lower dimensions and sparse
operational matrices. Then the scheme and Lagrange multiplier
method are applied to solving the example and the numerical
solutions obtained show that this approach is effective. For
high accuracy, the order P or the level N of resolution of

Legendre wavelet should be increased.
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