
 

Abstract—Casing damage is the result of a number of factors 

in the long process of oilfield development, so it must be correctly 

judged and repaired in time to ensure the normal production of 

the oil fields. With the development of data science, it has always 

been an imperative problem remained to be solved. In this paper, 

we adopt a data-driven and the machine learning approach to 

casing damage forecasts. Firstly, from the fields of geology, 

engineering and development, a lot of history data is collected and 

processed. Then, based on these dynamic and static data samples, 

the random forest algorithm is used to create the casing damage 

prediction model. Finally, after the model is tested in two fault 

blocks, the results indicate that accuracy rates are 91% and 75%, 

which proves the validity and performance of the mode. 
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I. INTRODUCTION 

T present, as most oilfields enter the late stage of 

development, casing aging becomes severe and casing 

failures like damage and deformation frequently occur. Taking 

an oil production plant in Daqing as an example, as of 

December 2017, there were 1,147 casing damage wells. Among 

them, the casing damage in Pubei Oilfield is relatively severe, 

accounting for 54% of all casing damage wells, and the 

cumulative rate of casing wear is about 30%. The types of 

casing damage are mainly divided into deformation and 

rupture. About 64% of casing damage points are distributed in 

the Putaohua oil-bearing layer. Casing damage wells severely 

restricts the production of the oilfields, destroys the injection 

and production system of the oilfields, causing an unbalanced 

supply-discharge (injection and production) relationship and 

increasing the repair cost of casing damage. Meanwhile, casing 

damage also results in abnormalities of formation pressure and 

 

geological structure, which in turn induces new casing damage. 

Casing damage has become an unavoidable major problem for 

stable and high oilfield production. Casing damage is caused by 

a variety of factors during the development of the oil field, such 

as geological, engineering and development factors . Therefore, 

it is of great significance to research into how to determine the 

main control factors of casing damage in different blocks and 

develop a suitable method for the casing damage prediction to 

boost the development of waterflooding in blocks and make the 

adjustment to it. 

The theories and research findings regarding casing damage 

at home and abroad have flourished and been widely 

discussed[1], such as "casing damage caused by mud shale 

flooding ", "casing damage caused by pore pressure difference 

", "casing damage of oil reservoir caused by sandstone vertical 

deformation during high-pressure water injection ", "casing 

damage caused by in-situ stress concentration ", etc. The 

corresponding research methods include numerical simulation 

method , finite element method , etc. However, these researches 

on casing damage mechanism are limited and independent 

because they are mostly qualitative researches and study a 

single technology or a single factor. In addition, the factors that 

affect casing damage are non-linear, uncertain, and 

time-varying, making existing research methods and 

calculation models unable to accurately or efficiently predict 

the risks of single-well casing damage. With the development 

of big data and artificial intelligence technology, oil explorers 

and developers also keep exploiting big data technology to 

make the analysis and prediction of reasons for casing damage 

possible[2-8]. Yan Xiangyong et al. adopted a support vector 

machine approach to build a casing string life prediction model 

for oil and gas wells under complicated conditions with 32 

casing failure factors as input vectors and the remaining life of 

the casing string as the output vector. Zhang Jie , Wang Liyan, 

etc. selected 10 indicators such as faults, shale content, 

porosity, corrosion perforation, and fracturing times as a factor 
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set, and used a fuzzy comprehensive evaluation method to 

establish a casing damage prediction model, making it possible 

to quantitatively evaluate casing damage of oil and water wells. 

Based on the analysis of geological factors that affect casing 

damage, Jiang Xueyan  et al. selectively chose four single 

indicators and introduced the deterministic coefficient to 

quantify and stack them in the same interval, obtaining the 

casing damage risk degrees of the geological factors that can be 

used to evaluate the risk of casing damage. Zhang Xu et al. 

adopted Bayesian neural network method which has higher 

accuracy compared with BP neural network and selected 14 

parameters such as production time, wall thickness, steel grade 

and oil pressure as network inputs to predict the casing damage 

of oil and water wells. Huang Jun et al. comprehensively 

analyzed various factors and established a genetic neural 

network model based on the analysis of main components to 

predict casing damage of oil and water wells. 

In summary, the machine learning methods based on 

artificial intelligence can provide a scientific basis for the 

prevention and control of casing damage wells to a certain 

extent due to its good capabilities of data fitting and non-linear 

modeling. By this method, various casing damage prediction 

models such as support vector machines and neural networks 

are established and the interaction among various factors can be 

taken into comprehensive consideration. Nonetheless, oil data 

covers multiple fields, such as geology, well logging, 

engineering, and oil development and spans a wide range of 

time and space. The cross-domain data fusion poses a serious 

challenge to the construction of machine learning datasets and 

also hinders the application of machine learning technology in 

the petroleum field. This paper proposes a set of data-driven 

casing damage prediction methods, including the process of 

constructing big data of casing damage, governing data, 

generating samples, and constructing and applicating 

prediction models as shown in the figure 1 below. First, lots of 

historical data is collected and processed from the fields of 

geology, engineering and oil development to build a big 

database for casing damage; then existing data is combined to 

establish casing damage dynamic and static samples in units of 

time and stratum, respectively. Based on these samples, 

identification models of casing damages in different horizons, 

risk identification models of casing damages in different blocks 

and prediction models of single-well casing damage are 

constructed by means of random forest training and fitting. 

Finally, two blocks are selected for operation to verify the 

prediction. The results prove that the method proposed in this 

paper has a good application and promotion value.  
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Fig. 1. Data-driven prediction process of single-well casing damage 

II. DATA CONSTRUCTION FOR CASING DAMAGE 

A. Data Collection 

Influencing factors of casing damage include engineering, 

geology, and development factors, cover geology, drilling, 

well-logging, well-cementing, well-completion, perforation, 

development, testing, fracturing, acidification and other fields 

and also involve more than 20 business data as shown in the 

figure 2 shown. According to data’s time characteristics, the 

data is divided into basic data, static data and dynamic data. 

Basic data includes basic information related to blocks, layers, 

wells, and casing damage wells and so on. Static data is related 

to the stratigraphy, including data about well-logging, 

lithology, physical properties, perforation, and sedimentation, 

which can be used to analyze longitudinal distribution 

characteristics of casing damage. Dynamic data is related to 

time, including data on oil and water well production, 

acidification, fracturing, oil and water well pressure 

measurement, injection profile, and fluid production profile, 

etc. 
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Fig. 2. Data related to influencing factors of casing damage 

B. Data Quality Inspection and Governance 

Casing damage data are distributed in different professional 

databases and its amount is huge. Moreover, database systems 
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have been constructed in different periods, thus causing 

problems such as inconsistent information standards, diverse 

data types, different storage formats, duplicated data, and 

inconsistency between the old and new data. Since the data is 

an important resource for enterprises, its quality directly affects 

its value. Therefore, it is necessary to perform quality 

inspection and management activities on the collected raw data 

to improve the data quality and reduce the impact of "dirty" or 

"bad" data on data analysis and data mining. During the process 

of building big data for casing damage, data quality inspection 

includes integrity inspection, consistency inspection, accuracy 

inspection and validity inspection. 

Integrity inspection. The degree of difference between the 

data that you want to collect and that you actually collect can be 

gained by means of data integrity inspection. When 

constructing samples of machine learning, you can choose 

wells with better data integrity for modeling. This paper uses 

two-dimensional matrix to represent the integrity of the casing 

damage dataset where a row represents a well, and a column 

represents the data category, such as layered data, small layer 

data, logging data, and so on. Cell [i] [j] = 0 means that the 

j-type data of the i well does not exist; data [i] [j] = 1 means that 

the j-type data of the i well exists. If the data exists, the cell is 

filled with green and it is filled with red if it is a casing damaged 

well.  

Consistency inspection. For any oil field in the long-term 

exploration and development process, there are inevitably  lots 

of inconsistencies during the data integration process due to 

different database standards, coding methods and naming 

methods applied in different periods and so on. They are mainly 

reflected in the inconsistencies of horizon information, time 

formats, names of well-logging curve, logging instruments and 

calibration, etc. as shown in Table 1. 

Table. 1. Inconsistencies and governance methods for related data 

Problems Descriptions of problems Governance methods 

Horizon 

 

Layers data: N2t, K1n4, etc. 

Breakpoint data: K1n1 top, K1n2, etc. 

Sand-layer data and perforation data: 

represented by the group name of oil 

layer and small layer number, such as 

P1, 110, 021, 070. 
Lithology and property data: 

represented by sample depth. 

Establish standards of 

horizon descriptions and 

unify information on 

horizon descriptions on 

the basis of the 

relationship between 

large- and small- layers 
and depth. 

Time formats. 

Date 

format 

2010-01-12, 198001, 1999/01/23 and 

other formats 
Unify time format. 

Names of 

Well 

logging 

Curve 

The naming of logging curves is not 

uniform, which increases the 

workload in the course of processing 
logging data. Moreover, the names of 

the measurement items are not 

standardized, for instance, the naming 

of caliper is various: CAL, CALI、

CALM, CALS, CALS1, CALD, 

CALX, CALY, and so is the naming 

of measured depth: DEPTH, DEP,etc. 

Establish standard names 

of logging curve and 

mapping rules, and 

standardize the original 

names of logging curves. 

Well 

logging 

instrument 

and 

calibration 

Different logging instruments, 

operating methods and calibrators 

with different standards in different 

periods lead to errors in the 

measurement data of each well 

Standardized processing 
of measurement data 

about single and multiple 

wells. This paper adopts 

histogram 

normalization/standardiz

ation method. 

 

Validation inspection. The main task of data validation 

inspection is to identify invalid values, which include vacant 

values, duplicate values, infinity, infinitesimality, and special 

values agreed by different information systems, such as -99999 

in well-logging data. Data loss is inevitable in various database 

systems, and each type of loss will have different effects on 

statistical analysis. In order to analyze the mechanism of data 

loss and evaluate the impact of data missing, the quantity and 

distribution patterns of missing data need to be identified. As is 

one of the focuses of data scientists, the detection and 

governance of vacant values usually requires to figure out the 

proportion of missing data, the correlation between missing 

data, or its correlation with observable data and confirm 

whether the missing data is concentrated on a few variables as 

well as whether it is widespread and randomly generated. The 

methods for vacant values inspection include list detection 

method and the graphic survey method. There are generally two 

ways to deal with missing data. One is interpolation and the 

other is deletion. Different mechanisms of data loss will make 

approaches to governing data loss different. If the missing data 

is concentrated on several relatively less important variables, 

you can delete these variables; if a small fraction of the data is 

randomly distributed throughout the dataset, you can consider 

imputing the missing data by means of proximity interpolation, 

mean interpolation, probability interpolation, maximum 

likelihood estimation of normal distribution data, multiple 

interpolation, which are all commonly used. 

Accuracy inspection. The key to the accuracy inspection is to 

find outliers in the data. Outlier detection methods are broadly 

divided into two categories. One is outlier detection, such as 

box plot test outliers, clustering, and local outlier factor method 

Etc. the other is the detection of data within a reasonable range, 

using professional background knowledge to detect abnormal 

points. Taking petrophysical measurement data of well logging 

as an example, the values of different blocks and horizons all 

have certain distribution ranges, so those values out of their 

own distribution range values are outliers. In contrast, the 

second method is more reasonable in that not all abnormal 

values found with the first method are necessarily outliers, 

while a value out of range must be an outlier. For example, a 

point with a less than or equal to zero resistivity must be an 

abnormal point. Generally speaking, vacant values are also 

outliers. Therefore, the methods for managing vacant values are 

also applicable to management of outliers. With different 

application scenarios, the methods of detecting and managing 

outliers are unlimited. 

III.  CASING DAMAGE IDENTIFICATION MODEL 

The casing damage dataset is a non-linear, complex, and 

geophysical system that spans a wide range of space and time. 

Only raw data is not enough to build machine learning samples. 

How to design relevant indicators to characterize different 

influencing factors of casing damage is the key to the 

construction of oil big data samples. 
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A. Static Samples Construction 

Based on the statistical results of the casing damage dataset 

in Pubei Oilfield, geological and engineering factors affecting 

casing damage are observed to design static indicators such as 

lithology, perforation, sand layer, sedimentation, connectivity, 

and adjacent wells as shown in Table2. 

Table. 2. The static factors for Pubei OilField 

Factor name Symbol Distribution characteristics 

Stratum dip dcqj 

The inclination angle is relatively low, with a 

slightly steeper inclination angle of 5 degree on 
the west wing, a gentler inclination angle of 3 

degree on the east wing, 2 degree at the northern 

end, and an inclination of less than 1 degree at 

the southern end extending further. 

Occurrence rate 

of faults 
dcsf 

About 22% among all wells encountered faults 

and 24% of casing damage wells encountered 

faults. 

Casing damage 

rate of adjacent 

wells 

lj 

Different fault blocks are distributed in different 
districts. Taking a certain fault block as an 

example, the average casing damage ratio is 

50% among adjacent wells within 400 meters. 

The types of 

sedimentary 

facies 

cjx 

The sedimentary facies where about 65% casing 

damage point is located are mainly non-sheet 

sand, main channel and main sheet sand. 

Lithology yxlx Most casing damage points are Mudstone. 
Sand-mudstone 

interface distance 
yxdis 

Most of the casing damages are located within 1 

meter from the sand-mudstone interface. 

Perforation layer sksf 

About 75% casing damage points are in the 

perforation layer has and about 25%  in the 

non-perforation layer. 

Outer diameter wj 

The outer diameter of 90% casings is 140mm, 

but about 31% of casings with an outer diameter 

of 114mm experience casing damages. 

Wall thickness bh 

The wall thickness of casings is mainly 7.7mm, 

but about 36% of casings with a wall thickness 

of 6.4mm suffer from casing damages. 

Casing damage 

frequency 
tscs 

80% of casing damage wells experience casing 

damage once, 16% twice, 3.3% three time, and 

less than 1% four times. 

Service life sysm First casing damage is18 years on average; 

 

Lacking of data values is one of the problems often 

encountered in data analysis. Without high-quality data, there 

won’t be high-quality findings obtained from data. There are 

three main types of methods for processing missing values: 

delete tuples, complete data and leave data aside. If the 

proportion of missing values is small, it can be discarded 

directly. if it is relatively large, deletion is not advisable for a lot 

of information will be lost in this way, causing a systematic 

difference between the incomplete observation data and the 

complete observation data. Analysis of such data may lead to 

wrong conclusions. Data completion is usually based on 

statistical principles, and fills a missing value according to the 

distribution of values of other objects in the initial dataset, such 

as average value filling, special value filling, regression 

replacement, etc. However, the filling of empty values may not 

be completely in line with objective facts and incorrect filling 

of null values might make things worse and cause incorrect 

results to be produced from data. Therefore, to deal with 

missing values requires detailed analysis of issues with their 

own uniqueness taken into consideration. Missing values 

should be derived and filled by using professional methods 

combined with their practical application scenarios to reduce 

the gap between machine learning algorithms and practical 

applications. In this study, the main reason for a large number 

of missing static indicators of casing damage is the 

incompletion of well-logging curves, which provide the basic 

data for calculating the physical parameters of the reservoir, for 

example, the integrity degree of curve AC is only 68%. For the 

missing data of well-logging curves, regression methods such 

as support vector machines and neural networks can be 

employed to establish data models of the acoustic curves so as 

to obtain estimations of missing data of the logging curve. After 

processing the missing values, the static samples of casing 

damage are constructed as shown in the following table 3. 

Table. 3. Machine learning samples based on static indicators 

sysm tslx xch 
xc 

hd 

fsy 

hdb 
nzsyhdb 

ny 

hdb 

sk 

ks 
VSH ... 

20 CD P101 2.6 0.0 0.3 0.7 15 0.5 ... 

22 CD P111 2.4 0.3 0.2 0.3 0 0.0 ... 

2 CD P111 2.4 0.3 0.2 0.3 0 0.0 ... 

13 BX P110 2.6 0.6 0.1 0.3 26 1.4 ... 

7 CD P102 6.7 0.1 0.1 0.8 8 0.4 ... 

0 CD P102 6.7 0.1 0.1 0.8 8 0.4 ... 

20 BX P104 5.2 0.3 0.2 0.5 21 1.3 ... 

21 BX P110 4.6 0.3 0.2 0.5 32 2.0 ... 

9 PL P104 5.9 0.6 0.2 0.2 61 3.8  

20 BX P110 2.6 0.6 0.0 0.4 53 1.1  

14 CD P102 7.6 0.3 0.1 0.6 0 2.5  

18 BX P109 4.6 0.1 0.5 0.5 31 1.4  

17 BX P107 5.7 0.1 0.4 0.5 42 1.7  

... ... ... ... ... ... ... ... ... ... 

B. Casing Damage Type Classification Model 

Machine learning provides scientists with a set of tools for 

discovering new patterns, structures, and relationships in 

scientific datasets that are difficult to reveal through traditional 

techniques. The important theoretical basis of machine learning 

algorithms is classical statistics which is centered around the 

asymptotic theory when the number of samples approaches 

infinity. In the process of constructing casing damage 

prediction model for a single well, the samples used for 

modeling are often limited after filtering some data of blocks, 

wells, layers, etc. In particular, after all the influencing factors 

of casing damage are added, the machine learning faces 

problems such as small samples and high dimensions when it is 

adopted to analyze casing damage wells. Nonetheless, neural 

network algorithms often require more learning samples. When 

there are fewer samples, there are problems such as local 

extreme values and over-learning. Support vector machine 

transforms low-dimensional to high-dimensional through 

non-linear transformation on the principle of structural risk 

minimization, and then calculates the hyperplane to classify the 

data. However, when the dimension is too high, feature 

selection should be performed to meet the needs of SVM. 

Random forest is a classifier ensemble learning algorithm that 

does not rely on any model assumptions. It won’t lose its action 

even in high-dimensional space and can achieve high 

prediction accuracy under any form of classification and 

regression. Also it is not prone to overfitting, enables MDA and 

MDI algorithms to evaluate the importance of features and has 

many other advantages. This paper mainly uses the random 

forest algorithm to establish classification and regression 

prediction models which are helpful in automatically finding 
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rules and characteristics of layers where casing damages are 

about to occur from data of casing damage wells and wells 

without casing damages. 

In order to analyze the influencing factors of casing damage 

at different horizons, a static sample set is constructed with the 

method described above based on static dataset of casing 

damage at Pubei Oilfield. Select "Small layer, small layer 

thickness(LT), siltstone thickness ratio(STR), argillaceous 

sandstone thickness ratio(ASTR), mudstone thickness 

ratio(MTR), perforation, perforation intervals, distance from 

the perforation top-bottom interface(MINPID), VSH, lithology, 

sand-mudstone interface distance(SMID)" and other indicators 

as input features, " types of casing damage" as a category label, 

and then a random forest algorithm is used to establish a 

recognition model of casing damages at different horizon. The 

identification results are shown in Table 4, which illustrates the 

differences of influencing factors in different formations. Take 

the three small layers of P101, P102, and P103 as examples: the 

sensitive factor of P101 is the "mudstone thickness ratio", the 

sensitive factor of P102 is the "sand-mud interface distance", 

and the sensitive factor of P103 is "small layer thickness". 

The confusion matrix for the evaluation of model predictions 

is shown in Table 5. The average accuracy of casing damage 

identification models in different horizons is 84.2%. Among 

them, the prediction accuracy of casing deformation is 82.1%, 

and the recall accuracy is 95.8%; the prediction accuracy of 

casing fracture is 88.9%, the recall accuracy is 61.5%; the 

prediction accuracy of casing breakage/rupture is 100%, and 

the recall accuracy is 100%. 

Table. 4. Recognition rules in different layers 

Layer Number Identification Rules 

P101 

XCH = P101 

|   MTR > 0.408 

|   |   MTR > 0.597 
|   |   |   ASTR > 0.108: CD {BX=0, CD=3, PL=0} 

|   |   |   ASTR ≤ 0.108: BX {BX=7, CD=2, PL=0} 

|   |   MTR ≤ 0.597: BX {BX=6, CD=0, PL=0} 

|   MTR ≤ 0.408: CD {BX=0, CD=5, PL=0} 

P102 

XCH = P102 

|   SMID > 0.227 

|   |   MINPID > 18.190: CD {BX=0, CD=2, PL=0} 

|   |   MINPID ≤ 18.190 
|   |   |   MINPID > 1.085: BX {BX=10, CD=0, PL=0} 

|   |   |   MINPID ≤ 1.085 

|   |   |   |   MINPID > 0.770: CD {BX=0, CD=2, PL=0} 

|   |   |   |   MINPID ≤ 0.770 

|   |   |   |   |   STR > 0.004 

|   |   |   |   |   |   STR > 0.148: BX {BX=4, CD=0, PL=0} 

|   |   |   |   |   |   STR ≤ 0.148: PL {BX=1, CD=0, PL=3} 
|   |   |   |   |   STR ≤ 0.004: BX {BX=3, CD=1, PL=0} 

|   SMID ≤ 0.227 

|   |   ASTR > 0.172: BX {BX=2, CD=2, PL=0} 

|   |   ASTR ≤ 0.172: CD {BX=0, CD=6, PL=0} 

P103 

XCH = P103 

|   LT > 6.350 

|   |   ASTR > 0.179 

|   |   |   SMID > 1.305: CD {BX=1, CD=1, PL=0} 
|   |   |   SMID ≤ 1.305: BX {BX=5, CD=0, PL=0} 

|   |   ASTR ≤ 0.179 

|   |   |   LT > 6.700: BX {BX=2, CD=1, PL=0} 

|   |   |   LT ≤ 6.700: CD {BX=0, CD=6, PL=0} 

|   LT ≤ 6.350 

|   |   VSH > 0.947: BX {BX=14, CD=0, PL=0} 

|   |   VSH ≤ 0.947 

|   |   |   ASTR > 0.135: BX {BX=8, CD=1, PL=0} 
|   |   |   ASTR ≤ 0.135: CD {BX=0, CD=2, PL=0} 

 

 

Table. 5. Confusion matrix of casing damage identification model 

 True：BX True：PL True：CD Precision 

Prediction：
BX 

23 0 5 82.14% 

Prediction：PL 0 1 0 100% 

Prediction：
CD 

1 0 8 88.89% 

Recall 95.83% 100% 61.54% - 

IV.  BLOCK CASING DAMAGE RISK ASSESSMENT 

In order to evaluate the risk of casing damages in different 

blocks, the risk rank is evaluated according to the annual 

newly-added casing damages in blocks, as shown in the 

following table. 

Table. 6. Risk ranks of casing damages in blocks 

Levels Casing damage risk level rules 

High Annual rate of newly-added casing damage ≥ 3% 

Medium 1% ≤ Annual rate of newly-added casing damage ＜ 3% 

Low Annual rate of newly-added casing damage ＜ 1% 

 

In order to assess risks of block casing damages, dynamic 

factors are designed. Oilfield development by water injection is 

a dynamic process. In different periods, due to different 

development plans, the casing damage rate changes 

dynamically with time and it is same case with other factors 

including formation pressure, differential pressure, water 

injection pressure, days of overpressure water injection, water 

injection intensity, completion of injection allocation, 

injection-production ratio, etc. The main indicators for 

evaluation of block casing damages are the pressure system and 

the injection-production relationship, including original 

formation pressure, average formation pressure, total pressure 

difference, injection-production pressure difference, water 

injection pressure difference, pressure difference among blocks, 

and cumulative injection-production ratio. Generally, the 

statistics of multiple wells in a block are used to represent the 

data characteristics of a single indicator, including the degree of 

concentration of data (mean, median, mode), degree of 

dispersion (standard deviation, coefficient of variation, quartile 

range), and distribution shape (skewness coefficient and 

kurtosis coefficient). In this case, one indictor will be split into 

eight indexes, which is easy to establish high-dimensional 

small sample data. Therefore, analysis of related row and 

similarity is performed on dynamic indicators of blocks. 
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Table. 7. The Samples for evaluation of casing damage risks in blocks 

NF JS DQYL ZYC YJLY ZCYC LB ... 

1994 95 7.959 -2.841 1.954 14.044 medium ... 

1995 96 9.571 -1.229 2.69 15.419 low ... 

1996 97 9.088 -1.712 2.145 15.421 medium ... 

1997 102 9.726 -1.074 2.242 16.226 low ... 

1998 109 8.943 -1.857 1.896 16.054 low ... 

1999 113 9.803 -0.997 3.015 15.06 low ... 

2000 114 9.619 -1.181 2.63 14.689 low ... 

2001 114 9.625 -1.175 3.303 14.029 low ... 

2002 115 9.76 -1.04 2.393 16.263 low  

2003 116 10.172 -0.628 3.005 15.092 medium  

2004 116 10.343 -0.457 2.527 16.016 medium  

2005 117 11.322 0.522 3.82 14.907 low  

... ... ... ... ... ... ... ... 

 

We select the random forest algorithm to establish a risk 

identification model in blocks, as shown in the figure below. 

The average accuracy of the model is 80%. It can be seen that 

the main influencing factor of No.2 fault block of Pubei oilfield 

is the "water injection pressure difference". 

 

 

Fig. 3. Decision tree model for risk identification 

V. SINGLE WELL CASING DAMAGE PREDICTION 

Oil or water wells with casing damages must be correctly 

judged and repaired in time to ensure the normal production of 

oilfields. Based on the different characteristics of casing 

damages shown by different data, this paper adopts machine 

learning algorithms to mine the key features hidden in them, so 

as to make single-well casing damage prediction more 

scientific, accurate and timely.  

Sample generation. Extract the production data, measures 

data, perforation data, hierarchical data, casing damage and 

other data of the casing damage wells in the 4th fault block in 

Pubei Oilfield, and select oil pressure, casing pressure, water 

injection intensity, apparent water injectivity index , maximum 

allowable pressure difference, mainline pressure, daily water 

injection amount, monthly water injection amount, annual 

water injection amount, the number of days in production and 

other indicators as input features of the algorithm, and whether 

casing damages occur as the category label. A single well 

dynamic training sample set is constructed, with a total of 389 

records, of which the records of casing damage is 65 and those 

of normal is 314. 

Feature importance analysis. The random forest algorithm 

supports two methods, MDA and MDI, to effectively evaluate 

the importance of each feature in the modeling process, so as to 

determine the combination of features used in the modeling and 

exclude the effect of too many invalid features on the accuracy 

of the model. Table 9 shows the results of feature importance 

analysis of the casing damage prediction model for the injection 

wells in the fourth fault block in Pubei oilfield, indicating "oil 

pressure, maximum allowable differential pressure, mainline 

pressure, and water injection intensity" are the main influencing 

factors for casing damage of the injection wells in this fault 

block. 

Table. 9. The MDA and MDI for the injection well factors 

Factors MeanDecreaseAccuracy MeanDecreaseGini 

oil pressure 33.07 32.17 

mainline pressure 32.85 14.68 

pressure difference 24.93 28.98 

injectivity index 19.38 9.62 

casing pressure 14.72 12.24 

daily water injection 14.67 5.45 

water injection intensity 13.78 5.23 

water injection 12.79 5.17 

production days 8.23 4.03 

yearly water injection 8.09 3.48 

 

Forecasting model. Random forest model is a classifier that 

uses multiple trees to conduct trainings and make predictions 

based on samples. Random forests consist of multiple 

classification and regression trees (CART) with each tree 

representing a decision tree. Each decision tree model 

quantitatively represents the rules of different parameters for 

casing damage identification and early warning. 

Model evaluation. The confusion matrix of the 

early-warning model of single-well casing damages for the 

fourth fault block in Pubei oilfield is shown in Table 11, with an 

accuracy rate of approximately 95.6%. 

Model application. The random forest model established in 

the above section is employed to make predictions for the other 

18 wells without casing damages in the 4th fault block in Pubei 

oilfield. The prediction results are shown in Table 10. In order 

to verify the validity of the model, the operation records of 12 

water wells in the first half of 2019 are extracted of which the 

prediction results of 11 wells are consistent with the operation 

results, with the coincidence rate about 91%. 

The same forecasting method is used to extract the relevant 

data of the second fault block in Pubei oilfield to establish a 

prediction model of single-well casing damage for the block 

and make predictions for and carry out the verification of wells 

with casing damages in the block, with a coincidence rate about 

75%. It can be seen that due to different number of wells and 

casing damage samples in different blocks, the accuracy and 

coincidence rates of the model are also different. The follow-up 

research will focus on the study on casing damage prediction 

methods based on small samples of blocks. 
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Table. 10. The prediction results of the fourth fault block 

Well 
Number 

Casing damage 
prediction 

probability 

Casing damage 

prediction 
probability in 

the last 2 years 

Final forecast 
results 

Downhole 
operation 

verification 

JH715 0.87 0.667 Casing damage consistent 

JH726 0.674 0.905 Casing damage consistent 

JH765 0.091 0.762 Normal consistent 

JH76F5 0.255 0.333 Normal consistent 

JH775 0.6 0.857 Normal  
JH7848 0.617 0.857 Normal  

JH7851 0.186 0.048 Normal consistent 

JH7950 0.723 0.952 Casing damage inconsistent 

JH8053 0.404 0.571 Normal consistent 

JH8052 1 0.952 Casing damage consistent 

JH8153 0.433 0.905 Normal  

JH8250 0.957 0.952 Casing damage  

JH8349 0.467 0.476 Normal consistent 

JH8351 0.352 0.905 Normal  

JH8353 0.623 0.667 Normal consistent 

JH8450 0.596 0.381 Normal consistent 

JH8751 0.023 0 Normal  

JH124 0.537 0.429 Normal consistent 

 

VI. CONCLUSION 

On the basis of the data-driven concept, this paper 

establishes a set of methods for casing damage identification 

and prediction, including the construction of a big database of 

casing damage, dynamic and static sample generation, model 

construction, and model application. The established prediction 

model for single-well casing damage has a coincidence rate of 

91% and 75% in the fourth and second fault block in Pubei 

oilfield, respectively, proving that the model has a good 

application value and provides a scientific basis and a clear 

direction for following prevention and management of casing 

damages. Compared with the traditional concept characterized 

by "reason-based measures, multiple remediation plans", the 

data-driven concept characterized by "data-driven 

decision-making, data-based governance" has truly made the 

automatic data service possible, and pushed the oilfield work 

model to transform from "digital mode" to "automatic mode " 

and "intelligent mode". However, petroleum data is a complex 

geophysical information system that spans a wide range of time 

and space. Even a simple business analysis involves many 

aspects of multiple discipline such as geology, exploration, 

logging, and development. The data quality, data integrity, 

random noise in data, and imbalance of the data set all pose a 

great challenge for the construction of machine learning data 

sets. Data is compared to petroleum in the new era. With the 

development of data science, a group of professional scientists 

in petroleum data will be born. Together with other 

professionals in petroleum, they will draw a grand blueprint for 

the past and present of petroleum data. 
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