
Abstract—Forestry mobile robots can effectively solve 

the problems of low efficiency and poor safety in the 

forestry operation process. To realize the autonomous 

navigation of forestry mobile robots, a vision system 

consisting of a monocular camera and two-dimensional 

LiDAR and its calibration method are investigated. First, 

the adaptive algorithm is used to synchronize the data 

captured by the two in time. Second, a calibration board 

with a convex checkerboard is designed for the spatial 

calibration of the devices. The nonlinear least squares 

algorithm is employed to solve and optimize the external 

parameters. The experimental results show that the time 

synchronization precision of this calibration method is 

0.0082s, the communication rate is 23Hz, and the gradient 

tolerance of spatial calibration is 8.55e−07. The calibration 

results satisfy the requirements of real-time operation and 

accuracy of the forestry mobile robot vision system. 

Furthermore, the engineering applications of the vision 

system are discussed herein. This study lays the foundation 

for further forestry mobile robots research, which is 

relevant to intelligent forest machines. 
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I. INTRODUCTION 

CCELERATING the development of technology and 

equipment is an essential approach to transform the mode 

of forestry production [1]. Forests have harsh environments and 

require high labor intensity. The use of mobile robots to replace 

manpower can effectively reduce labor costs and potential 

safety hazards in forestry work. The vision system is the core of 

a forestry mobile robot, and its calibration affects the ability of 

the robot to perceive the environment. The vision system of 

forestry mobile robots must satisfy the real-time operation and 

accuracy requirements [2],[3]. To satisfy the requirement of 

real-time operation, the vehicle running speed is assumed to be 

40 km/h, and the operating frequency of the vision system 

should exceed 10Hz. The vision system accuracy is related to 

the accuracy of the sensor, internal and external parameter 

calibrations, and the vision processing algorithm [4].  

The study of vision systems for the forest operation process 

has attracted the interest of many researchers, leading to a 

certain extend of progress. In developing the forestry vision 

system, researchers initially used LiDAR or a camera. LiDAR 

can be used to detect the diameter and position of trees in forest 

environments [5]-[8], and a camera can capture the color and 

texture features of the forest environment for detection and 

classification [9]-[12]. A three-dimensional (3D) LiDAR can 

obtain more complete shape and position information, but it is 

highly expensive. In contrast, a camera is inexpensive for 

capturing the color and texture of the environment, but it cannot 

detect information such as position, shape, and size. Compared 

with the 3D LiDAR, a two-dimensional (2D) LiDAR is less 

expensive, but its point cloud is in a single line[13]. 

Nevertheless, the foregoing shortcomings can be effectively 

compensated by the combined use of a camera and 2D LiDAR. 

The joint calibration between the camera and 2D LiDAR 

affects the perception of the vision system. If the data obtained 

by both devices are calibrated and processed, effective 3D 

information can be obtained. The joint calibration of camera 

and 2D LiDAR information was first proposed by Qilong 

Zhang and Robert Plesst [14]. Based on the observation of an 

external checkerboard, they extracted LiDAR points and 

checkerboard grid points to optimize the external geometric 

parameters. Jae-Yeul Kim and Jong-Eun Ha completed the 

extrinsic calibration of the camera and 2D LiDAR by adding a 

dummy camera to remove IR cut filter [15]. In addition, the 

corresponding relationship between these two devices was 

determined based on a calibrated camera image to obtain 

external parameters. Van-Dung Hoang created a calibration 

plate consisting of two adjacent and discontinuous right 

triangles that could automatically extract the corresponding 

points between the two sensors to estimate the external 

parameters between them using a matrix [16]. Jesus Briales 

extracted the orthogonal points of the LiDAR point cloud and 

camera image using an orthogonal trihedron and then obtained 

the rigid body transformation between them [17]. Khalil used a 

checkerboard and orthogonal planes to solve the external 

parameters between a camera and 2D LiDAR without 

overlapping [18]. Xuepeng Chu et al. used a triangular plate as 

a calibration tool and extracted the intersection between the 
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edge of the plate and the LiDAR point cloud in the image. Then 

they employed the point-line correspondence to obtain 

calibration parameters [19]. In [20], an infrared cutting filter 

was first used to make the scanning points of the 2D LiDAR 

visible in the camera image, then edge matching and top-down 

methods were employed to estimate extrinsic parameters. Itami 

Fumio et al. proposed an improved calibration method using a 

checkerboard calibration board and checkerboard normal 

vectors to construct additional constraints between the camera 

and 2D LiDAR [21].  

This study considered the requirements for the vision system 

of forestry mobile robots as a starting point in building the 

vision system using the combination of a monocular camera 

and 2D LiDAR. The camera was first calibrated based on the 

working principle of the devices. Then, the vision system was 

calibrated in time and space. Finally, the 2D LiDAR point 

cloud and the image were matched to obtain 3D information of 

the environment. These processed data establish the foundation 

for obtaining more accurate information and provide a basis for 

follow-up research on forestry mobile robots. 

II. MATERIALS AND METHODS 

A. Overall structure 

An Ackerman robot equipped with an electronic compass 

and encoder was used as the basic platform in this study; the 

robot system is shown in Figure 1. Its length, width and height 

are 990, 336 and 345mm, respectively; its maximum speed is 

1.5m/s. The monocular camera and 2D LiDAR are installed 

horizontally in the front part of the robot, constituting the vision 

system. The distance between the vision system and the ground 

is 100cm. The 2D LiDAR is HOKUYO UST-10LX, which can 

perform a 2D plane scan at 270° within a 10m radius. It scans 

the contour information in the surrounding environment and 

outputs the information via the IPV6 network interface at a rate 

of 40Hz to form a raw point cloud. The monocular camera is 

LRCP10230_1080P with the resolution set to 640×480 pixels; 

it can transmit the color and texture of the surrounding 

environment to the master via the universal serial bus (USB) 

data interface. As shown in Figure 2, the program runs on the 

robot operating system (ROS) Kinetic. The overall structure 

includes the hardware, operating, and application layers. The 

hardware layer transmits the collected information to the 

operating system via their own communication interface. The 

operating system transmits the information to function 

packages in the application layer, and finally the functions such 

as obstacle detection and positioning are realized. 

 

Fig.1 The system of the forestry mobile robot 

 
Fig.2 Overall structure of the forestry mobile robot 

B. Calibration tool 

In addition, a calibration plate needs to be prepared for 

calibrating the internal and external sensor parameters. Figure 3 

shows a checkerboard calibration board with two 60mm high 

raised cells and 12×9 checkerboard squares of a size of 20mm 

× 20mm each. To determine the feature points effectively, it 

must be ensured that the measured plane of the LiDAR and the 

two raised cells are on the same plane during calibration. The 

camera can determine each feature point on the checkerboard 

by observing the calibration board. And the feature points of the 

two raised cells on the calibration board are determined. 

Therefore, the relevant feature points in the 2D point cloud and 

image can be determined.  

 

 
Fig.3 Checkerboard calibration plate with two raised cells 

C. Camera calibration 

In this study, the camera used is a pinhole model 

charge-coupled device (CCD).  Zhang's calibration method 

[22], whose calibration tool is checkerboard, was employed. 

Compared with other methods, this calibration method has a 

lower cost, higher precision and robustness. The calibration 

model of the internal parameters of the camera is expressed as 

follows: 

s [
u
v
1

] = [
fx 0 cx

0 fy cy

0 0 1

] [r1 r2 t ]∙ [
X
Y
1

] (1) 

 

K= [
fx 0 cx

0 fy cy

0 0 1

] (2) 

 

where: [𝑢, 𝑣, 1]𝑇 is the homogeneous coordinates of the points 

on the calibration plate projected onto the image plane; 

[𝑋, 𝑌, 1]𝑇  is the homogeneous coordinate of the point on the 
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calibration plate; (𝑟1, 𝑟2)  is the rotation matrix of camera 

coordinate system relative to the world coordinate system; 𝑡 is 

the translation vector of camera coordinate system relative to 

the world coordinate system; 𝐾 is the internal matrix of the 

camera.. 

By setting the homography matrix to 

𝐻 = [ℎ1 ℎ2 ℎ3] = 𝜆𝐾[𝑟1 𝑟2 𝑡]. (3) 

the following is obtained, 

𝑟1 =
1

𝜆
𝐾−1ℎ1, 𝑟2 =

1

𝜆
𝐾−1ℎ2. (4) 

Because 𝑟1  and 𝑟2  are orthogonal unit quantities, the 

constraint relationship between the two variables can be 

derived, and 𝐾 can be obtained using multiple sets of data. The 

final internal parameter of the camera is as follows: 

𝐾 = [
711.6578 0 348.7275 

0 734.8004 294.6621
0 0 1

] (5) 

D. Time Synchronization 

The camera and 2D LiDAR are independent in terms of 

information collection.  The HOKUYO UST-10LX LiDAR 

communicates through an IPV6 network interface with a 

transmission rate of 40Hz, whereas the CCD camera 

communicates through a serial port with a transmission rate of 

approximately 30Hz. The two devices have different 

communication methods and transmission rates. Consequently, 

the arrival times of the 2D point cloud and image that are 

received by the main controller do not match; hence, 

synchronization is necessary [23]. The timestamp 

corresponding to each data when the main controller received 

the data was recorded and used to divide the time period [25]. 

In this study, an adaptive algorithm [24] was used to align the 

timestamp. 

All image messages were formed into an image queue 

according to time, and all 2D point cloud messages were 

formed into 2D point cloud queues. An image message and a 

2D point cloud message received over the same time period 

formed a set of information. Moreover, at least one of the two 

adjacent sets was to have no missing messages. The latest 

information at the head of the two queues is named pivot. The 

size of the set is the difference between the latest and earliest 

timestamps of the set. If R is the latest set and N is the next set, 

then the alignment steps are shown in Figure 4. For example, 

when the last set is determined, the new image message I1 

enters the image queue and awaits the next message. If the next 

message is an image message I2, then I1is discarded and the 

next message is awaited. If the next message is a point cloud 

message L1, then L1 enters the point cloud queue and is named 

the pivot. The next message is awaited; if the next message is 

the point cloud message L2, then L1 and I1 form a new set. If 

the next message is the image message I3, the sizes of L1I1 and 

L1I3 are calculated. If the size of L1I1 is small, then L1I1 is a 

new set; otherwise, L1I3 is a new set. 

 
Fig.4 Time alignment steps 

The orange line shown in Figure 5 represents the image 

queue, and each circle on the orange line represents an image 

message. The purple line shown in Figure 5 represents the 2D 

point cloud queue, and each square on the purple line represents 

a 2D point cloud message. The dark red message represents the 

pivot. The messages connected by dashed lines constitute a set, 

indicating that these two messages are in the same period. The 

rest of the messages are ignored. 

 
Fig.5 Time alignment principle of Image message and 2D 

point cloud 

E. Spatial calibration 

When the data collected by the camera and 2D LiDAR are 

combined, they must be calibrated in terms of time and spatial 

coordinates. The purpose of spatial registration is to obtain the 

external parameters [17] between the 2D point cloud and image 

coordinate systems and establish an effective match between 

the two of them, thus laying the foundation for further obtaining 

3D information about the forest. The coordinate systems are 

shown in Figure 6. 
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Fig.6 Coordinate system transformation 

In this study, a checkerboard calibration plane with bulges 

was employed for externally calibrating the camera and 2D 

LiDAR. Suppose the feature point marked in red in Figure 6 is 

𝑃𝑤 = [𝑋𝑤 , 𝑌𝑤 , 𝑍𝑊], and its projection in the camera coordinate 

system and image coordinate system are 𝑃𝑐 = [𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐] and 

𝑃𝐼 = [𝑢, 𝑣], respectively. According to the camera calibration 

results, the following could be obtained: 

[
u
v
1

] = (k
Zc

⁄ ) [
fx 0 cx

0 fy cy

0 0 1

   
0
0
0

] [

Xc

Yc

Zc

1

] (6) 

The scanning plane of the LiDAR passed feature point  𝑃𝑤, 

and the projection of  𝑃𝑤 in the 2D LiDAR coordinate system 

is  𝑃𝐿 = [𝑋𝑙 , 𝑌𝑙 , 𝑍𝑙] . In this experiment, the laser plane was 

located in a horizontal plane with a height ℎ , and the 

coordinates obtained by the 2D LiDAR were those of polar 

coordinate system. Therefore, the projection of  𝑃𝑤 in the 2D 

point cloud is 

𝑃𝐿 = [𝑑𝑠𝑖𝑛𝛼, 𝑑𝑐𝑜𝑠𝛼, ℎ], (7) 

where: d is the distance value of  Pw measured by 2D LiDAR; α 

is the angle of Pw measured by 2D LiDAR. 

The rotation matrix and translation vector between the 2D 

LiDAR and camera are denoted as R and T, respectively. 

𝑅 = [

𝜑11 𝜑12 𝜑13

𝜑21 𝜑22 𝜑23

𝜑31 𝜑32 𝜑33

] (8) 

𝑇 = [

∆1

∆2

∆3

] (9) 

Therefore, the relationship between the 2D point cloud and 

image coordinate systems is as follows:  

𝑃𝐼 = 𝑅 ∙ 𝑃𝐿 + 𝑇 (10) 

The different 𝑃𝑤 values were measured by setting the device 

at different positions and angles to obtain the corresponding 

arrays. Assume that the set of corresponding 𝑃𝑤 points in the 

image, and the set of corresponding 𝑃𝑤 points in the 2D point 

cloud are given by Eqs.(11) and (12), respectively. 

𝑃𝐼 = {𝑐0, 𝑐1, … , 𝑐𝑛} (11) 

𝑃𝐿 = {𝑙0, 𝑙1, … , 𝑙𝑛} (12) 

The centres of mass of 𝐶𝑖and 𝑙𝑖 are as follows: 

𝑐̅ =
1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1

(13) 

𝑙 ̅ =
1

𝑁
∑ 𝑙𝑖

𝑁

𝑖=1

(14) 

The coordinates of the de-centroid are as follows： 

𝑐𝑖
′ = 𝑐𝑖 − 𝑐̅ (15) 

𝑙𝑖
′ = 𝑙𝑖 − 𝑙 ̅ (16) 

The least squares problem is formulated, as given by 

Eq.(17) . 

𝐸 = min
𝑅,𝑇

1

2
∑‖(𝑐𝑖

′ − (𝑅 ∗ 𝑙𝑖
′ + 𝑇))‖

2
𝑛

𝑖=1

(17) 

𝑅∗ = arg min
𝑅

1

2
∑‖𝑐𝑖

′ − 𝑅 ∗ 𝑙𝑖
′‖2

𝑛

𝑖=0

(18) 

The singular value decomposition (SVD) [26] is used to 

solve Eq.(19): 

𝑊 = ∑ 𝑐𝑖
′

𝑛

𝑖=1

𝑙𝑖
′𝑇 = 𝑈 [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] 𝑉𝑇 (19) 

where: 𝑈  and 𝑉  are orthogonal matrices; 𝜎1 ,  𝜎2 ,  𝜎3  are the 

singular values arranged from the largest to the smallest. 

When W is a full rank matrix, 𝑅∗ and 𝑇∗ are as follows: 

𝑅∗ = 𝑉𝑈𝑇 (20)

𝑇∗ = 𝑐̅ − 𝑅∗ ∗ 𝑙 ̅ (21)
 

However, the foregoing are linear solutions that depend on 

the readings of feature points and initial values. If there was an 

error in reading the feature points, the errors of R∗  and T∗ 

would be large. Therefore, the method of nonlinear least 

squares was used to optimise the above model, thus increasing 

the robustness and stability of the calibration model. As shown 

in Eq.(22), the cost function is as follows: 

𝑒𝑖 = 𝑐𝑖
′ − (𝑅 ∗ 𝑙𝑖

′ + 𝑇) (22) 

To reduce the degree of penalty for outliers, the Huber loss 

function [Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν 

βρέθηκε.] [Σφάλμα! Το αρχείο προέλευσης της αναφοράς 

δεν βρέθηκε.] is introduced ： 

𝐻(𝑒𝑖) = {

1

2
𝑒𝑖

2, 𝑤ℎ𝑒𝑛 |𝑒𝑖| < 𝛿

𝛿 (|𝑒𝑖| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟

(23) 

where: 𝛿 is the pre-set threshold r. 
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When 𝑒𝑖 < 𝛿 , the loss function adopts the square error; 

otherwise, a linear error is adopted. 𝛿 is determined based on 

the difference between the model and actual parameters. If the 

difference is small, 𝛿 becomes as large as possible. Otherwise, 

𝛿 shrinks as much as possible. Eq.(10) is rewritten Eq.(24). 

𝑃𝐼 = 𝑓(𝑃𝐿) (24) 

The difference between the model and actual parameters is 

defined as Eq.(25). 

𝜌 =
𝑓(𝑃𝐿 + ∆𝑥) − 𝑓(𝑃𝐿)

𝑓′(𝑃𝐿) ∗ ∆𝑥
(25) 

The final target function is as follows: 

𝐹 = 𝑚𝑖𝑛
𝑅,𝑇

∑ 𝐻(𝑒𝑖)

𝑛

𝑖=1

(26) 

Through continuous iteration, the optimal solutions of 𝑅 and 

𝑇 are finally obtained. 

III. RESULTS 

A. Time synchronization results  

The communication rates of the 2D LiDAR and CCD camera 

are approximately 40Hz and 30Hz, respectively. In this 

experiment, Rosbag was used to record the messages of Image 

topics and 2D point cloud simultaneously, lasting for 

approximately 3min. The ROS would automatically assign 

timestamps for messages received. Such timestamps are in 

seconds, which is consistent with the epoch time of the Unix 

system.  The Unix time is the number of seconds that has 

elapsed since January 1, 1970 and does not account for leap 

seconds. After synchronizing the timestamp of Image Topics 

and 2D Point Cloud Topics with the adaptive algorithm, the 

communication rate was approximately 23Hz. Figure 7 shows 

the distribution of the size of sets, in which 66% is less than 

0.01s, 88% is less than 0.015s. And the mean value is 0.0082s. 

 
Fig.7 Difference distribution of timestamps between images 

and 2D point clouds in the same period 

For further analysis, 15 continuous messages after time 

synchronization were randomly selected. The ROS automatic 

timestamp is extremely large to observe; hence, useless 

counting was excluded. The data are shown in Figure 8. The 

original timestamp of the message is extremely large to display; 

hence, the timestamp in Figure 8 is equal to the original 

timestamp minus 1587954000s. In the figure, the left 

coordinate axis indicates the timestamps of Image Topic and 

2D Point Cloud, and the right coordinate axis shows the 

difference between the two timestamps. The orange and green 

broken lines are the timestamp changes in Image Topics and 2D 

Point Cloud, respectively, and the blue bar is the difference 

between the two timestamps. The maximum difference is 

0.017s, as shown in Figure 8. The experimental results of time 

synchronization can ensure the communication frequency and 

satisfy the accuracy requirement.  

 
Fig.8 Timestamp difference between Image topic and 2D point 

cloud 

B. Spatial calibration results 

The external calibration experiment was completed indoors. 

The calibration plate was directly placed in front of the 

experimental platform of the forestry mobile robot. It was 

ensured that the scanning plane of the 2D LiDAR was in the 

same horizontal plane as the bulge on the calibration plate. 

Rosbag was used to record the images and 2D point cloud data 

simultaneously. The experimental platform was moved to 

ensure that the dataset contained the feature points of multiple 

poses. The feature points correspond to the peaks of raised cells 

on the calibration plate. A group of feature points of one pose is 

selected for illustration. When the LiDAR scans the raised cells 

on the calibration plate, the corner points, which are feature 

points, are detected in the 2D point cloud, as indicated by the 

red points in Figure 9. The checkboard corners are easily 

detected in the image. In this study, the peaks of raised cells 

correspond to the 2nd, 3rd, 13th, and 14th corners in the second 

row of the checkerboard, as indicated by the red points in 

Figure 10. Finally, a total of 50 datasets were selected for 

external calibration of the camera and 2D LiDAR. 
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Fig.9 Corresponding feature points on the calibration board in 

the 2D point cloud 

 
Fig.10 Corresponding feature points on the calibration board in 

the image 

In this experiment, the camera and 2D LiDAR were 

vertically oriented; hence, the initial values of R and T are as 

follows: 

Rint = [
1 0 0
0 1 0
0 0 1

] (27) 

Tint = [0 0 0.05]T (28) 

At this point, 𝐹𝑖𝑛𝑡 = 2.1829𝑒 + 06. After 27 iterations, the 

final optimisation results for R and T are as follows: 

Rfnl = [
0.0031445 −0.99997 −0.00714269

−0.0234563 0.007067 −0.9997
0.99972 0.00331109 −0.0234334

] (29) 

Tfnl = [−0.0146695 0.0222217 −0.135979]T (30) 

At this instance, 𝐹𝑓𝑛𝑙 = 3.029e + 02 , and the gradient 

tolerance is the following: 

Ffnl − Fint

Fint

=  8.549744e − 07 (31) 

 
Fig.11 The change of F with the number of iterations 

The error function (F) gradually decreases with the increase 

in the number of iterations, resulting in convergence, as shown 

in Figure 11.  

Accordingly, reprojection was performed to verify the 

results. 2D point cloud was projected onto the image. Assume 

that the coordinate of the 2D point cloud is C, and the 

coordinate of the corresponding image pixel is I, 

𝐼 = 𝐾(𝑅𝑓𝑛𝑙 ∗ 𝐶 + 𝑇𝑓𝑛𝑙) (32) 

The reprojection results are shown in Figure 12. The green 

points are the points in the 2D point cloud projected onto the 

image. It is easy to observed that the feature points in the 2D 

point cloud and the feature points on the image overlap well. 

The u-axis and v-axis average errors are is 25.30363636 and 

5.19468075, respectively. 

 
Fig.12 Reprojection result 

IV. ENGINEERING APPLICATION 

The vision system of forestry mobile robot has been 

calibrated. The vision system can reflect 3D information 

around the robot in real time. Its engineering applications are 

discussed in this section. The data obtained by the vision 

system can be used for target recognition [29]-[30] as the 

forestry mobile robot cruises. The forestry mobile robot can 

recognize obstacles as it travels, and the position and size of 

obstacles can be determined by combining the image and 2D 

point cloud, ensuring its safe driving. In addition, machine 

learning and other methods can be applied to recognize the 

growth status of harvesting targets, to improve harvesting 

efficiency. These data can also be used for mapping and 

locating the forestry mobile robot. The robot builds a local map 

through simultaneous localization and mapping (SLAM) [31] 
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and completes its own positioning using the information 

matching algorithm. When identifying forest roads, the 2D 

point cloud provides an estimate of the passable area by 

filtering and fitting. Moreover, machine learning and other 

methods are used to identify road boundaries on the image 

accurately. Then the passable area is projected onto the image. 

The relationship (expressed in terms of ratio) between the 

passable area and the actual road boundaries is applied to obtain 

the width and area of the forest road, ensuring that the work of 

the forestry mobile robot is accomplished.   The forest road 

detection method is shown in Figure 13; the red line is the 

projection of the 2D point cloud data fitted on the image, and 

the white line is the road boundary on the image.  Accordingly, 

𝑊2 = 𝑊1 ∗ (
𝐿2

𝐿1
) . (33) 

where: 𝑊2  is the practical road boundary width; 𝑊1  is the 

width of 2D LiDAR measurement; 𝐿2 is the pixel value on the 

image corresponding to 𝑊2;  and 𝐿1 is the pixel value on the 

image corresponding to 𝑊1. 

Finally, when the vision system is applied to engineering, the 

response speed and safety should be considered for different 

scenarios[32][33]. 

 

 
Fig.13 Forest road detection  

V. CONCLUSIONS 

To enable forestry robots to sense the rich information of the 

surrounding environment in real time, this paper proposes a 

vision system consisting of a monocular camera and 2D 

LiDAR. In addition, this study investigated the method for 

calibrating the vision system in time and space. The 

experimental results of time synchronization showed that the 

communication frequency of the combined message was 23Hz, 

and the accuracy was 0.0082s. The results of the space 

calibration experiment showed that the gradient tolerance was 

within 8.549744e-07, and the reprojection results were 

consistent with the actual states. The final joint calibration 

results show that this method has good robustness and 

accuracy. The vision system satisfies the requirements for 

real-time operation and accuracy of forestry mobile robots. 

This paper discussed the engineering application of using the 

system to obtain real-time 3D forest information to the forestry 

mobile robot. The complementarity between the 2D point cloud 

and image enabled the forestry mobile robot to achieve a more 

accurate recognition ability of the environment. Moreover, on 

the premise of ensuring accurate information, the forestry 

mobile robot has a lower level of data redundancy and cost than 

the 3D information obtained by other single sensors. Hence, 

this study lays the foundation for further research on forestry 

mobile robots and the development of forestry information 

intelligence systems. However, this research merely employed 

a camera and 2D LiDAR, which can only capture the image 

information of objects directly in front of the forestry mobile 

robot and the 2D point cloud information of a fixed height 

plane. Thus, it fails to fully reflect the information around the 

forestry mobile robot, which is anticipated to be the focus of 

future research. 
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