
 

 

 
Abstract—A major problem of counting high-density 

crowded scenes is the lack of flexibility and robustness 

exhibited by existing methods, and almost all recent 

state-of-the-art methods only show good performance in 

estimation errors and density map quality for select 

datasets. The biggest challenge faced by these methods is 

the analysis of similar features between the crowd and 

background, as well as overlaps between individuals. 

Hence, we propose a light and easy-to-train network for 

congestion cognition based on dilated convolution, which 

can exponentially enlarge the receptive field, preserve 

original resolution, and generate a high-quality density 

map. With the dilated convolutional layers, the counting 

accuracy can be enhanced as the feature map keeps its 

original resolution. By removing fully-connected layers, the 

network architecture becomes more concise, thereby 

reducing resource consumption significantly. The 

flexibility and robustness improvements of the proposed 

network compared to previous methods were validated 

using the variance of data size and different overlap levels 

of existing open source datasets. Experimental results 

showed that the proposed network is suitable for transfer 

learning on different datasets and enhances crowd counting 

in highly congested scenes. Therefore, the network is 

expected to have broader applications, for example in 

Internet of Things and portable devices. 

 

Keywords—Systems Theory, Signal Processing, neural 

Networks,  Crowd counting, deep neural networks, 

convolutional neural networks, dilated convolution.  

I. INTRODUCTION 
he real-time, automatic analysis of crowded scenes has 
been broadly applied in crowd management, traffic control, 

and surveillance [1]. Thus, crowd counting has attracted 

 
 

considerable research and application interests. With 
development of crowd counting researches, analysis methods 
have been developed from simply counting to understanding 
saliency information [2]-[6] (such as concentration location, 
movement direction, etc.). Thus, traditional counting methods 
have faced considerable limitations due to lack of spatial 
coherence. Deep neural networks (DNNs) have been 
introduced to solve these with output of density map, and 
shown desirable performance in image semantic segmentation 
[7] and visual saliency detection [8]. Based on these researches, 
works based on hardware implementation including field 
programmable gate array (FPGA) [9]-[10] and application 
specific integrated circuits (ASICs) [11] enhance the feasibility 
of mapping DNN to surveillance devices, and validates 
effectiveness of DNN to deal with high-density crowd counting 
problems and other image processing applications [12]-[14].  

For the existing crowd counting algorithms, networks based 
on multi-scale architectures [15]-[17] have achieved 
state-of-the-art performances. Among these, multi-column 
neural network (MCNN) [15] proposed by researchers from 
Shanghai Tech University is the most generally used method. 
However, these architectures still have several significant 
drawbacks. First, training multi-scale architectures is 
complicated and time-consuming. Second, multi-column 
networks are more time- and space-consuming than sequential 
networks without commensurate performance improvement. 
Moreover, the complicated architecture of MCNN networks 
limited its applications in hardware implementation. Except for 
MCNN structures, various CNN models have been proposed. 
Researchers from Visual Geometry Group of Oxford and 
Google DeepMind Co. put forward visual geometry group-net 
(VGG-Net). Switching convolutional neural network 
(Switch-CNN) is developed by researchers from Indian 
Institute of Science. These typical CNN architectures consists 
of input layers, convolutional layers, pooling layers, and fully 
connected layers. Such structures face various defects such as 
information loss; moreover, the pooling and up-sampling layers 
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are deterministic. Dilated convolution can be taken as a proper 
solution for the information loss, whose reception field of 
convolutional filters can be exponentially expanded.  

In this study, we propose a network with a deeper CNN 
architecture and fewer parameters. Small convolution filters are 
adopted in all layers to minimize the network size. In addition, 
we use dilated convolution layers as back ends [18]-[19]. Thus, 
without losing resolution, the perception field is enlarged as 
contextual information is aggregated. The contributions of this 
study are as follows: 1) We propose a network that achieves 
considerable improvements in counting accuracy and density 
map quality compared to conventional methods; 2) we show 
that much better performance can be achieved with minimal 
resource consumption and easier end-to-end training methods, 
which is crucial in applications; 3) and we show that certain 
architectures can be robust enough to handle different datasets, 
making our network applicable in various scenes and aspects. 

II. RELATED WORK 
Over the years, several algorithms have been proposed for 

crowd counting. Most early studies focused on detection-based 
methods that involve a sliding window detector over two 
consecutive frames of a video sequence to estimate the number 
of pedestrians [20]. In these methods, detection is realized by 
training a classifier to extract low-level features (such as Haar 
wavelets [21], histogram of oriented gradients [22], edgelet 
[23], and shapelet [24]) from the whole body. However, 
occlusions in highly-crowded scenes significantly affect the 
detection performance, limiting the estimation accuracy of the 
methods. To resolve this problem, detection methods have been 
proposed to train classifiers for specific body parts, which 
detect and count persons in particular regions and scenes [25]. 

Regression-based methods are also proposed solutions. 
These methods learn the direct mapping between the low-level 
features extracted from the local image blocks and head count. 
The low-level features are formed by various features such as 
foreground, edge, texture, and gradient features [26]. Idrees et 
al. [27] proposed a model based on these methods to extract 
features with multiple sources, namely Fourier analysis with 
head detections and SIFT interest point-based counting in local 
neighborhoods. 

However, regression-based methods ignore important spatial 
information due to the regression on the global count. 
Therefore, Lempitsky et al. [28] suggest learning the linear 
mapping between the local block features and their 
corresponding target density maps, which may incorporate the 
spatial information into the learning process. Nevertheless, 
there has been considerable difficulty in learning a linear 
mapping. Pham et al. [29] proposed a method to learn a 
non-linear mapping using random forest regression. Based on 
these methods, further related crowd counting approaches have 
been proposed and form density estimation-based systems. 

Convolutional neural networks (CNN) have achieved 
substantial success in computer vision tasks due to their 
superiority in classification and recognition fields [30]-[32]. 
Thus, several researchers applied CNN to learn non-linear 
functions from crowd images to their corresponding density 

maps or counts. Moreover, dilated convolution can expand the 
reception field without resolution loss and remedy the 
information loss in the pooling-layers. Thus, dilated 
convolution has been increasingly employed in recent CNN 
architectures [33]-[35]. Relevant studies can be found in [36] 
and [37]. 

Recent state-of-the-art methods have achieved significant 
improvements in crowd counting by using multi-column 
architecture and density level classifier. However, these 
methods still have several defects, which are stated as follows. 
First, training difficulty is a crucial stinker for multi-column 
CNN-based methods [15]-[17]. Additionally, multi-column 
CNNs have redundancies in their architecture, which increase 
resource consumption. Further, the manual classification of the 
density map level is inflexible; i.e., differences between the 
testing and training datasets will weaken the performance of the 
density classification network. Lastly, large numbers of 
parameters are occupied by density-level prediction [16]-[17]. 
To address these problems, we propose a single-column, deep 
convolutional network with dilated convolution layers. 

III. MATERIALS AND METHODS 
Datasets are integral in the research for architectures aimed 

at crowd counting. Recently, the density and diversity of 
datasets have grown as crowd counting networks have been 
applied in more complicated scenes. This study was mainly 
based on ShanghaiTech dataset, which is a large dataset 
containing a total of 1,198 images and 330,165 annotated 
heads. This dataset consists of two parts: Parts_A and B. In Part 
A, there are 482 images of high-density scenes randomly 
chosen from the Internet. Part_B contains 716 images taken 
from busy streets in Shanghai. The images in Part B are sparser 
than those in Part_A. The crowd density significantly varies 
between the two subsets, making crowd estimation a 
challenging task. Fig. 1 contains three images from the dataset 
with 118 persons in each image, whereas the image scenes, 
camera angles, and spatial distributions are all different. Thus, 
it is difficult to create a model to interpret the same information 
presented in several ways. The density map of these three 
images are included in Fig. 1. 

 
Fig. 1 Images from ShanghaiTech Part B dataset. The three images 
contain 118 persons each, but they also have totally different spatial 
distributions. The second row shows their density maps. 

Other datasets we used include UCF_CC_50 and 
WorldExpo’10 datasets. UCF_CC_50 is a challenging dataset 
containing 50 images with different perspectives and 
resolutions. The difficulty with the dataset not only comes from 
its limited number of images, but also from the stark differences 
in the crowd count of the images. The head count ranges from 
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94 to 4,543 per image. The WorldExpo’10 dataset consists of 
3,980 annotated frames from 1,132 video sequences captured 
by 108 surveillance cameras, all from Shanghai 2010 
WorldExpo. The dataset was divided into two parts: training set 
and testing set. The training and test sets contained 3,380 and 
600 frames, respectively. The images were taken from five 
different scenes with 120 frames per scene. All the frames of 
the whole dataset were masked with region of interest as 
preprocessing. 

Based on the good performance of dilated convolution in 
segmentation [18]-[19], our proposed method utilizes dilated 
convolution in learning multi-scale contextual information. In 
the following subsections, we detail the architecture and 
training method of our proposed model. 

A. Dilated convolutions for deep convolutional networks 

Please submit your manuscript electronically for review as 
e-mail attachments.  
1) Dilated convolution 

We propose dilated convolution as an attractive alternative to 
convolution layers; this can exponentially expand the receptive 
field while maintaining the original resolution of the input 
image. Recent applications involve scenes with different 
perspectives; thus, perspective-free counting has been an 
essential task in crowd counting. An effective method of 
enlarging the convolutional kernel size through the networks 
has been employed in recent studies. This method enables the 
extraction of multiple-scale features. However, a defect of the 
method is the increase of the kernel size while extracting 
large-scale features: the number of parameters significantly 
increases, which affects further application of the network. 
Moreover, pooling can result in information loss. Therefore, we 
propose the use of dilated convolution rather than larger 
kernels. Fig. 2 is an example of convolutional kernels of 
different dilation rates. As shown in the Fig. 2, the reception 
field exponentially expands as the dilation rate increases. 

 
Fig. 2 A 3 × 3 convolution kernel with different dilation rates. Dilated 
convolution with systematic dilation rate arrangement helps expand 
the reception field exponentially while maintaining the resolution. (a) 
With a receptive field of 3 × 3, the dilation rate of normal convolution 
is 1. (b) Through dilated convolution with dilation rate r = 2, each 
convolutional kernel has a receptive field of 7 × 7. (c) Through dilated 
convolution with dilation rate r = 4, each convolutional kernel has a 
receptive field of 15 × 15. 

In the dilated convolution method, filters with holes are 
exploited instead of pooling and convolving layers. As shown 
in Fig. 3, the original image goes through max-pooling, 
convolution (which generates a feature map that is only a 
quarter of its original size), and up-sampling to the original 
size. This process results in resolution loss. With the dilated 

convolution method, a feature map is generated at the original 
image size; hence, the resolution and spatial information can be 
maintained. 

 
Fig. 3 Comparison between two methods: methods with dilated 
convolution can generate a feature map at the original image size, thus 
maintaining the resolution and spatial information. 
2) Network architecture 

As shown in Fig. 4 below, the front-end of our model 
consists of the fine-tuned first 10 layers from VGG-16 without 
dilation (we remove vestiges of the networks). The backend 
contains dilated layers. The frontend outputs the density map at 
1/64 of its original input size, and multi-scale aggregation 
begins after the last max-pooling layer. As is shown in Fig.4, 
backend of the proposed network is consisted of 5 
convolutional layers with dilation operation involved. To 
explore the best configuration of dilation rate in the backend, a 
multi-scale aggregation with a different dilation rate is 
implemented. The comparison between the configurations is 
shown in rest of the paper. The most significant performance 
can be reached with a dilation rate of 2 through the backend of 
the networks. 

 
Fig. 4 Architecture of proposed network. The proposed network 
mainly consists of the first 10 layers of VGG-16 and the dilated layers 
with the dilation rate to be configured. 

Considering structural similarity in Image (SSIM) [36] and 
peak signal-to-noise ratio (PSNR) between the ground truth and 
generated density map, we apply bilinear interpolation to 
recover feature maps at the original image resolution. The 
density map is resized by applying bilinear interpolation with a 
factor of 8. 

With the proposed network architecture above, the parameter 
setting during training is shown in Table 1. In the process of 
training, stochastic gradient descent is employed with a fixed 
learning rate of 1e-6. Due to the limitation of testing 
environment, batch size is set to 1, and momentum is set to 0.95 
to accelerate convergence. Weight decay is 5*1e-4 to avoid 
overfitting. And the number of epoch is 400 in the training. 
Details of training will be narrated in the next section. 

 
 
Table 1. Network parameters during training. 

Parameters 
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Learning rate 1e-6 

Batch size 1 
Momentum 0.95 

Weight decay 5*1e-4 
Epoch 400 

 

B. Training methods 

In this section, we describe our proposed easy-to-implement 
and fast training method. In our proposed architecture, we 
employed fine-tuned VGG-16 and dilated convolutional layers 
as frontend and backend, respectively. The network was trained 
with the datasets stated in Table 2, using geometry-adaptive 
and Gaussian kernels. Three quarters of each dataset were used 
as training set and the rest as testing set. Data augmentation was 
also employed in the training process. 
Table 2. Density map generation methods for different datasets. 

Dataset Methods 

ShanghaiTech Part A [15] Geometry-adaptive 

ShanghaiTech Part B [15] kernels 

The WorldExpo’10 [1] 
Gaussian kernel UCF CC 50 [28] 

 
1) Density map via geometry-adaptive kernels 

The quality of density map given in a training process 
determines the performance of the CNNs. Therefore, it is 
important to consider the distortion caused by the homography 
between the ground and image planes to accurately estimate the 
crowd density. Thus, we propose geometry-adaptive kernels 
[15] or the density map of highly-crowded scenes, which can 
adaptively determine the spread parameter for each person 
based on its average distance to its neighbors. 

K-nearest neighbors is a simple machine learning algorithm 
used for classification and regression. The algorithm is 
nonparametric and will not make assumptions on the data 
distribution. For each head xi in a given image, we denote 
distances to its k-nearest neighbors as { 𝑑1

𝑖 , 𝑑2
𝑖 , … , 𝑑𝑚

𝑖 }. 
Therefore, the average distance is 

𝑑𝑖 =
1

𝑚
∑ 𝑑𝑗

𝑖𝑚
𝑗=1          (1) 

To estimate the crowd density around pixel xi, we convolve 
δ(x-xi) using a Gaussian kernel with parameter σ_i proportional 
to di. Thus, the density can be defined as follows: 

F(x) =  ∑ 𝛿(𝑥 − 𝑥𝑖) × 𝐺𝜎𝑖
(𝑥), 𝑤𝑖𝑡ℎ 𝜎𝑖 =  𝛽𝑑𝑖

𝑁
𝑖=1   (2) 

We implemented geometry-adaptive kernels for better 
adaptation with crowd density variation among images. The 
labels were convolved with density kernels, which are adaptive 
to the local geometry of each data point. In the experiments, we 
set β = 0.3 and k = 3 to retrieve the best performance. For the 
scenes with comparatively sparse crowds, it is unnecessary to 
exploit geometry-adaptive kernels. Hence, we used Gaussian 
kernel with σ = 3. This method can be adapted to the different 
datasets shown in Table 2. 
2) Data augmentation 

Data augmentation improves the generalization ability and 
robustness of a model. Thus, we applied augmentation to the 

open-source datasets used in our experiment. Each image was 
cropped into 9 patches, each of which was 1/4 of the original 
size. Among these 9 patches, 4 contained no overlapping, and 
the rest 5 patches were taken randomly from the original image. 
To double the number of images contained in the training set, 
we mirrored these patches and trained the network with all 
patches after the augmentation. 
3) Loss function 

Our method involves training the network end-to-end. The 
first 10 convolutional layers are fine-tuned with VGG-16 
weights, whereas Gaussian initialization with a standard 
deviation of 0.01 is applied to the others. To train the network, 
we employed stochastic gradient descent with a fixed learning 
rate at 1e-6. For the input image Xi (i = 1,…,N), the ground 
truth is 𝑍𝑖

𝐺𝑇 , and Z (Xi; θ) is the estimation density map with 
parameter θ. The following is the objective function: 

L(θ) =  
1

2𝑁
||𝑍(𝑋𝑖;  𝜃) −  𝑍𝑖

𝐺𝑇||2
2    (3) 

IV. VALIDATION AND ANALYSIS 
Our model was evaluated using three different open-source 

datasets, and the implementation of the proposed model was 
based on the Caffe framework [39]. Compared to previous 
state-of-the-art methods, our model has a smaller size, is more 
robust, and is easier to train. 

A. Evaluation metrics  

We used mean absolute error (MAE) and mean square error 
(MSE) as evaluation criteria for the different methods. 
Generally, MAE indicates the accuracy of the estimates, 
whereas MSE indicates the robustness of the estimates. MAE 
and MSE can be defined as follows: 

MAE =  
1

𝑁
∑ | 𝐶𝑖 − 𝐶𝑖

𝐺𝑇𝑁
𝑖=1 |      (4) 

MSE =  √
1

𝑁
∑ | 𝐶𝑖 − 𝐶𝑖

𝐺𝑇|2𝑁
𝑖=1       (5) 

where N is the number of test images, 𝐶𝑖
𝐺𝑇 is the ground truth 

of counting in image i, and 𝐶𝑖 is the estimated count in image i, 
which is defined as 

𝐶𝑖 =  ∑ ∑ 𝑧𝑙,𝑤
𝑊
𝑤=1

𝐿
𝑙=1         (6) 

L and W are the length and width of the density map, 
respectively; 𝑧𝑙,𝑤 is the pixel at (l, w) of the generated density 
map. 

We also applied PSNR and SSIM to evaluate the quality of 
the generated density maps. 

PSNR is most widely used to evaluate image quality, and it 
can be defined as 

𝑃𝑆𝑁𝑅 = 10 log10(
(2𝑛−1)2

𝑀𝑆𝐸1
)     (7) 

where MSE1 is the mean square error of the tested image X 
and the reference image Y; it can be defined as: 

𝑀𝑆𝐸1 =
1

𝐻×𝑊
∑ ∑ (𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗))2𝑊

𝑗=1
𝐻
𝑖=1   (8) 

where H and W are the height and width of the image, 
respectively; n is the number of bits per pixel and is usually 
taken as 8. With a greater PSNR, the image is less distorted. 

SSIM is also an effective way to evaluate the image quality 
as it measures the similarity of images in brightness, contrast 
ratio, and structure. The equations below describe its function: 
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𝑆𝑆𝐼𝑀(𝑋, 𝑌) = 𝑙(𝑋, 𝑌) ∙ 𝑐(𝑋, 𝑌) ∙ 𝑠(𝑋, 𝑌)   (9) 
𝑙(𝑋, 𝑌) =

2𝜇𝑋𝜇𝑌+𝐶1

𝜇𝑋
2+𝜇𝑌

2+𝐶1
 𝑐(𝑋, 𝑌) =

2𝜎𝑋𝜎𝑌+𝐶2

𝜎𝑋
2+𝜎𝑌

2+𝐶2
 𝑠(𝑋, 𝑌) =

𝜎𝑋𝑌+𝐶3

𝜎𝑋𝜎𝑌+𝐶3
  (10) 

where μX and μY are the means of images X and Y, 
respectively; σX and σY are the variances of images X and Y, 
respectively; σXY is the covariance of images X and Y. The 
values are obtained as shown below: 

𝜇𝑋 =
1

𝐻×𝑊
∑ ∑ 𝑋(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1       

𝜎𝑋
2 =

1

𝐻×𝑊−1
∑ ∑ (𝑋(𝑖, 𝑗) − 𝜇𝑋)2𝑊

𝑗=1
𝐻
𝑖=1    

𝜎𝑋𝑌 =
1

𝐻×𝑊−1
∑ ∑ ((𝑋(𝑖, 𝑗) − 𝜇𝑋)(𝑌(𝑖, 𝑗) − 𝜇𝑌))𝑊

𝑗=1
𝐻
𝑖=1  (11) 

SSIM ranges from 0 to 1, and greater values indicate lesser 
distortion in the image. 

B. Results 

As shown in Table 3, the three popular open-source datasets 
that were used to verify our proposed model contained highly 
crowded scenes with a high variance in the number of people. 
The results of the experiments showed that our model achieved 
desirable performance on all three datasets; in other words, the 
model exhibits high flexibility among different datasets with 
different dataset size and image resolution. 
Table 3. Existing datasets used in the experiment 

Dataset Resolution Num Max Min Ave Total 
ShanghaiTech 
Part_A 

Different 482 3139 33 5014 241,677 

ShanghaiTech 
Part_B 

768×1024 716 578 9 123.6 88,488 

UCF_CC_50 Different 50 4543 94 1279.5 63,974 
WorldExpo’10 576×720 3980 253 1 50.2 199,923 

 
Num is the number of images, Max is the maximal crowd 

count, Min is the minimal crowd count, Ave is the average 
crowd count, Total is total number of persons in the dataset. 
1) ShanghaiTech dataset 

ShanghaiTech dataset [15] is consisted of 1198 images with 
330,165 annotated human heads. The dataset is separated into 
two parts: part_A and part_B. ShanghaiTech_part_A consists 
of images randomly selected from internet with considerable 
crowd density, which contains 300 images in training set and 
182 images in testing set, resolution of images are variable in 
this part; while ShanghaiTech_part_B includes images 
captured from street scenes of Shanghai with fixed resolution of 
768X1024, it has 400 images in training set and 316 images in 
testing set. By comparing our method with six state-of-the-art 
architectures, we found that our method achieved the best 
performance in terms of MAE in Part A. In Part B, the network 
achieved the lowest MSE (which significantly reduced the 
MAE) compared to existing methods; the results can be found 
in Table 4. For the density map quality, the method also 
achieved better results on SSIM and PSNR, as shown in Table 
5; moreover, we observed the results of our work on all three 
datasets, as shown in Table 6. 
Table 4. Estimation errors on ShanghaiTech dataset. 

 Part_A Part_B 
Method MAE MSE MAE MSE 
Zhang et al. [1] 181.8 277.7 32.0 49.8 

Marsden et al. 
[40] 126.5 173.5 23.8 33.1 

MCNN [15] 110.2 173.2 26.4 41.3 
Cascaded-MTL 101.3 152.4 20.0 31.1 

Switching-CNN 
[16] 90.4 135.0 21.6 33.4 

CP-CNN [17] 73.6 106.4 20.1 30.1 
DBNet (ours) 68.2 115.0 10.6 16.0 

 
Table 5. Quality of density map on ShanghaiTech Part A dataset. 

Method PSNR SSIM 

MCNN [15] 21.4 0.52 

CP-CNN [17] 21.72 0.72 

DBNet (ours) 23.79 0.76 

 
Table 6. Quality of density map generated by the proposed method. 

Dataset PSNR SSIM 
ShanghaiTech Part_A [15] 23.79 0.76 
ShanghaiTech Part_B [15] 27.02 0.89 
UCF CC 50 [28] 18.76 0.52 
The WorldExpo’10 [1] 26.94 0.92 

 
2) UCF_CC_50 dataset 

UCF_CC_50 dataset is an extremely challenging dataset 
consists of images with different crowd density and perspective 
distortion, there are 63,075 annotated human heads in total. The 
dataset contains 50 images with different resolution, and 
number of person in each image varies from 94 to 4543, which 
makes the dataset even more challenging. Due to the limited 
number of images in the UCF_CC_50 dataset, we performed 
5-fold cross-validation on the dataset, which is the same data 
augmentation approach used in ShanghaiTech dataset. By 
applying MAE and MSE as evaluation metrics, our method was 
compared with several state-of-the-art methods; it achieved the 
best MAE and an MSE comparable to that of the other methods. 
The results are listed in Table 7. 
Table 7. Estimation errors on UCF_CC_50 dataset. 

Method MAE MSE 
Idrees et al. [27] 419.5 541.6 
Zhang et al. [1] 467.0 498.5 
MCNN [15] 377.6 509.1 
Onoro et al. [13] Hydra-2s 333.7 425.2 
Onoro et al. [13] Hydra-3s 465.7 371.8 
Walach et al. [38] 364.4 341.4 
Marsden et al. [40] 338.6 424.5 
Cascaded-MTL [41] 322.8 397.9 
Switching-CNN [16] 318.1 439.2 
CP-CNN [17] 295.8 320.9 

DBNet (ours) 266.1 397.5 
 
3) WorldExpo’10 dataset 

WorldExpo’10 dataset consists of 3980 images captured by 
surveillance cameras in 2010 Shanghai World Expo with 
various scenes, whose resolutions are fixed 576X720. The 
dataset has 199,923 annotated human heads in total, and 
number of person in each image varies from 1 to 253. 
WorldExpo’10 dataset contains 3380 images in the training set, 
and testing set is separated into 5 groups with 120 images each. 
The proposed network is also validated and compared with 
other existing networks on this dataset. According to the results 
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in Table 8, our method also achieved the best performance in 
terms of average MAE. 
Table 8. Average estimated errors on WorldExpo’10 dataset. 

Method S1 S2 S3 S4 S5 Ave 
Chen et al. [42] 2.1 55.9 9.6 11.3 3.4 16.5 
Zhang et al. [1] 9.8 14.1 14.3 22.2 3.7 12.9 
MCNN [15] 3.4 20.6 12.9 13.0 8.1 11.6 
Shang et al. [39] 7.8 15.4 14.9 11.8 5.8 11.7 
Switching-CNN [16] 4.4 15.7 10.0 11.0 5.9 9.4 
CP-CNN [17] 2.9 14.7 10.5 10.4 5.8 8.86 
DBNet (ours) 2.9 11.5 8.6 16.6 3.4 8.6 

 
Due to the results on the three datasets shown above, the 

proposed network exhibits great performance on all three 
datasets. Specifically, compared to the classic multi-column 
network MCNN [15] and CP-CNN [17] which has similar 
multi-column structure and state-of-the-art performance, on 
ShanghaiTech dataset, the proposed network achieved best 
performance in Part_B and only slightly outperformed by 
CP-CNN on MSE in Part_A, this might be due to the various 
resolution of images in Part_A, the multi-column structure 
helps improve performance dealing with resolution variation, 
and more work on this issue will be done in the future. Also, the 
proposed network generates density map with best quality on 
this dataset, due to the introduction of dilated convolution and 
its deep structure. On UCF_CC_50 dataset, the proposed work 
still has best performance on MAE. Due to various resolution of 
images in the dataset, the proposed network is outperformed by 
CP-CNN on MSE, however, compared to other existing 
network models, DBNet still has significant improvement. On 
the third dataset WorldExpo’10 with fixed resolution, DBNet 
outperforms CP-CNN which has state-of-the-art performance 
by now. 

In conclusion, the proposed network achieves best 
performance on the three challenging datasets. By employing 
first 10 convolutional layers of VGG-16 as frontend, 2D feature 
can be extracted with this deep structure. By removing the 
fully-connected layers of VGG-16, which brings in great 
amount of parameters, weight size of the network can be greatly 
reduced. The introduction of dilated convolution helps expand 
the receptive field while maintaining the original resolution and 
generates output with more detailed contextual information, 
thus generates good quality density map as the results shown in 
Table 6. In all, the proposed architecture effectively improved 
performance and exhibit high flexibility on various crowd 
counting datasets. 

C. Transfer learning setting 

A model trained on a large dataset containing different head 
sizes can be easily adapted to other datasets with varying crowd 
head sizes. The last few layers of MCNN can be fine-tuned to 
achieve a similar operation on our model, and the performance 
is compared between different settings. The cross-dataset and 
transfer learning experiments were used to verify the 
robustness of our network, and the results are shown in Table 9. 
Table 9. Transfer learning across datasets. 

Method MAE MSE 
Fine-tune the last two layers of MCNN [15] 295.1 490.2 

DBNet without fine-tuning 404.1 619.4 
Fine-tune the whole DBNet 279.8 425.9 
Fine-tune the back-end of DBNet 282.4 407.5 

 
The above transfer learning setting train the models from 

source domain in the first step, which is ShanghaiTech Part_A 
here. Then UCF_CC_50 is chosen as target domain, and 
fine-tuning from training samples in target domain is conducted 
according to methods in Table 9. The results validate the 
model’s ability to deal with fresh samples, that is the robustness 
of the model. This can be due to the introduction of deep, 
single-column structure of VGG-16 convolutional layers in the 
frontend. 

D. Ablation study 

We conducted an ablation study on the backend of our 
network using ShanghaiTech Part_A dataset. The frontend 
containing the first 10 VGG-16 layers was removed, and the 
performance of the backend was compared with different 
configurations. This enabled the verification of the 
configuration effect on the network performance. 
ShanghaiTech Part_A is a large-scale crowd counting dataset 
with varied perspectives and resolutions. Although the dataset 
is extremely challenging for crowd counting, its large size 
provides enough data for the stability of deep learning. 

In the ablation experiments, we applied four different levels 
of dilation rates to the backend of our network and verified its 
performance on ShanghaiTech Part_A dataset to determine the 
most efficient configuration. 

As shown in Table 10, we trained four different configured 
models on the ShanghaiTech Part_A dataset using the training 
method described above. With the evaluation metrics defined 
above, Table 11 reveals the performance of these models. As 
shown in the table 11, the model achieved the best performance 
with a dilation rate of 2. 
 
 
Table 10. Configuration of the backend with different dilation rates. 

Back_end of DBNet 

A B C D 

conv3-512-1 conv3-512-2 conv3-512-2 conv3-512-4 

conv3-512-1 conv3-512-2 conv3-512-2 conv3-512-4 

conv3-512-1 conv3-512-2 conv3-512-2 conv3-512-4 
conv3-256-1 conv3-256-2 conv3-256-4 conv3-256-4 

conv3-128-1 conv3-128-2 conv3-128-4 conv3-128-4 

conv3-64-1 conv3-64-2 conv3-64-4 conv3-64-4 

 
The parameters of the convolutional layers are denoted as 

“conv(kernel size) - (number of filters) - (dilation rate).” 
 
 
 
Table 11. Comparison of architectures on ShanghaiTech Part A 
dataset. 

Architecture MAE MSE 

A 69.7 116.0 

B 68.2 115.0 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.6 Han Jia, Xuecheng Zou

Volume 15, 2021 51 E-ISSN: 1998-4464



 

 

C 71.9 120.6 

D 75.8 120.8 

 

E. Result analysis 

As shown by the results above, our single-column, deep 
neural network structure with dilated convolutional layers 
outperformed current architectures and exhibited high 
robustness. We achieved the best performance in ShanghaiTech 
Part_B dataset and the same performance with CP-CNN in 
ShanghaiTech Part_A dataset. For UCF_CC_50 dataset, our 
work also equaled CP-CNN in the final result. In the 
experiment based on WorldExpo’10 dataset, our method 
outperformed existing state-of-the-art architectures in most 
scenes, and its high robustness was verified. The best 
configuration of the backend was found through an ablation 
study. Thus, our method is a high-performing network with 
strong robustness. However, the results showed that our work 
has limited performances in scenes with extremely high crowd 
density, and it matched state-of-the-art architectures. The 
network performance should be improved in future studies. 

For further researches on hardware acceleration solutions, 
the single column structure and simple kernel size variation 
makes the proposed network friendly for hardware 
implementation, which aims for accelerate realization with 
limited calculation and storage resources, light weight of the 
proposed architecture due to the removal of fully-connected 
layers further enhance this advantage. More works focusing on 
hardware implementation of proposed network has been done. 

V. CONCLUSION 
In this study, we propose a deep convolutional neural 

network based on dilated convolution to solve existing 
problems of crowd counting and density distribution estimation 
on high-density scenes. On one hand, the improved network 
contributes to aggregating the multi-scale contextual 
information contained in congested scenes and obtain a 
higher-quality density map that maintains spatial information. 
On the other hand, by applying the dilated convolution method, 
resource consumption was also reduced. Experimental results 
on various open-source datasets verified the state-of-the-art 
performance of DBNet and its robustness to scale and 
perspective changes in a wide range of tasks and datasets. The 
improvement on flexibility and robustness in various 
applications can be explained by the small-size-induced 
low-resource-consumption of DBNet. These attributes suggest 
that DBNet is friendly to hardware implementation based on 
FPGA and ASICs; thus, it can be implemented on IOT devices 
and portable devices. Our future studies focusing on hardware 
implementation improves this point. 
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