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Abstract- The adaptive approximations for
some characteristic of random functions defined
on arbitrary irregular grids are discussed in this
paper. The mentioned functions can be examined
as flows of random real values associated with an
irregular grid. This paper considers the question
of choosing an adaptive enlargement of the ini-
tial grid. The mentioned enlargement essentially
depends on the formulation of the criterion in
relation to which adaptability is considered. Sev-
eral criteria are considered here, among which
there are several criteria applicable to the pro-
cessing of random flows. In particular, the crite-
ria corresponding to the mathematical expecta-
tion, dispersion, as well as autocorrelation and
cross-correlation of two random flows are con-
sidered. It is possible to consider criteria cor-
responding to various combinations of the men-
tioned characteristics. The number of knots of
the initial (generally speaking, irregular) grid can
be arbitrary, and the main grid can be any subset
of the initial one. Decomposition algorithms are
proposed, taking into account the nature of the
changes in the initial flow. The number of arith-
metic operations in the proposed algorithms is
proportional to the length of the initial flow. Se-
quential processing of the initial flow is possible
in real time.

Keywords- random functions, Haar-type basis,
adaptive approximation

I. Introduction

THE Numerical flows of random variables are often
associated with the uniform grid. In this case, they

are called time series. Time series are widely used in var-
ious fields, from economics to geological and astronomi-
cal research. A large number of time series are dedicated
to research (a detailed bibliography can be found in the
works [1] – [22]).

Modern research significantly deepens the previously
obtained results. The swarming principles of insect life
lead to the creation new algorithms, for example, to de-
velop an optimal IIR filter (see [11]). Various forms of ap-
proximation are supported by the evolving apparatus of
cubic splines (see [12]), Haar-type splines etc. New ways

to predict the history of processes in high-performance
computing systems [13] are associated with processes
that can be considered like as random processes. Since
in the discrete systems also found elements of chaos [14],
here the statistical methods can be very helpful. Con-
tinue statistical studies of block-chain structures in con-
nection with the problem of increasing their reliability
and the stability of [15].

When a random process is sampled, the resulting
sampling sequence will depend on the specific implemen-
tation of the discretized process. In many problems it is
required to consider finite in time fragment of a random
process with length N samples. In this case the correla-
tion function can be represented as a correlation matrix
(it is assumed that the random process has zero mathe-
matical expectation) ([x(i), x(j)])i,j∈{0,1,...,N}, where the
bar above denotes averaging over the ensemble of real-
izations. If the process is nonstationary, all elements of
the matrix can be different. In the case of a stationary
process, the correlation matrix is completely determined
by its first row and first column, since along all diagonals
parallel to the main one, there are the same elements.

In practice, it is very often required to switch from
analog signal to discrete. This transition is connected
with sampling and digitization processes (the latter is
also called quantization). Such a transition is deter-
mined by the capabilities of digital computing. A com-
puter can only represent a finite quantity of numbers.
The other numbers are presented with an error called
rounding error. Usually this error is considered as a
random variable. Analysis distribution of this random
variable is very complicated, its characteristics depend
on the properties of the computing system. However,
in most cases there is sufficient reason to consider this
random variable uniformly distributed in some interval
(see [22]). Note that non-uniform quantization is used
in practice. The idea of the nonuniform quantization in
the general cases is formulated as follows: the range of
possible signal values is divided by N quantization zones
a0 . . . a1, a1 . . . a2, . . . , aN−1 . . . aN , and the i-th zone is
mapped to the quantization value bi. The ranges are de-
termined by the probability density of the signal falling
into the appropriate range. If the probability density is
not known, the ranges are determined by an instance of
the ”most typical” signal. Uneven quantization is widely
used. It used, for example, in modern digital telephone
networks. Small values of the speech signal more likely
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than large, so a non-linear signal conversion: the range
of values is represented by the 12-th discharges (4096 lev-
els of uniform quantization) at non-uniform quantization
is quantized by 256 (total 8 ranges) of unevenly spaced
levels. However, other schemes are also possible.

Thus, the transmitted information contains elements
of randomness and is a discrete random process. Transfer
of their numerical characteristics by communication lines
can be difficult due to the large volume of information.

It is possible that rapidly changing data will have to
be transmitted completely. Slowly changing data can
be transferred only rarely because the restoration of the
information is very simple in this case. This will signif-
icantly reduce the load on transceiver devices and com-
munication lines. For efficiency the exchange of informa-
tion requires that the sender and the recipient use the
agreed means of data processing. One of the options for
such means is the adaptive Haar’s approximation pro-
posed in this work. We consider the approximation of
the mathematical expectation, variance and correlation
matrix or their estimations calculated over the set of re-
alizations.

The purpose of this work is to consider the numerical
flows of characteristics for random quantity associated
with a (generally speaking) non-uniform grid, and to in-
vestigate the properties of their adaptive approximation
by the Haar spaces. As a result the getting flows (so
called main flows) of probabilistic characteristics have
a smaller volume than the initial one. In addition, the
obtained main flows contain significantly less elements
than the initial ones. The usage of the main flow allows
us to obtain the main trend of the initial flow in compact
form.

The resulting main flow is the first step in construct-
ing an adaptive wavelet decomposition. The classical ap-
proach (see [7] – [10]) uses a two-fold coarsening of the
grid (by removing odd knots). It is very difficult to get
adaptability along this path. The non-classical approach
(see [16] – [21]) applied in this work allows the use of an
arbitrary non-uniform grid and the enlargement of it by
removing an arbitrary set of knots. With this approach
the construction of fragments of fast changes are associ-
ated with a fine grid. The fragments of slow changes are
associated with a coarse grid. As a result the main flow
is a qualitative approximation of the initial flow.

The adaptive approximations for some characteristic
of random functions defined on arbitrary irregular grids
are discussed in this paper. The mentioned functions can
be examined as flows of random real values associated
with an irregular grid. This paper considers the question
of choosing an adaptive enlargement of the initial grid.
The mentioned enlargement essentially depends on the
formulation of the criterion in relation to which adapt-
ability is considered. Several criteria are considered here,
among which there are several criteria applicable to the
processing of random flows. In particular, the criteria
corresponding to the mathematical expectation, disper-
sion, as well as autocorrelation and cross-correlation of
two random flows are considered. It is possible to con-

sider the criteria corresponding to various combinations
of the mentioned characteristics. The number of knots
of the initial (generally speaking, irregular) grid can be
arbitrary, and the main grid can be any subset of the ini-
tial one. Decomposition algorithms are proposed, taking
into account the nature of the changes in the initial flow.
The number of arithmetic operations in the proposed al-
gorithms is proportional to the length of the initial flow.
Sequential processing of the initial flow is possible in real
time.

II. Embedded Grid

On the interval (α, β) of the real axis R1 consider the
grid

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . (1)

with properties

lim
j to−∞

ξj = α, lim
j→+∞

ξj = β. (2)

If c ∈ Ξ, then there exists i ∈ Z such that c = ξi; in
this case we denote c− = ξi−1, c+ = ξi+1.

We suppose that c, d ∈ Ξ, c+ < d−, i.e. for some
i, j ∈ Z, i + 2 < j, the equalities c = ξi, d = ξj are true.
We will use the notation |[ c, d ]| = {ξs | c ≤ ξs ≤ d, s ∈
Z}, |[ c, d |[ = {ξs | c ≤ ξs < d, s ∈ Z}. The set |[ c, d ]|
is called a grid segment, and the set |[ c, d |[ is called a
grid interval. It’s clear that |[ c, d |[ = |[ c, d− ]| .

The function defined on the grid Ξ is named a discrete
function. The set of discrete functions u(t) defined on the
grid Ξ is denoted C(Ξ); it is clear that C(Ξ) is a linear
space.

Consider also the linear normed space C|[ c, d ]| of
functions u(t) defined on |[ c, d ]| ; here the norm is intro-
duced by the ratio

‖u‖
C |[ c, d]| = max

t∈ |[ c, d ]|
|u(t)|.

In a similar way, we introduce the normed linear space
C |[ c, d |[ functions u(t), defined on |[ c, d|[ , with the
norm

‖u‖
C |[ c, d|[ = max

t∈ |[ c, d|[
|u(t)|.

Obviously, the spaces C |[ c, d ]| and C |[ c, d|[ are
finite-dimensional.

Let us denote Jm = {0, 1, 2, . . . ,m}. Let M be a
natural number M > 2 and |[ a, b ]| = {ξs}s∈JM+1 , so
that

|[ a, b ]| = {a = ξ0 < ξ1 < . . . < ξM < ξM+1}. (3)

A value τ = maxj∈JM
(ξj+1 − ξj) is called the maximum

step in the grid segment (3). The set of grid segments,
contained in the grid segment |[ a, b ]| , denote O, so as

O = O(|[ a, b]|) = {|[ c, d ]| | |[ c, d ]| ⊂ |[ a, b ]|}.
Let M be some grid segment from the set O. Con-

sider the mapping f : M 7→ R1, having the following
properties.

f(M) ≥ 0 ∀M ⊂ O, f(|[ c, c ]|) = 0 ∀c ∈ |[ a, b ]|, (4)
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M′ ⊂M′′ =⇒ f(M′) ≤ f(M′′) ∀M′,M′′ ⊂ O. (5)

The mapping f with the indicated properties will be
called pseudo-measure on the grid segment |[ a, b ]| .

Remark 1.Let f0 be the function of sets, defined on
collection

O0 = O0([a, b]) = {[c, d] | [c, d] ⊂ [a, b]}.

If f0 satisfies the conditions

f0(N ) ≥ 0 ∀N ⊂ O0, f0([c, c]) = 0 ∀c ∈ [a, b],

N ′ ⊂ N ′′ =⇒ f0(N ′) ≤ f0(N ′′) ∀N ′,N ′′ ⊂ O0,

then the restriction f of the function f0 on the collection
O is the pseudo-measure on the grid segment |[ a, b ]| .

Let be
ε ∈ (ε∗, ε∗∗), (6)

where

ε∗ = max
ξ∈ |[ a, b− ]|

f({ξ, ξ+}), ε∗∗ = f( |[ a, b ]| ). (7)

Consider the grid X ⊂ |[ a, b]|,

X = X(f, ε, |[ a, b ]|) :

a = x0 < x1 < . . . < xK < xK+1 = b (8)

such that

f(|[xs, xs+1) ≤ ε < f(xs, x+
s+1) (9)

∀s ∈ {0, 1, . . . , K − 1},

f(xK , b) ≤ ε, X ⊂ |[ a, b ]|. (10)

Definition 1. Grid (8) with properties (9) - (10)
is called an adaptive grid (for pseudo-measure f on grid
segment |[ a, b ]|) or, for short, a f -adaptive grid.

The following statement is true
Theorem 1. If the relations (4) - (7) are satisfied,

then a natural number K = K(f, ε, |[ a, b ]|) and a grid
(8) with properties (9) - (10) exist.

Proof is carried out by the mathematical induction.
Obviously, the integer function K(f, ε, |[ a, b ]| ) has

monotonicity property: if ε∗ < ε ′ ≤ ε ′′ < ε∗∗, then
K(f, ε ′, |[ a, b ]| ) ≥ K(f, ε ′′, |[ a, b ]| ).

Summing the relations (9), we obtain the inequality

K−1∑
s=0

f(|[xs, xs+1]|) ≤ εK(f, ε, |[a, b]|) <

<
K−1∑
s=0

f(|[xs, x+
s+1]|). (11)

The inequality (11) gives the bounds for the number
K.

III. Computational Complexity of the
Adaptive Grid

It is easy to see that the proof of Theorem 1 contains
the algorithm constructing an adaptive grid X. Consider
the question of the complexity of this algorithm.

Let N(f) and Ncomp = Ncomp(f) be a number of cal-
culations of pseudo-measures f and the number of com-
parisons in the considered algorithm1.

Theorem 2. The algorithm for constructing an
adaptive grid X has the following properties

N(f) = Ncomp(f) = K + M + 2. (12)

Proof. The adaptive grid can be written in form
X = X(f, ε, |[ a, b ]| ):

a = x0 = ξ0 < x1 = ξp1 < . . .

. . . < xK = ξpK
< xK+1 = ξpK+1 = b, (13)

where pK+1 = M +1. At the s th step of this algorithm,
we go from knot xs to knot xs+1.

Suppose xs = ξps , xs+1 = ξps+1 . It is not difficult to
see that the mentioned transition requires

1) to calculate ps+1−ps+1 times the pseudo-measure
f (on grid segments |[ ξps , ξps+1 ]| , |[ ξps , ξps+2 ]| , . . .,
|[ ξps , ξps+1+1 ]| ),

2) to compare the result with ε follows ps+1 − ps + 1
times.

Since s changes from 0 to K, then the total number
N(f) of calculations of the pseudo-measure f is

N(f) =
K∑

s=0

(ps+1 − ps + 1) = K + 1 + pK+1 − p0.

According to the formulas (8) and (13), p0 = 0, pK+1 =
M + 1, so as a result we get N(f) = K + M + 2. In the
same way we find the number of Ncomp comparisons. So
the formulas (12) are valid. This ends the proof.

IV. An Auxiliary Evaluations

Suppose that the function u(t) is given on the grid
segment

|[ a, b ]| : a = ξ0 < ξ1 < . . . < ξM < ξM+1 = b. (14)

Let us discuss

a ≤ y < t ≤ b, y, t ∈ |[ a, b ]| , y = ξi, t = ξj . (15)

We use a notion

DΞu(ξ) =
u(ξ+)− u(ξ)

ξ+ − ξ
. (16)

In the case when the function u depends on two
variables,u = u(t, z), u(•, z) ∈ C |[ a, b ]| , z ∈ |[ a, b ]| ,

1Implementation of the listed operations includes operations
assignments to one or another auxiliary variable. Separated ac-
counting of assignment operations are not performed in this work.
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let us agree to always use the operator DΞ only of the
first of the two variables,

DΞu(ξ, z) =
u(ξ+, z)− u(ξ, z)

ξ+ − ξ
. (17)

From (14) - (17) we get

u(t)− u(y) =
j−1∑

s=i

u(ξs+1)− u(ξs)
ξs+1 − ξs

(ξs+1 − ξs). (18)

Lemma 1. For a discrete function u ∈ C|[a, b]| the
inequality holds

|u(t)− u(y)| ≤ max
ξ∈|[ y,t− ]|

|DΞu(ξ)|(t− y) (19)

y < t, y, t ∈ |[ a, b ]|. (20)

If u ∈ C1[a, b] then

|u(t)− u(y)| ≤ max
ξ∈[y,t]

|u ′(ξ)|(t− y). (21)

Proof. Consider the relation (18), assuming y = ξi

and t = ξj . Taking into account the positivity of the
differences ξs+1− ξs, t−y and notation (16), we see that
the formulas (19) - (20) follow directly from the relation
(18). Formula (21) follows from the Lagrange theorem.

V. Generalized Haars ’ functions

We introduce piecewise constant functions ωj(t), t ∈
(α, β) defined by equalities

ωj(t) =

{
1 for t ∈ [ξj , ξj+1),
0 for t ∈ R1\[ξj, ξj+1).

(22)

System {ωj(t)}j∈Z of functions (22) is defined by the
grid (1) - (2) . It is a linearly independent system.

The functions ωj(t) are called coordinate splines
of order zero.2 Let Sj = [ξj , ξj+1]. It’s clear that
suppωj = Sj . The approximation relation

∑
j∈Z ωJ(t) ≡

1 ∀t ∈ (α, β) in this case is the decomposition of unity
into interval (α, β).

For fixed t ∈ (α, β) the linear combination

u(t) =
∑

j∈Z

cjωj(t), (23)

consists of one term: for t ∈ [ξi, ξi+1) formula (23) takes
the form u(t) = ciωi(t) = ci.

Linear space S0(Ξ), defined by the relation

S0(Ξ) = Clp{u(t) | u(t) =
∑

j

cjωj ∀cj ∈ R1}, (24)

is called the generalized Haar space on the grid Ξ, and
the elements of this space are splines of zero order. Sym-
bol Clp in (24) denotes closure in the topology of the
pointwise convergence. Specifying the grid Ξ uniquely
determines the space S0(Ξ).

The next point is about building embedded space
splines of the order zero on an embedded grid.

2In the case when the grid Ξ is uniform (and therefore α = −∞,
β = +∞), the functions ωj defined above are often called Haar
functions.

VI. Approximation by the Haar type
functions

Consider a grid X̂, which is a subset of the grid Ξ

X̂ : a = x̂0 < . . . < x̂
K̂

< x̂
K̂+1

= b, X̂ ⊂ Ξ. (25)

We discuss an interpolate operator H
X̂

of the Haar type
such that for the grid function u(t), u ∈ C |[ a, b ]| , we
have the piecewise constant interpolation H

X̂
u

(H
X̂

u)(t) = u(x̂j) ∀t ∈ [x̂j , x̂j+1), (26)

j ∈ {0, 1, . . . , K̂}.
In the case when the function u depends on two vari-

ables, u = u(t, z), u(•, z) ∈ C |[ a, b ]| , z ∈ |[ a, b ]| , let’s
agree to always use the operator H

X̂
only on the first of

the two variables,

(H
X̂

u)(t, z) = u(x̂j , z) ∀t ∈ [x̂j , x̂j+1). (27)

Theorem 3. If u ∈ C|[ a, b ]|, then for t ∈
|[ x̂j , x̂j+1|[ the inequality holds

|u(t)− (H
X̂

u)(t)| ≤ (x̂j+1 − x̂j)×

× max
ξ∈|[x̂j ,x̂−

j+1]|
|DΞu(ξ)|. (28)

If u ∈ C1[a, b] then

|u(t)− (H
X̂

u)(t)| ≤ max
ξ∈[x̂j , x̂j+1]

|u ′t(ξ)|(x̂j+1 − x̂j). (29)

Proof. Taking into account notation (26) – (27) we
put y = x̂j , t ∈ |[x̂j , x̂

−
j+1]| in formula (19):

|u(t)− (H
X̂

u)(t)| = |u(t)− u(x̂j)| = |u(t)− u(y)| ≤

≤ max
ξ∈|[y,t−]|

|DΞu(ξ)|(t− y). (30)

To prove the inequality (28) it remains to return to
the initial notation in the relation (30) and take advan-
tage of the inequality t < x̂j+1. Inequality (29) follows
from the Lagrange formula.

VII. Evaluations for random functions

In this section, we consider random flows and random
functions.

Let v(t) and w(t) be a random functions defined on
the grid segment

|[a, b|[: a = ξ0 < ξ1 < . . . < ξM < ξM+1 = b, (31)

or on the usual segment [a, b] of the real axis R1. In
the first case we talk about a discrete random function,
in the second case we talk about a nondiscrete random
function. Consider t, t ′ ∈ |[a, b|[ (or t, t ′ ∈ [a, b] ac-
cordingly). We suppose that the mathematical expecta-
tion M[v](t), the desperation D[v](t), and correlations
[v(t), v(t ′)], [v(t), w(t ′)] of their t, t ′-sections exist.
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For centered random functions, we will supply ”zero”
above; e.g., v0(t) = v(t)−M[v](t). For centered random
functions the correlation function possesses the proper-
ties of a bilinear form.

Using Lemma 1 for different functions u(t) we de-
duce important assertions for nonrandom characteristics
of the random functions v(t) and w(t).

If we use Lemma 1 for u(t) = [v0(t), w0(y)], then we
obtain the next statement.

Theorem 4. For a centered discrete random func-
tions v0, w0 ∈ C|[a, b|[ the inequalities

|[v0(t), w0(t ′)]− [v0(y), w0(t ′)]| ≤

≤ max
ξ∈|[y,t−|[

|DΞ[v0(ξ), w0(t ′)]|(t− y), (32)

a ≤ y < t < b, y, t, t ′ ∈ |[a, b−|[, (33)

are right. If centered nondiscrete random functions
v0, w0 such that the function ϕ(t) = [v0(t), w0(t ′)] has
the property ϕ ∈ C1[a, b] t ′ ∈ [a, b], then the inequalities

|[v0(t), w0(t ′)]− [v0(y), w0(t ′)]| ≤

≤ max
ξ∈[t,y]

|[v0(ξ), w0(t ′)] ′ξ|(t− y), (34)

a ≤ y ≤ t < b, y, t, t ′ ∈ [a, b] (35)

are fulfilled.
Corollary 1. For a centered discrete random func-

tion v0 ∈ C|[a, b|[ the inequalities

|[v0(t), v0(y)]−D[v0](y)]| ≤

≤ max
ξ∈|[y,t−|[

|DΞ[v0(ξ), v0(y)]|(t− y), (36)

a ≤ y ≤ t < b, y, t ∈ Ξ (37)

are right. A centered nondiscrete random function v0

such that the function ϕ(t) = [v0(t), v0(y)], y ∈ [a, b],
has the property ϕ ∈ C[a, b], the inequalities

|[v0(t), v0(y)]−D[v0](y)| ≤

≤ max
ξ∈[t,y]

|[v0(ξ), v0(y)] ′ξ|(t− y), (38)

a ≤ y ≤ t < b, y, t ∈ [a, b] (39)

are fulfilled.
Proof. Formulas (36) – (39) follow from relations

(32) – (35), where w0 = v0 and t ′ = y.
Theorem 5. For a discrete random function v ∈

C|[a, b|[ the inequalities

|M[v](t)−M[v](y)| ≤ max
ξ∈|[y,t−|[

|DΞM[v](ξ)|(t− y), (40)

|D[v](t)−D[v](y)| ≤ max
ξ∈|[y,t−|[

|DΞD[v](ξ)|(t− y), (41)

a ≤ y ≤ t < b (42)

are right. If a nondiscrete random function v such as the
function ϕ(t) = M[v](t) has the property ϕ ∈ C1[a, b],
then the inequality

∣∣M[v](t)−M[v](y)
∣∣ ≤ max

ξ∈[y,t]

∣∣(M[v](ξ)
) ′

ξ

∣∣(t− y), (43)

is fulfilled. If a nondiscrete random function v such
as the function ϕ1(t) = D[v](t) has the property ϕ1 ∈
C1[a, b], then the inequality

|D[v](t)−D[v](y)| ≤ max
ξ∈[y,t]

∣∣(D[v](ξ)
) ′

ξ

∣∣(t− y), (44)

a ≤ y ≤ t < b (45)

is right.
Proof. Using Lemma 1 for u = M[v] and for u =

D[u], we obtain the relations (40) – (45) respectively.

VIII. Approximations for random functions

Consider grid (25) and approximation (26) in connec-
tion with the characteristics of random functions.

Theorem 6. For centered discrete random functions
v0, w0 ∈ C|[a, b|[ the inequalities

|[v0(t), w0(t ′)]− [v0(x̂j), w0(t ′)]| ≤

≤ max
ξ∈|[x̂j ,x̂−

j+1|[
|DΞ[v0(ξ), w0(t ′)]|(t− x̂j), (46)

a ≤ x̂j ≤ t < x̂j+1, t ′ ∈ —[a,b —[. (47)

are right. For centered nondiscrete random functions
v0, w0 such as the function ϕ(t) = [v0(t), w0(t ′)] has the
property ϕ ∈ C1[a, b], the inequalities

|[v0(t), w0(t ′)]− [v0(x̂j), w0(t ′)]| ≤

≤ max
ξ∈[t,x̂j ]

|[v0(ξ), w0(t ′)] ′ξ|(t− x̂j), (48)

a ≤ x̂j ≤ t < x̂j+1, t ′ ∈ [a, b] (49)

are fulfilled.
Corollary 2. For the centered discrete random func-

tion v0 ∈ C|[a, b|[ the inequalities

|[v0(t), v0(x̂j)]−D[v0](x̂j)| ≤

≤ max
ξ∈|[x̂j ,x̂−

j+1|[
|DΞ[v0(ξ), v0(x̂j)]|(t− x̂j), (50)

a ≤ x̂j ≤ t < x̂j+1, t ∈ Ξ. (51)

are fulfilled. For a centered nondiscrete random func-
tion v0 such as the function ϕ(t) = [v0(t), v0(y)] has the
property ϕ ∈ C[a, b], the inequalities

|[v0(t), v0(x̂j)]−D[v0](x̂j)| ≤
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≤ max
ξ∈[t,x̂j ]

|[v0(ξ), v0(x̂j)] ′ξ|(t− x̂j), (52)

a ≤ x̂j ≤ t < x̂j+1, t ∈ [a, b], (53)

are right.
Proof. Formulas (50) – (53) follow from Theorem 6,

if we take w0 = v0 and t ′ = x̂j in (46) – (49).
Theorem 7. For a discrete random function v ∈

C|[a, b|[ the inequalities

|M[v](t)−M[v](x̂j)| ≤

≤ max
ξ∈|[x̂j ,x̂−

j+1|[
|DΞM[v](ξ)|(t− x̂j), (54)

|D[v](t)−D[v](x̂j)| ≤

≤ max
ξ∈|[x̂j ,x̂−

j+1|[
|DΞD[v](ξ)|(t− x̂j), (55)

x̂j < t < x̂j+1 (56)

are right. If a nondiscrete random function v such as the
function ϕ(t) = M[v](t) has the property ϕ ∈ C1[a, b],
then the inequality
∣∣M[v](t)−M[v](x̂j)

∣∣ ≤ max
ξ∈[x̂j ,t]

∣∣(M[v](ξ)
) ′

ξ

∣∣(t−x̂j), (57)

is fulfilled. If a nondiscrete random function v such
as the function ϕ1(t) = D[v](t) has the property ϕ1 ∈
C1[a, b], then the inequality

|D[v](t)−D[v](x̂j)| ≤ max
ξ∈[x̂j ,t]

∣∣(D[v](ξ)
) ′

ξ

∣∣(t− x̂j), (58)

x̂j < t < x̂j+1 (59)

is right.
Proof. We use Theorem 3. In the above theorem,

we put u(t) = M[v](t) and from formula (28) we ob-
tain inequality (54). Now consider u(t) = D[v](t) and
from (28) deduce inequality (55). But if the mentioned
variants of the function u(t) are continuously differen-
tiable, then we can use the inequality (29). As a result,
we obtain inequalities (57) and (58). This completes the
proof.

IX. Adaptive grid approximation

This section discusses the issue of choosing a respon-
sive grid. The mentioned grid essentially depends on the
formulation of the criterion in relation to which adapt-
ability is considered. Several criteria are considered here,
among which there are several criteria applicable to the
processing of random flows. In particular, the crite-
ria corresponding to the mathematical expectation, vari-
ance, as well as autocorrelation and cross-correlation of
two random flows are considered. It is possible to con-
sider criteria corresponding to various combinations of
the mentioned characteristics.

Let ψ(ξ) be a function defined on grid segment
|[ a, b ]| . Consider a map ϕ : M 7→ R1 ∀M ⊂ O, which
can be represented in the form

ϕ(|[c, d]|) = max
ξ∈|[c,d]|

|ψ(ξ)|(d− c). (60)

Lemma 2. Map (60) is the pseudo-measure on the
grid segment |[ a, b ]| .

The proof is very simple because properties (4) – (5)
are evident.

Let |[ c, d ]| be subset of |[ a, b ]| . By definition we
put

u1(ξ) = [v0(ξ), w0(t′)], u2(ξ) = [v0(ξ), v0(t′)], t′ ∈ |[a, b]|,

u3(ξ) = M[v](ξ), u4(ξ) = D[v](ξ), ξ ∈ |[ a, b ]| .
Consider maps

fi(|[c, d]|) = max
ξ∈|[c,d−|[

|DΞui(ξ)|(d− c), i = 1, 2, 3, 4.

Theorem 8. Let i ∈ {1, 2, 3, 4} be a fixed number.
Suppose that the pseudo-measure f = fi, and real num-
ber ε > 0 satisfies conditions (6) – (7), and the grid X̂
matches the grid X(fi, ε, |[ a, b ]| ),

X̂ = X(fi, ε, |[ a, b ]| ). (61)

Then the following statements are true.
1. The number of knots K = K(fi, ε, |[ a, b ]| ) of this

grid satisfies the relations

K−1∑
s=0

f( |[ xs, xs+1 ]| )/ε ≤ K <

<
K−1∑
s=0

fi( |[ xs, x
+
s+1 ]| )/ε. (62)

2. The inequality is true

|ui(t)−H
X̂

ui(t)| ≤ ε ∀t ∈ |[ a, b ]| . (63)

3. The algorithm for constructing an adaptive grid X
has the following properties

N(fi) = Ncomp(fi) = (K + M + 2). (64)

Proof. Because map (60) satisfies the properties
(4) - (5), formula (62) follows from the previously estab-
lished relation (11). Inequality (63) follows from formu-
las (9) and (28). Finally, the formula (64) is obtained
from (12) with the mentioned choice pseudo-measures f .
This concludes the proof.

If ui ∈ C1[a, b], then sometimes it is more suitable to
discuss a measures

f̃i([c, d]) = max
ξ∈[c,d]

|ui
′(ξ)|(d− c), i = 1, 2, 3, 4.

According to Lemma 2 and Remark 1 the maps f̃i

can be discussed as the pseudo-measures f̃i(|[ c, d ]|) on
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the grid segment |[ a, b ]| . Analogously to the proof of
Theorem 8 the next assertion can be obtained.

Theorem 9. Let i ∈ {1, 2, 3, 4} be a fixed number.
Suppose that the pseudo-measure f = f̃i and real number
ε > 0 satisfy conditions (6) – (7), and the grid X̂ equals
the grid X(f̃i, ε, |[ a, b ]|),

X̂ = X(f̃i, ε, |[ a, b ]|). (65)

Then the following statements are right.
1. The number of knots K̃ = K(f̃i, ε, |[ a, b ]|) of this

grid satisfies the relations

K̃−1∑
s=0

f̃i(|[ xs, xs+1 ]|)/ε ≤ K̃ <

<
K̃−1∑
s=0

f̃i(|[xs, x
+
s+1 ]|)/ε. (66)

2. The inequality is true

|ui(t)−H
X̂

ui(t)| ≤ ε ∀t ∈ |[ a, b ]| . (67)

3. The algorithm for constructing an adaptive grid X̂
has the following properties

N(f̃i) = Ncomp(f̃i) = (K̃ + M + 2). (68)

X. Digital examples

As a numerical illustration of the proposed method,
several variants of numerical flows generated by func-
tions u(t) in the interval [0.001, π]. These flows were
outraged uniformly distributed on the interval [0, 1] a
random variable. The purpose of this illustration is to
show that the proposed algorithm is very robust against
such disturbances. The calculations were carried out us-
ing programming in the environment Maple (see [23]).
The results are shown in Table 1.

Table 1.

Num u(t) K Compr Quality Time
(sec.)

1. 1/t 7 123 61.7 0.896
2. 1/t 7 125 62.6 0.876
3. lg t 8 111 55.7 0.921
4. lg t 8 110 55.1 0.910
5. sin(t) 757 1.32 0.661 0.876
6. sin(t) 407 2.45 1.23 0.951
7. ln t 27 35.8 17.9 0.807
8. ln t 27 35.8 17.9 0.822

The first column of Table 1 contains the number of
the uniformly distributed random flow. The original flow
is the sum of the mentioned random flow and the flow
of function values u(t) computed on a uniform grid with
M nodes (M = 1000). The second column contains the

function u(t) that generates the mentioned deterministic
flow of values on a uniform grid in the segment [0.001, π].

In the third column the number of K nodes of the
adaptive grid is presented. On the mentioned grid the
deviation of the Haar approximation from the function
u(t) is at most maximum Haar error when approximating
u(t) on the original grid. The mentioned error is pre-
calculated by a special block programs.

The fourth column shows the degree obtained com-
pression (the ratio of the number of nodes of the orig-
inal grid to the number of nodes of the adaptive grid).
The fifth column contains the quality factor of the adap-
tive compression versus to the standard compression (the
standard compression usually is obtained by removing
the odd knotes). The last column shows the running
time of the program (in seconds).

The obtained results show that compression is very
small in the case of slowly changing function. If we are
dealing with a rapidly changing function, then the com-
pression is great. Table 1 illustrates the high stability of
the proposed adaptive algorithm for random perturba-
tions of the original flow.

XI. Conclusion

Summing up, we note the main results of this work.
The concept of a pseudo-measure considered here

made it possible to construct an adaptive approximation
of various probabilistic characteristics of initial flows for
random variables. By building the main flows, identify-
ing the main trend is simplified, and the amount of data
transmitted through communication channels is signifi-
cantly reduced.

The new approach considered here differs from the
classical wavelet approach by the wide use of irregular
grids, which makes it possible to adapt them to the in-
coming initial flow. This approach is quite effectively ap-
plied to the economical selection of the main flow, which
determines the main trend of the original random flow.

Several criteria are considered here, among which
there are several criteria applicable to the processing
of random flows. In particular, the criteria correspond-
ing to the mathematical expectation, dispersion, as well
as autocorrelation and cross-correlation of two random
flows are considered. It is possible to consider criteria
corresponding to various combinations of the mentioned
characteristics. The number of knots of the initial (gen-
erally speaking, irregular) grid can be arbitrary, and the
main grid can be any subset of the initial one. Sequential
processing of the initial flow is possible in real time.
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