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Abstract- Multiple variable systems often
have to be so controlled that in the lack of ap-
propriate sensors no satisfactory information is
available for the complete estimation of their
state variables. Normally only their certain com-
ponents are kept under observation and con-
trol, while the other ones evolve according to
the consequences of the exerted control signal.
In control-based treatment of patients suffering
from "Type 1 Diabetes Mellitus (T1DM)", the
only directly measured quantity is the subcuta-
neous glucose concentration in the blood con-
trolled by a single control signal, the insulin
ingress rate. The applied model may use sev-
eral components in the state variable. The tradi-
tional "Receding Horizon Controller (RHC)" re-
quires the estimation of the complete state vari-
able for the calculation of the control signal. In
this paper preliminary simulations are persented
in which the operation of the RHC is studied in
the control of two vertically connected, oscillat-
ing masspoints so coupled by springs that only
the state of the upper one is observed and di-
rectly controlled. Instead sensor-based observa-
tions, the lower point’s coordinate is calculated
by the use of an available "rough" model. Pre-
liminary calculations were made for a particular
human glucose-insulin model, too. In the im-
plementation of the RHC special simplifications
were introduced. In our further work we wish
to apply this method for investigating various
T1DM treatment models.

Keywords- Gram-Schmidt Algorithm, La-
grange Multipliers, Model Predictive Control,
Optimal Control, Receding Horizon Control, Re-
duced Gradient, State Estimation.

I. Introduction

In process control tasks often multiple variable systems
have to be so controlled that in the lack of appropri-

ate sensors no satisfactory information is available for
the complete estimation of their state variables. Nor-
mally only its certain components are kept under obser-
vation and control, while the other ones evolve according
to the consequences of the exerted control signal with-
out having any possibility for observing and/or keeping
them at bay. Especially in life sciences, where the un-
observed quantities can achieve lethal values, this prac-
tice is a serious problem. For instance, in control-based
treatment of patients suffering from T1DM from the
early "minimal model" developed by Bergman in 1986
[1] more and more sophisticated models were elaborated
(e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10]) and used for various con-
trol approaches (e.g. [11, 12, 13, 14, 15, 16, 17, 18]). For
instance, in the paper [19] the glucose and insulin ab-
sorption "submodels" were described by the equations
(1) - (4). They originated from the Cambridge model
[20] and were inserted into the core model described by
the equations (5) - (7).
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Ẋ(t) = −p2X(t) + p3(I(t)− IB) , (6)

İ(t) = −n(I(t)− IB) +
1

τS
S2(t) . (7)

The state variables in (1) - (7) are defined as follows.
D1(t) and D2(t) mg/dL are the primary and secondary
compartments belonging to glucose. S1(t) and S2(t)
mU/L are the primary and secondary compartments be-
longing to insulin. Variable G(t) mg/dL is the blood
glucose (BG) concentration ("glycemia"), I(t) mU/L is
the blood insulin concentration and X(t) 1/min is the
insulin-excitable tissue glucose uptake activity. The food
intake done by the patient under treatment was han-
dled as disturbance that was unknown for the controller.
The only directly observable quantity was G(t), and the
only known quantity was the exerted control signal u(t)
mU/min. The other variables were calculated on the
basis of the available model parameters of which ony
MwG (the molecular weight of glucose), C (a conversion
rate between various units), Ag (glucose utilization), GB

(basal glucose level), IB (basal insulin level), BW (body
weight as easily measurable quantity) were assumed to
be exact, while the p1, p2, p3 transfer rates, the n rate
constant for insulin disappearance, the τD carbohydrate
(CHO) to glucose absorption constant, VI , VG distribu-
tion volumes of insulin and glucose, and the τS insulin
absorption constant were only approximately estimated.
In the lack of measuring possibilities, these calculated
values were used for setting the starting point of the new
horizon of the Receding Horizon Controller outlined in
the sequel.

As in a heuristic realization of the idea of the "Model
Predictive Controllers (MPC)" (e.g. [21]), in the "Re-
ceding Horizon Control (RHC)" [22] a cost function con-
structed of the trajectory tracking error and control
forces over a finite grid is minimized under the constraint
that the dynamic model of the controlled system must be
valid. Generally the problem can be formulated in (8) in
which J means the cost function that normally expresses
a "penalty cost" for the big tracking error depending on
the coordinates x, it may punish the application of too
big control action denoted by u, Φ(xF ) can be an extra
punishment as "terminal cost", function ẋ = Ψ(x,u) de-
scribes the dynamic model of the controlled system, and
∆t means the resolution of the discrete time-grid. While
it is not compulsory to achieve exactly zero cost (some
compromise between its often contradictory components
can be achieved in this manner), the constraint condi-
tions in the last line of (8) must be precisely met: this
term expresses the "abilities" of the controlled system
that must be taken into account in the realization of the
cost minimization.

min
{x1, ...,xF }
{u0 ...,uF−1}

(
F−1∑
i=0

J(xi,ui) + Φ(xF )

)

subject to
xi+1 − xi

∆t
− Ψ(xi,ui) = 0.

(8)

In general, for finding the local optimum under con-
straints a numerical realization of Lagrange "Reduced
Gradient Algorithm" [23] must be implemented in the
following manner. If the variables {x1, . . . , xF } and
{u0 . . . , uF−1} can be simultaneously varied, in the ap-
propriate grid points each component of the xi+1−xi

∆t −
Ψ(xi,ui) constraint term has to be associated with a
Lagrange multiplier, and the following considerations
can be done. If the local minimum of the differen-
tiable multivariable function J(x, u) : IRn 7→ IR is
needed without constraints, instead of the actual point
(x, u), a neighboring point (x, u) − α

(
∂J

∂(x,u)

)
can be

proved with a small positive number 0 < α. The func-
tion’s value can decrease until the gradient becomes
zero. If it is a priori known that the local minimum
is 0, the process can be made faster by using the
"Newton-Raphson Algorithm" in which α is so chosen
that −α‖∂J/∂(x, u)‖2 = J(x, u) (e.g. [24, 25]). If the
optimization must be done under constraints expressed
implicitly as {0 ≡ gi(x, u) : IRn 7→ IR} i = 1, . . . ,K < n,
apart from particular cases, an (n−K) dimensional hy-
persurface in IRn is determined by the constraints, and
the local optimum must be found over this hypersurface.
The optimization can be started by finding a point on
this hypersurface by using the Newton-Raphson Algo-
rithm for e.g. G(x, u) :=

∑
` g

2
` (x, u), since G(x, u) = 0

if and only if each g`(x, u) = 0. In the computations the
formula given in (9) can be used

(x, u)s+1 = (x, u)s − a1×
G((x, u)s)(

∂G
∂(x,u)

)T ∣∣∣∣
(x,u)s

∂G
∂(x,u)

∣∣∣
(x,u)s

∂G

∂(x, u)

∣∣∣∣
(x,u)s

(9)

in which 0 < a1 < 1. Following that, to avoid
leaving the constraint-defined hypersurface while de-
creasing the cost function a small step can be done
along the direction of the "reduced gradient" as
a2 (−∂J(x, u)/∂(x, u) +

∑
` λ`∂g`/∂(x, u)) in which 0 <

a2 < 1, and the {λ`} Lagrange multipliers must be so
chosen that the displacement must be orthogonal to each
constraint gradient ∂gi(x, u)/∂(x, u), because in the first
order approximation then the constraint functions stag-
nate at 0. By using the 0 scalar product for express-
ing orthogonality, according to Lagrange, a linear set of
equations is obtained and has to be solved as

∀k : −
(

∂gk
∂(x, u)

)T
∂J

∂(x, u)
+

+
∑
`

(
∂gk

∂(x, u)

)T
∂g`

∂(x, u)
λ` = 0 .

(10)

This process can be repeated until the reduced gradient
achieves zero. In this point a local optimum allowed
by the constraints has been found. (Sometimes the use
of (9) may be necessary to correct the accummulated
higher order errors to precisely stick on the "constraint
hypersurface".) By our days this approach became a
practical problem solving tool in financial and technical
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problems as it is implemented in the "Solver" package of
MS EXCEL (e.g. [26, 27]).

In many cases the Lagrange multipliers have impor-
tant physical meaning, therefore it is often necessary to
compute them (e.g. [28, 29]). Via the introduction of
the "Auxiliary Function" in (11)

Φ(x, u, λ) := −J(x, u) +
∑
`

λ`g`(x, u) (11)

it can be observed that the above detailed algorithm
stops at the x, u, λ values at which ∂Φ/∂x = 0, ∂Φ/∂u =
0, and ∂Φ/∂λ = 0. The first requirement means that
at this point the reduced gradient is 0, the second one
guarantees that the appropriate point is located on the
constraint surface.

Due to the special structure of the constraints in (8),
for a fine enough grid resolution these partial deriva-
tives can be interpreted as canonical equations of mo-
tion for the canonical variable pairs x and λ using an
artificial Hamiltonian H(x, u, λ) = −J(x, u)−λTΨ(x, u)
as ∂H/∂x = λ̇, ∂H/∂λ = −ẋ, and ∂H/∂u = 0 for the
optimized motion over the grid. This formal analogy al-
lows the utilization of basic results in Classical Mechan-
ics as e.g. the properties of the Symplectic Geometry,
Liouville’s theorem [30] on the conservation of the vol-
ume of the phase space determind by the cells ∆x,∆λ
from which general stability consequences can be drawn.
For instance, in the case of Linear Time-invariant (LTI)
system models and quadratic cost functions of the form
J = xTPx + uTRu with positive definite symmetric
P and R matrices the Linear Qudratic Regulator’s [31]
equtions can be obtained. In this special case from the
equation of motion for λ, with a complementary trick,
the Riccati equations [32] can be obtained that, though
they are quadratic first order equations, can be solved
by using the solution of second order linear equations.
In commercial software products as e.g. MATLAB ef-
ficient solutions can utilize these possibilities for LQR.
In Classical Thermodynamics the auxiliary function and
the Lagrange mutipliers give the basis for introducing
the Chemical Potentials via using the Legendre transfor-
mation (e.g. [28]). The above "cultural reasons" mean
strong motivations for engineers to proceed along these
"tracks" (e.g. [33, 34, 35]).

Since the above numerical algorithm has consider-
able computational needs, it is an interesting question
whether it can be avoided by using simpler techniques.
For more general cases simplifications were suggested in
[36] by abandoning the use of the auxiliary function. The
basic idea was based on the observation that for solving
the set of linear equations in (10) for the Lagrange mul-
tipliers can be realized by the use of the simple Gram-
Schmidt algorithm [37, 38] (originally was invented by
Laplace [39]) in the following manner. Let the compo-
nent of vector a subtracted from vector b in the form
b̃ := b+ µa so that b̃ must be orthogonal to a. Since or-
thogonaluty means zero scalar product solving the sim-
ple equation 0 = aT b+ µaTa yields the appropriate real
number µ. If the reduction of the gradient is important,

the appropriate vectors can be arranged as the columns
of a matrix in (12).[

∂g1
∂(x,u) . . . ∂gK

∂(x,u) − ∂J
∂(x,u)

]
(12)

At first remove the component of the 1st column from
the others. Then select the so obtained 2nd column and
subtract its coponent from the remaining ones, etc. Fi-
nally, in the last column of the result the reduced gradi-
ent will be present. Further simplification can be done
if we take it into account that ∀i gi(x, u) = 0 if and only
if G(x, u) = 0, therefore it is enough to make a sin-
gle step of orthogonalization for the two columns matrix[

∂G
∂(x,u)

∣∣∣ −∂J∂(x,u)

]
. In [36] it was found the even in the case

of a very simple paradigm quite considerable computa-
tion effort was spared in this manner. In the next section
further simplifications are recommended for the purposes
of developing RHC controllers using nonspecial dynamic
models and cost functions.

II. Further Simplifications for RHC
Controllers

It is a plausible observation that if we wish to re-
lease ourselves from the formalism using the Lagrange
multipliers, in the case of a first order system it is just
enough to execute the optimization according to the con-
trol signals over the horizon ui for i = 0, 1, . . . , F − 1,
because in the possession of the system model the
"constraint term" can be explicitly utilized as follows:
x0 is given as the initial condition. The principle of
causality can be expressed by the use of forward differ-
ences: x1 = x0 + ∆tΨ(x0,u0), x2 = x1 + ∆tΨ(x1,u1),
etc. In this case over the horizon we have to mini-
mize only J(u0, . . . ,uF−1) with the simple gradient de-
scent method without constraints. Neither the Newton-
Raphson phase depicted in (9), nor moving along the
reduced gradient by either solving (10) or making the re-
duction according to (12) has to be done. This evidently
means quite considerable reduction in the necessary bur-
den of computations.

This possibility is illustrated by the example of the
vertical motion of two coupled mass-points of masses m1

and m2 in a gravitaional field of acceleration g. The
mass-point m1 is hanging on a spring of stiffness k1 and
"zero force length" L01. Its motion can be controlled
by the vertical force F1. As "parasite dynamics", mass-
point m2 is connected to m1 by a spring of stiffness k2

and "zero force length" L20. The "exact equations of
motion" of this system are given in

m1q̈1 =m1g − k1(q1 − L01) + k2(q2 − q1 − L02)−
− b1q̇1 + F1

m2q̈2 =m2g − k2(q2 − q1 − L02)− b2q̇2 ,

(13)

where q1 and q2 are the appropriate vertical coordinates
(increasing downwards), and b1 and b2 are viscous damp-
ing coefficients. It is assumed that q1, q̇1 and q̈1 can be
directly observed, but no any measurable informaton is
available on q2, q̇2 and q̈2. Furthermore, it is assumed
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that none of the exact parameters of the model m1, m2,
k1, k2, L01, L02, b1, b2, and g are available. Instead of
them their approximations are available as m̃1, m̃2, k̃1,
k̃2, L̃01, L̃02, b̃1, b̃2, and g̃ (Table 1). For the not observ-
able variable its "computed estimation" is used as q̃2, ˙̃q2

and ¨̃q2, and when the estimation happens over the hori-
zon during the optimization, the "optimized data over
the horizon" q̆1, ˙̆q1 and ¨̆q1 are substituted in the approx-
imate model equation of motion

m̃1
¨̆q1 =m̃1g̃ − k̃1(q̆1 − L̃01) + k̃2(q̃2 − q̆1 − L̃02)−

− b̃1 ˙̆q1 + F1

m̃2
¨̃q2 =m̃2g̃ − k̃2(q̃2 − q̆1 − L̃02)− b̃2 ˙̃q2 ,

(14)

in which the data for q̆1, and q̃2 are calculated over the
horizon. The data over a horizon consists of the values{
q̆1[i], ˙̆q1[i], ¨̆q1[i], q̃2[i], ˙̃q2[i], ¨̃q2[i], F1[i]|i ∈ {1, 2, . . . ,HL}

}
where 4 ≤ HL ∈ IN denotes the horizon length.

Table 1: The model parameters
Parameter Exact Value Approx. Value

Mass 1 m1 = 1.0 kg m̃1 = 1.5 kg

Mass 2 m2 = 2.0 kg m̃2 = 2.5 kg

Spring stiffness 1 k1 = 15.0N ·m−1 k̃1 = 11.0N ·m−1

Spring stiffness 2 k2 = 12.0N ·m−1 k̃2 = 16.0N ·m−1

Spring’s length 1 L01 = 1.0m L̃01 = 1.2m

Spring’s length 2 L02 = 1.5m L̃02 = 1.8m

Damping coeff. 1 b1 = 0.8N · s ·m−1 b̃1 = 0.3N · s ·m−1

Damping coeff. 2 b2 = 0.5N · s ·m−1 b̃2 = 0.2N · s ·m−1

Grav. accel. g = 9.81m · s−2 g̃ = 10.0m · s−2

Instead using Lagrange multipliers within the hori-
zon Euler integration happens in the "forward form" as
follows:

q̆1[i+ 1] = q̆1[i] + ∆t ˙̆q1[i] ,

q̃2[i+ 1] = q̃2[i] + ∆t ˙̃q2[i] ,

˙̆q1[i+ 1] = ˙̆q1[i] + ∆t¨̆q1[i] ,

˙̃q2[i+ 1] = ˙̃q2[i] + ∆t¨̃q2[i] ,[
¨̆q1[i], ¨̃q2[i]

]
= M̃od

(
q̆1[i], q̃2[i], ˙̆q1[i], ˙̃q2[i], F1[i]

)
,

(15)

where the "Approximate Model Function" M̃od is de-
fined in (14). The horizon is related to the "Exact
Model" given in (13) by the "initial conditions" within
the horizon: q̆1[1] = q1(t), ˙̆q1[1] = q̇1(t) and q̃2[1] =
q̃2(t), ˙̃q2[1] = ˙̃q2(t) in which the actual time t corre-
sponds to the first grid point of the horizon. According
to (15), the optimization happens for the freely selectable
F1[1], F1[2], . . . , F1[HL − 2] values, since the effect F1[i]
appears in q̆1[i+ 2] in the case of a second order system,
and the cost function in the grid point i is defined in (16)

J [i] =


C[i]

(∣∣qN1 [i]− q̆1[i]
∣∣

∆q[i]

)P [i]

if

∣∣qN1 [i]− q̆1[i]
∣∣

∆q[i]
> 1

C[i]

(∣∣qN1 [i]− q̆1[i]
∣∣

∆q[i]

)2

otherwise.

(16)
where i ∈ {3, 4, . . . ,HL}, qN1 [i] denotes the nominal tra-
jectory to be tracked in the grid point i, C[i] > 0 are
weighting factors, P [i] > 2 determine how rapidly in-

creases the penalty in the |q
N
1 [i]−q̆1[i]|

∆q[i] > 1 region. Since
this power form produces a rapid increse in this region

but varies very slowly if |q
N
1 [i]−q̆1[i]|

∆q[i] ≤ 1, for this small
values the quadratic cost produces nicely decreasing gra-
dient. Consequently, the parameters ∆q[i] influence the
"precision of tracking": the error of order of magni-
tude ∆q[i] is well tolerated but the higher values are
drastically "punished". In a given grid point C[i] and
P [i] have "redundant" effects, but their simultaneous
use is not irrelevant. The total cost to be minimized is
J(F ) =

∑HL

i=3 J [i] in which IRHL−2 3 [F1, . . . , FHL−2] =
[F1[1], . . . , F1[HL − 2]]. Because the "constraint terms"
were eliminated by explicit calculations the simple gradi-
ent descent method can be applied for minimizing J(F ).
The minimization was initiated by using ∀i F1[i] = 0
starting values. Following the minimization the "opti-
mized" F1(t) = F1[1] is used in the Euler integration
based on (13) as q1(t + ∆t) ≈ q1(t) + ∆tq̇1(t), q̇1(t +
∆t) ≈ q̇1(t) + ∆tq̈1(t), and q2(t+ ∆t) ≈ q2(t) + ∆tq̇2(t),
q̇2(t + ∆t) ≈ q̇2(t) + ∆tq̈2(t) for the calculation of the
actual state variables. The values q̃2[2], ˙̃q2[2], q1(t+ ∆t),
q̇1(t+ ∆t) are selected and put to the first grid point of
the next horizon.

III. Simulation Results for Coupled Mass
Points

For the simulations no any special commercial soft-
ware product was used. The Julia language [?] was ap-
plied under Manjaro Linux on a DELL inspiron 15R
computer. A simple own-made sequential code was de-
veloped. In the simulations ∆t = 10−3 s discrete time-
resolution, HL = 4 horizon lenght, ∀i C[i] = 1 weight fac-
tors, ∀i P [i] = 3 cost powers, ∀i∆q[i] = 10−3m tracking
precision parameters, αmax = 10−2, αmin = 10−5 maxi-
mal and minimal speed parameter in the gradient descent
algorithm was used with maximally allowed 200 consec-
utive steps. Within each optimization cycle the starting
value was α = αmax. This value was kept until the
norm ‖∇J(F )‖ was decreasing. If in the next step this
value was increased, the algorithm went back to the pre-
vious point and tried the next point with a smaller value
α = αprevious/1.2 to make finer estimation. The initial
state of the whole computation approximately was the
equilibrium state of the free system (i.e. when F1 ≡ 0).
The results are given in Figs. 1–3. Figure 1 reveals that
the effects of the initial velocity discrepancies are slowly
relaxed in tracking the nominal trajectory qN1 (t). For
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Fig. 1: Trajectory tracking and trajectory tracking error
for qN1 (t)

the success of this strategy the viscous damping that is
present in the system plays an important role.

According to Fig. 2 it can be stated that the estima-
tion error for the state variable component q2 is signifi-
cant but at least it is kept at bay. Also, it can be stated
that as the initial oscillations that were caused by the
initial state discrepancies decrease, the necessary control
force is "tamed", too (Fig. 3).

To check the realiabilty of these results the simulation
was repeated for "exact estimated model parameters".
As it was expected, in the possession of the exact model
parameters, Figs. 4 and 5 reveal definite relaxation of the
initial tracking error. According to Fig. 6 the fluctuation
of the control force is much smaller than in the case of
very erroneous model parameter estimation.

It is important to note that the present considerations
give answer only for the time-dependence of the estima-
tion q̃2(t) by computing ¨̃q2(t) from some approximate
model. For this time-dependence the initial conditions
q̃2(t0) and ˙̃q2(t0) give considerable contributions. For the
estimation of the initial conditions complementary prin-
ciples are needed that have to be relevant in the subject
area of the phenomena under consideration.

Since our main aim is later making extensive investi-
gations for T1DM treatment by the use of the here out-
lined method, in the sequel we give preliminary simula-
tions for the same mathematical model that was treated
by the MS EXCEL, VBA, Solver combination in [19].
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Fig. 2: The exact and the estimated value and the esti-
mation error of q2(t)
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[N
]

The Exerted Force F1 Variable
F1

Fig. 3: The control force

IV. Simulations for a Particular T1DM
Model

In [19] a T1DM case was investigated with the defi-
nite aim of using the resources of the MS EXCEL’s Solver
package. On this reason (8) was considered, i.e. the dy-
namic model was treated by the use of Lagrange multi-
pliers as a constraint. To exemplify the here suggested
method’s applicability certain computations were made
for this model, too. For the equations (1)–(7) the "exact
parametres" are given in Table 2.

Utilizing the fact that in this approach the limitation
to the use of quadratic cost functions was not necessary,
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Fig. 4: Trajectory tracking and tracking error for qN1 (t)
for exact estimated model parameters

in each relevant grid point i = 2, . . . , F contributions
penalizing the tracking errors and that punishing the use
of too large insulin ingress rates were introduced as

Ψ =
∑
i

(ΦG[i] + Φu[i]) ,

ΦG[i] = CG


(
|GN−Go[i]|

∆G

)PG

if |GN −Go[i]| ≥ ∆G(
|GN−Go[i]|

∆G

)2

otherwise,

Φu[i] = Cu


(
|GN−Go[i]|

∆G

)Pu

if |u[i]| ≥ ∆u(
|u[i]|
∆u

)4

otherwise,

that, with the used PG = Pu = 2.9, means strongly
increasing penalty for the "too big" tracking error and
control components. Keeping the quadratic structure for
the low tracking errors caused nice trajectory tracking,
while the use of the 4th power for small insulin ingress
rates practically did not mean any significant penaliza-
tion. In the cost functions the CG = Cu = 1 relative
weights were used. The appropriate "ranges" were deter-
mined by the parameters ∆G = 0.5 mg/dL, and ∆u = 30
mU/min. The time-resolution of the grid was ∆t = 1
min, the horizon length was 10 steps. The initial state
corresponded to a stable stationary state belonging to a
low positive constant insulin ingress rate that stabilizes a
given glycemia level.

For practical investigations various "scenarios" can
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Fig. 5: Trajectory tracking and tracking error for qN2 (t)
for exact estimated model parameters
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Fig. 6: The control force for exact approximate param-
eters

be invented concerning the "speed" of the "glucose sub-
system" and the "insulin subsystem". It is an interest-
ing question what happens if in the available approx-
imate model the dynamics of the insulin subsystem is
slower, while the dynamics of the COH intake subsys-
tem is faster than the appropriate subsystems of the ex-
act model. It is very interesting, too, how the RHC
controller works when the approximate model’s insulin
subsystem is faster, and its COH intake subsystem is
slower than that of the exact model. For investigating
these situations two scenarios were considered belonging
to "Scenario A" and "Scenario B", respectively. The
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Table 2: The assumed "exact" model parameters used
for the equations (1)–(7) in [19].

Notation Value

GB 110.0 mg
dL

IB 1.5 mu
L

p1 2.8× 10−2 1
min

p2 2.5× 10−2 1
min

p3 1.3× 10−4 L
mu·min

n 2.3× 10−1 1
min

BW 75 kg

VI 0.12BW L

VG 0.16BW L

MwG 180.1558 g
mol

Ag 0.8

C 18.018 mmol
L

τD 40 min

τS 55 min

appropriate model parameter values for scenarios A and
B are given in Table 3.

Table 3: The approximate model parameters applied in
Scenarios A - B.

Notation In Scenario A In Scenario B

GBa
† GB GB

IBa
† IB IB

p1a 1.2p1 0.8 p1

p2a 0.8p2 1.2 p2

p3a 0.8p3 1.2 p3

na 0.8n 1.2n

BWa
† BW BW

VIa 0.12BWa 0.12BWa

VGa 0.16BWa 0.16BWa

MwGa
† MwG MwG

Aga
† Ag Ag

Ca
† C C

τDa 0.8τD 1.2 τD

τSa 1.2τS 0.8 τS

†It was assumed that these parameters

were exactly known.

The simulation results are presented in Figs. 7 - 22.
Each of these figures reveals acceptable numerical values

and no any cut was necessary in the models to exclude
the physically not interpretable u < 0 insulin ingress
rates, and the negative concentration values.
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Fig. 7: The primary state variable of the glucose absorp-
tion subsystem in "Scenario A"
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Fig. 8: The primary state variable of the glucose absorp-
tion subsystem in "Scenario B"
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Fig. 9: The secondary state variable of the glucose ab-
sorption subsystem in "Scenario A"
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Fig. 10: The secondary state variable of the glucose
absorption subsystem in "Scenario B"
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Fig. 11: The primary state variable of the insulin ab-
sorption subsystem in "Scenario A"
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Fig. 12: The primary state variable of the insulin ab-
sorption subsystem in "Scenario B"
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Fig. 13: The secondary state variable of the insulin ab-
sorption subsystem in "Scenario A"
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Fig. 14: The secondary state variable of the insulin ab-
sorption subsystem in "Scenario B"
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Fig. 15: The blood glucose level in "Scenario A" (GU

and GL denote the upper and lower bounds of the risk-
free region)
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Fig. 16: The blood glucose level in "Scenario B" (GU

and GL denote the upper and lower bounds of the risk-
free region)
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Fig. 17: The insulin-excitable tissue glucose uptake ac-
tivity in "Scenario A"
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Fig. 18: The insulin-excitable tissue glucose uptake ac-
tivity in "Scenario B"
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Fig. 19: The blood insulin level in "Scenario A"
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Fig. 20: The blood insulin level in "Scenario B"
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Fig. 21: The insulin ingress rate (the control signal) in
"Scenario A"
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Fig. 22: The insulin ingress rate (the control signal) in
"Scenario B"

It can be stated that the results obtained seem to be
acceptbale and it is definitely reasonable to make further
calculations for various models.

V. Further Research Plans

In this paper, by the use of a simple second order me-
chanical paradigm it was shown that the RHC controllers
can be numerically so realized that the use of Lagrange’s
Reduced Gradient Method can be avoided and instead
it a simpler gradient descent algorithm can be run. Ap-
plication examples were given for the control of a second
order mechanical system and a first order model of the
human glucose-insulin system to be used for treating pa-
tients suffering from type 1 diabetes mellitus. The sug-
gested approah has the main advantage that it allows the
use of arbitrarily structured cost functions. In resulting
succesful optimization the special form of the cost func-
tion in (16) distinguishing between the "small" and the
"significant" tracking error components played an im-
portant role. It was shown that though in the lack of
an appropriate sensor the not observable, "hidden" state
variables were estimated only on the basis of model cal-
culations, their estimation error at least can be kept at
bay and the so estimated values can be utilized in the
receding horizon control. In the future we wish to ap-
ply this method for modeling control-based T1DM treat-
ment in which we plan to use more sophisticated human
glucose-insulin system models than that used in these
preliminary investigations. We also wish to use more
complex COH intake disturbance systems, too. It has
to be emphasized that in the present considerations the
slection of the "initial state" was important, too. In the
later investigations more complex initial states will be
considered, too.
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