
 

 

 

Abstract—In this paper, a design method of smoothing the path 

generated by a novel algorithm is proposed, which makes the 

mobile robot can more rapidly and smoothly follow the path and 

reach the target point. No matter the attitude vector angle is an 

acute angle or obtuse angle, there is no doubt that we can find the 

right curve, including polar polynomial curves and piecewise 

polynomial functions, which makes the path length and the 

circular arc tend to be similar and guarantees the shorter path 

length. In the condition of meeting the dynamic characteristics of 

the mobile robot, the tracking speed and quality are improved. 

Therefore, the symmetric polynomial curve and the piecewise 

polynomial function curve are used to generate a smooth path. 

This novel algorithm improves the path tracking accuracy and 

the flexibility of the mobile robot. At the same time, it expands the 

application range of mobile robot in structured environment. 

Keywords—Mobile Robot, Obstacle Environment, Path 

Planning, Smoothing Path  

I. INTRODUCTION 
ITH the acceleration of the global modernization 
process, the related industries has an unprecedented 
demand in the application of industrial robots, and the 

function of robot in various fields is significant. As the main 
body of the robot, the research of mobile robot [1-2] has been 
developed in a large extent, in the industrial production, people 
took the lead in the use of mobile robots. Before and after 1968, 
as the representative of the mobile robot, the production of 
automatic guided vehicles began to rise. Along with the 
gradually increasing application of the mobile robot, the 
development of the social civilization is increasingly close.  

The mobile robot has played a pivotal role in the national 
production and life. Path planning usually has many obstacles, 
such as the environmental information quantity is large and it 
also has many obstacles as non-deterministic polynomial 
difficult. At present, many algorithms have been applied to 
path planning. Latombe research indicates that the traditional 
method mainly has the graphics method and the analysis 
method. As to Graphics methods [3], there are road map 

 

 

method, genetic method, ant method, taboo search method, 
taboo search intelligent algorithm, and the hybrid method. 
Intelligent algorithms such as GA have many problems, such 
as the encoding length change range is big, the efficiency is 
low and the solution range is small. Dijkstra algorithm directly 
search the global space without considering the target 
information, which leads to the time of the path length is long 
for the fast path planning. The planning algorithm [4]  is a kind 
of path planning method, which is not only suitable for the 
global environment information, but also for the two time 
planning of the path. The planning algorithm introduced the 
heuristic function, therefore, the planning algorithm is also 
called the heuristic algorithm.  

The differential planning algorithms are proposed to solve 
some problems of path planning under the circumstance of 
local environmental information. The algorithm process is 
complex, and it requires a lot of mathematical calculation and 
derivation. The planning algorithm has many problems in the 
planning path, such as it has lots of broken lines and turning 
point. The path planning algorithm is deeply studied to 
improve the quality of the line, and a novel algorithm model is 
established, and the method and comparison results are 
presented       

II.  RESEARCH METHODS AND PRESENT SITUATION 
The path planning of multiple robots focuses on the optimal 

path of the whole system [5-8], such as the total time of the 
system is short, or, the shortest path of the system etc. From 
the current domestic and foreign research, in the planning of 
multi robot path, we tend to pay more attention on the 
coordination and cooperative path planning of multi robots. 
Among them, the traditional method is based on graph theory, 
such as visual graph, free space method, grid method, Voronoi 
[9] method, artificial potential field method etc. The Intelligent 
optimization methods includes: genetic algorithm, ant colony 
algorithm, immune algorithm, neural network, reinforcement 
learning, etc. And the other methods include dynamic 
programming, optimal control algorithm, and fuzzy control 
method etc. Most of them are extended from a single robot path 

A Novel Algorithm for Path Planning of the 
Mobile Robot in Obstacle Environment  

Chun-li Yang 
College of Engineering, Dali University, Yunnan, Dali671003, China

Received: September 22, 2020. Revised: March 3, 2021. Accepted: March 22, 2021. Published: March 30, 2021.

 

W 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 225



 

 

planning method.  

A.  Traditional Method 

The characteristics of multi robot path planning are mainly 
based on graph theory. Most of the method is to build the 
environment into a graph firstly, and then find the optimal path 
from the graph. Its advantages are relatively simple to achieve, 
and the disadvantage is that the path may not the optimal path, 
but the sub optimal path instead [9-10]. As to the basic idea of 
the artificial potential method, it is regarded the motion as a 
kind of virtual force field. Obstacle will generate a repulsive 
force to the mobile robot, and the target points are generated 
by gravity, the gravity and repulsion force is generated by a 
certain algorithm. Meanwhile, the robot is subjected to abstract 
forces in the potential field, which makes the robot bypass 
obstacles. The advantages are suitable for the planning of the 
unknown environment, there will not be the dimension 
explosion problem. However, there may be some useful 
information which may be lost. Goo Guo [11] Chang et al 
proposed reference total potential reduction of dynamic 
scheduling techniques of multi robot path planning, which can 
better solve the problem.  

B. Intelligent Optimization Method 

The intelligent optimization algorithm of multi robot path 
planning is a new developed method. Compared with the 
traditional method, this method is more intelligent, and has 
become the focus of domestic and foreign research. Genetic 
algorithm [12] is a hot research topic in recent years, as a kind 
of probability optimization method based on population 
evolution, it is suitable for solving the complex and nonlinear 
problems which are difficult to solve by traditional search 
algorithms, such as the multi machine path planning problem. 
The basic idea of path planning is to construct the environment 
map into a path node link network with the graph method, then 
the path is expressed as a series of intermediate nodes in the 
path, and is converted to binary string; next, the genetic 
operations, such as selection, crossover, replication, mutation, 
are carried out, after N evolution [13], it will output the current 
optimal individual, that is, the optimal path of the robot. The 
disadvantage of genetic algorithm is that the numerous 
planning will occupy a large storage space and computing time. 
The advantage is that the computation is small.  

C.  Ant Colony Algorithm 

The ant colony algorithm is a bionic algorithm [14] for 
random search. Through the interaction between the individual 
in the ant colony, we can solute the combination optimization 
problem concurrently. The algorithm is also suitable for the 
path planning. Zhu Qingdao [15] proposed a multi robot 
motion ant navigation algorithm in the unknown global 
environment. In this method, the global target points are 
mapped to the robot's field of vision and the local navigation 
is used as the target. The local optimal path of the robot's visual 
field is searched by the two groups of ants, then, on the basis 
of the collision prediction and collision avoidance with other 
robots, we can make our choices. Therefore, the path of the 

robot's forward path is constantly modified, so as to lead the 
way in each local optimal path, which can make the robot reach 
the target point along a path of global optimization. But the 
problem is that the time overhead of path planning in dynamic 
uncertain environment is increased, at the same time, the robot 
lacks the necessary learning, so that the whole robot system 
path is difficult to be the optimal path. 

III. DESIGN OF IMPROVING PATH PLANNING ALGORITHM 

A. The Basic Principle of Algorithm 

Because of the complex structure of the robot, so, it is 
difficult to design the ideal motion control law. As to the 
formation control of multiple robots, in addition to considering 
the motion of each robot, we must consider the coordination of 
the system as a whole, especially in 3D space [16], the 
movement is more complex. The improved path planning 
algorithm can be used to control the nonlinear object, so it is 
an effective method which can deal with the problem properly. 
The mathematical model of the robot with practical 
significance is often nonlinear; at the same time, the feedback 
linearization method is also difficult to be used in 3D space. 
Therefore, it has a very strong practical significance for the 
robot group control design of nonlinear object in 3D space.  

Dijkstra algorithm [17] is the most classical method for path 
search, the main idea is to calculate the path weight of each 
node to the target node, and then select the path of the most 
consistent with the requirements of the output. Its 
characteristic is to start node as the center, and the search will 
continue until reaching the target node. In the practical 
application, the efficiency is very low due to the large number 
of nodes, which need to traverse every node in the state space.  

Path planning starts from the starting node, and then updates 
the node weights of the current node in turn. It will update the 
node with the minimum weight [18] of the current node until 
he node is traversed or the current node is the destination node. 
The following definitions are given in the path planning 
algorithm. 

l -- A node that has been planned in the path planning; 

g i -- Grid node in path planning. 

ih x , ih x -- Respectively, the horizontal and vertical 
coordinates of the nodes. 

 h l -- The actual moving distance of the initial node QI. 

 I l -- Heuristic function, the distance from L to UF. 

 g l --    h l i l Node L path evaluation function. 

P --- Queue set of nodes waiting to be expanded. 

D ---Storage the expanded cohort set of the nodes.  

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 226



 

 

O
f -- Expand the node function, when the node is not an 

obstacle. or it has not been previously extended, implement the 
insertion node function, and then insert P  to the list.  

O
j -- Insert the node function, according to the magnitude 

of g , then descend the nodes into the P list.  

Using the grid map and the eight neighbor node expansion 
method, the mobile robot is used as the Euclidean distance, and 

the current node l  to the target point U
f  will regard as a 

heuristic function 

     
2 2

f fi l lx U x ly U y                 (1) 

The evaluation function  i l  is usd as an extension node, 
and put the node in the D list until it is extended to the target 
node for r path planning. The definition of the function file 

o
E  is given in the algorithm, which is used to calculate the 

heuristic function values. f
B Obtain the subsequent extension 

list of nodes, f
P  will calculate and then send the value to the 

P  list, and then J
o will back to P node to get the location 

index.  

B. A Conventional Algorithm 

Mobile robot is considered as the point moving object [19] 
in the two-dimensional plane environment, and the certain 
obstacles in the environment are mapped into a dangerous area 
in the plane. Mark the mobile robot r  move on the planar finite 
area a , a  random number of obstacles were distributed on the 

A, the obstacle  1,2, ,i n
i

p   , its shape distribution is not 

determined, meanwhile, a  is set to any shape of a convex 
polygon. Firstly, complete a  to the specifications of 
rectangular, at the same time, the filled area (the obstacle 
region) is not allowed pass by. After the processing of the grid, 
the obstacle on a is converted into an obstacle region. In a , its 
lower left corner is O , transverse is X axis, longitudinal axis is
Y , then the environmental information of the grid is mapped 
to the plane coordinate system XOY .  

Hypothesis: the step size on the u is a , the biggest value of 
a on X axis and Y axis is maxx and maxy respectively, so, the 

a  ranks of the grid number is /max u
c

N x , /1 max uN y  

respectively, as shown in figure 1, the obstacle is randomly 
distributed in the a , and the position of the starting and ending 
points is not fixed. Mark g  as the arbitrary grid, suppose that 
the grid in a is a collection of B , mark 

 ,1 2 , , nP B
obs

p p p  is the obstacle grid

 1,2 ,
i obs

p P i n   , the corresponding coordinates of 

h B   is ( , )x y  IN xOy , and it was marked as ( , )h x y , then 
defines the first grid coordinates of the lower left corner is 

(1,1),  1,2,3 ,M
num

N  is the grid serial number, (1,1)h is 

1;...; (2,1)h , and its serial number is 1
c

N  . The coordinate

( , )
i i

x y of 
i

h B  and the series 
num

i N have a mapping 

relationship between each other, and the coordinates of serial 
number i  is determined by the following formula  

 
  

  

1 mod 1
}

int 1 / 1

x i Ni c

y i Ni c

  

  
                   (2) 

In this formula, int. mod are respectively represent: get integer 
and give up remainder and the operation of getting the 
remainder.  

Path planning under Grid Environment, that is, on the a , r

is made from an arbitrary starting point of T  to reach the 

target point along a path that is safe and free from collision f
U

. Among them, u ∈ P
obs

and t ,
num

f N , t f . 

 

Fig. 1 the grid mobile robot environment 

C.  Improving Algorithm 

The h(x) of path planning algorithm, which use the classical 
Manhattan heuristic [20] function, that is, getting the 
evaluation of the current node, the target node, the horizontal 
axis, the vertical coordinate difference, and then sum the 
absolute value of the two. The value of the current node and 
the actual path of the target node is used as the evaluation value 
h(x). According to the admissibility condition, when search the 
all nodes in the graph x  and    h x h x ,  h x is the 
optimal path for the starting node to the target node. Path 
planning algorithm can guarantee a minimum cost path to 
reach the goal.  h x  is Manhattan function, which cannot 

guarantee    h x h x , that cannot guarantee to meet the 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 227



 

 

acceptance conditions, so we need to find a suitable heuristic 
function. 

If path planning include two versions: A1 and A2, the 
difference lies in all non-target nodes    1 2h x h x , that is, 
A2 is more informed than A1. If A1 is more informed than A2, 
in that way, a path from the X0 to the destination node, when 
the search terminates, each node that has been extended by A2 
is also extended by A1. It can be concluded that the A1 
extension of the nodes is at least as much as A2, this is a more 
effective algorithm, so A2 is more effective. As a result, we 
need to look at the function of the  h x as close as possible to 
the real function (in order to search efficiency), at the same 
time, we cannot exceed them as well (in order to be 
acceptable). When selecting the function, we must consider the 
amount of computation, the less strict the model is, the better 
the heuristic function is, and the more difficult it is. The value 
should be taken between the exact function and the 
computational cost. There are two heuristic function which can 
be improved, the two heuristic functions satisfy the 
admissibility theorem. 

Larger value heuristic function  h x  is max value between 
difference of horizontal coordinates and vertical coordinates. 
Euclidean heuristic function  h x is the line distance between 
current point and target point. 

D. Design of Improving Path Planning Algorithm 

(1) Polar polynomial curve 

In the convergence curve, the arc length is shorter. So, on 
the one hand, the smooth curve should not too far from the arc, 
on the other hand, it must be applied to the position of the 
initial point and the end point, meanwhile, it should meet the 
requirements of the curvature of the constraint. Therefore, we 
should choose the polar coordinate system  ,r  , and the 
variable r is the polynomial function of the , its general form 
is 

  2 3 4
0 1 2 3 4r                    (3) 

Figure 2 is the polar polynomial curve [21] of the joint 
posture of A and B, the constraints imposed on the curve can 
be expressed as 

0 0 0
}

0 0
r R r

r R r

 

 

    

    
                              (4) 

Where R is the radius of the arc of the place,
2

2

dr d r
r r

d d


 
   ,  represents the curvature of r , r  

indicates the steering angleV , assuming that the mobile robot 
tracks the curve at a constant speed V , at this moment, the 
only acceleration is the radial acceleration, that is

2 2V

c r
V   . Since the curvature of the curve   is 

continuous, the acceleration of the robot is also continuous. 
That is, if the robot is followed by a polar polynomial curve, 
the position, velocity and acceleration are all continuous. It is 
the direction of the car center of Figure 3. In polar coordinate 
system  ,r  , the tangent angle of the path can be expressed as 

1tan
2

r

r




  
   

 
                           (5) 

The differential can be obtained for  

2

2 21 rr r

r r

d

d





 


                                (6) 

The infinitesimal variation of the path length is ds , which 
can be expressed in polar coordinates. 

 
1

2 2 2r r dds                              (7) 

From (4), (6)and (7), we can get the expressions for 
curvature: 

 

2 22
3

2 2 2

r r rr

r r


  




                              (8) 

By calculating the constraint conditions [22] in the formula 
(4), the coefficients of the formula (3) can be obtained, and the 
polar polynomial curve of the connecting line is finally 
obtained 

  
2 3 4

1 22 2
r R

  


 
   

  

                         (9) 

The curve shows in Figure 2 is the symmetrical curve, that 

is, it symmetric with the symmetric axis line : 2PQ 


 , 

   r r    . Please see Figure 3 for the curvature 

variation of the curve             And the curvature 
variation law is  —Maximum value—  , It satisfies the 
condition of continuous curvature continuity when connected 
with a straight line. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 228



 

 

 

Fig.2 Polar polynomial curves under polar coordinates. 

 

 

Fig.3 Polar polynomial curve curvature variation 

From this, we can further obtain the explicit expression of 
the various parameters of the projection point [23]. At the same 
time, it is simple to calculate, and there is no complicated 
integral operation, what’s more, it does not need the 
accumulation of historical data, so, it can meet the real-time 
requirements of the mobile robot in the path tracking. Figure 4 
is a very polynomial curve of the different angles of the 
MATLAB, and it is also the contrast with the same radius. 
Among them, the solid is polynomial curve, the dotted line is 
the arc. At the same time, the variation of the curvature with 
the polar angle is plotted. 

 

(a) 3
x   

 

(b) 3
   

 

(c) 2
x   

 

(d) 2
   

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 229



 

 

(e) 3
2

x   

 

(f) 2
3

   

Fig. 4 Three pole polynomial curves and the curvature 
function of the unit circle 

(2) Piecewise polynomial function curve 

From figure 4 we can see, when 90  , the polar polynomial 
curve has a large deviation from the arc, and the path length is 
obviously increased, and the optimal condition for the smooth 
path of the mobile robot is not consistent. At this point, we can 
use the "piecewise polynomial function curve" [24] to replace 
the polar polynomial curve. The piecewise polynomial 
function curve is composed of a polar polynomial curve with 
two ends and a middle circular arc segment. This piecewise 
polynomial function curve cannot only guarantee the 
continuity of curvature, but also more close to the circular arc, 
the path length is shorter than the original polynomial curve, 
the price is higher curvature and curvature change rate. As 
shown in Figure 5, the piecewise polynomial function curve is 
composed of 3 parts: the ordinary polynomial form from 

0  to   , and it satisfy the constraints (10). From 
  to    , they are symmetric polynomials, that is 

 1
0 0 0

}0b
Rb

r R r

r R r

 

  

     

     
                  (10) 

Similarly, the mathematical form of the first segment of the 
polar polynomial curve can be obtained 

 
2 3 5

1 32 2 10
r R

  

 


 
   
 
 

                (11) 

Among them, b
R and  meet the following constraints 

2 10 1Rb
R


 

  
 

                      (12) 

In the third part, the expression of the polar polynomial 
curve is only required to be replaced by  of (11) into   . 

 

 

Fig. 5 Piecewise polynomial function curve 

Please see Figure 6, we can see that the piecewise 
polynomial function curve firstly guarantee the continuity of 
curvature, but its peak curvature is larger than the other 2 kinds 
of curves. Therefore, formula (12) is required to combine the 
kinematic and dynamic constraints of the robot, so as to ensure 
the reasonable value of b

R  and  , in this way, we can avoid 
the higher peak curvature as well.  

 

Fig.6 The comparison of piecewise polynomial function 
curve and normal curve curvature.  

IV.  THE MAIN STEPS AND PROGRAMS TO IMPROVE PATH 
PLANNING ALGORITHM 

At present, most path searching algorithm research tend to 
focus on the improvement of the algorithm itself. It also 
provides a way for the optimization and improvement of the 
algorithm[25]. Since the dual core CPU can simultaneously 
carry on the dual thread operation, in this case, we can base on 
MPI parallel programming technology, then  convert the single 
direction of the path planning search process  to an improved 
path planning algorithm. The specific steps are as follows. 

Step 1. According to the actual situation, the information of 
each node is set as a factor a. Then calculate the Euclidean 
distance of the starting node to the end node, and note it as d, 
which was shown below: 

 , 0,A a i n  Among them, n is the sum point.  

   0 0
2 2

n nd x x y y                  (13) 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 230



 

 

Step 2. Two tables are set up for the forward path search and 
the reverse path search respectively, they are FOPEN table, 
FCLOSE table, BOPEN table and BCLOSE table. The first 
two tables are stored in the forward path search node that has 
been visited; the following two tables are stored in the reverse 
path search node and the node that has been visited. 

Step 3. According to the standard path planning algorithm, 
the forward path search and the reverse path search are 
respectively processed. But in the calculation of the value of 
each node, we need to use the valuation function. 

Step 4. Search the current node with the forward and reverse 
paths, then calculate the Euclidean distance between the 
respective starting points to the current node, d1 and d2 
respectively, then return to operation 3, if

1 2
dd d  , then 

turn to step 5. 

Step 5. Compared table FCLOSE and table BCLOSE, then 
check if there is the same node, if it exists, shift to step 6; if it 
doesn’t exist, then keep a record of the two tables, the starting 
node is the current node in the FCLOSE table, and the current 
node in the BCLOSE table is terminated, then shift to step 2. 

Step 6. Combine all the FCLOSE table and BCLOSE table. 

Under Windows operating system, we can use C + + 
language to write the simulation program, the hardware 
platform is IBM Think Centre series, CPU is intel Core 2 Duo 
E6320, the frequency is 2.93 GHz. The simulation data is 
generated by the program, we give the starting point and the 
end point, then set up the number node.  

Path planning (shortest path) algorithm is to find the path 
with the least cumulative weight from node A to node B. The 
algorithm program with C + + language is as follows. 

Firstly, we can abstract "directed edges" as Edge Classes. 

public   class  Edge 
    { 
         public   string  StartNodeID ; 
         public   string  EndNodeID  ; 
         public   double  Weight      ;          
    } 

A node is abstracted into a node class, and a "out side" table 
with this node as the starting point is hung on a node. 

public   class  Node 
     { 
        private string iD ; 
        private ArrayList edgeList ; 
 
        public Node(string id ) 
     { 
            this.iD = id ; 
            this.edgeList = new ArrayList() ; 
        } 

} 

 

In the process of calculation, we need to record the path to 
each node with the smallest weight. 

//   <summary> 
     ///   </summary> 
     public   class  PassedPath 
    { 
         private   string      curNodeID ; 
         private   bool      beProcessed ;    
         private   double      weight ;         
         private  ArrayList passedIDList ;  
 
         public  PassedPath( string  ID) 
        { 
             this .curNodeID  =  ID ; 
             this .weight     =   double .MaxValue ; 
             this .passedIDList  =   new  ArrayList() ; 
             this .beProcessed  =   false  ; 
        } 
         #region  property 
         public   bool  BeProcessed 
        { 
             get 
            { 
                 return   this .beProcessed ; 
            } 
             set 
            { 
                 this .beProcessed  =  value ; 
            } 
        } 
         public   string  CurNodeID 
        { 
             get 
            { 
                 return   this .curNodeID ; 
            } 
        } 
         public   double  Weight  
        { 
             get 
            { 
                 return   this .weight ; 
            } 
             set 
            { 
                 this .weight  =  value ; 
            } 
        } 
         public  ArrayList PassedIDList 
        { 
             get 
            { 
                 return   this .passedIDList ; 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 231



 

 

            } 
        } 
         #endregion 
    } 

In addition, a table plancourse is needed to record the 
intermediate results of the plan, that is, it manages the 
passedpath of each node. 

///   <summary> 
     ///   </summary> 
     public   class  PlanCourse 
    { 
         private  Hashtable htPassedPath ;     
 
         #region  ctor 
         public  PlanCourse(ArrayList nodeList , string  originID
) 
        { 
             this .htPassedPath  =   new  Hashtable() ; 
 
            Node originNode  =   null  ; 
             foreach (Node node  in  nodeList) 
            { 
                 if (node.ID  ==  originID) 
                { 
                    originNode  =  node ; 
                } 
                 else 
                { 
                    PassedPath pPath  =   new  PassedPath(node.ID) 
; 
                     this .htPassedPath.Add(node.ID ,pPath) ; 
                } 
            } 
 
             if (originNode  ==   null )  
            { 
                 throw   new  Exception( " The origin node is not ex
ist ! " ) ; 
            }         
     
             this .InitializeWeight(originNode) ; 
        } 
 
         private   void  InitializeWeight(Node originNode) 
        { 
             if ((originNode.EdgeList  ==   null )  || (originNode.E
dgeList.Count  ==   0 )) 
            { 
                 return  ; 
            } 
 
             foreach (Edge edge  in  originNode.EdgeList) 
            { 
                PassedPath pPath  =   this [edge.EndNodeID] ; 
                 if (pPath  ==   null ) 

                { 
                     continue  ; 
                } 
 
                pPath.PassedIDList.Add(originNode.ID) ; 
                pPath.Weight  =  edge.Weight ; 
            } 
        } 
         #endregion 
 
         public  PassedPath  this [ string  nodeID] 
        { 
             get 
            { 
                 return  (PassedPath) this .htPassedPath[nodeID] ; 
            } 
        } 
    } 

 

The main steps of the algorithm are as follows. 

Step1. A table (plancourse) is used to record the minimum 
weight of the source point to any other node. When initializing 
this table, if the source point can pass through a node, the 
weight is set to the weight of the corresponding edge, 
otherwise it is set to double.MaxValue . 

Step2. Select the node targetnode that has not been 
processed and the current cumulative weight is the smallest, 
use its edge accessibility to update the path and weight to other 
nodes (if the weight of other nodes becomes smaller after 
passing through this node, it will be updated, otherwise it will 
not be updated), and then mark targetnode as processed. 

Step3. Repeat (2) until all reachable nodes are processed. 

Step4. Get the passedpath of the destination point from the 
plancourse table, which is the result. 

Let's take a look at the implementation of the above steps, 
which is encapsulated in the routeplanner class. 

///   <summary> 
     public   class  RoutePlanner 
    { 
         public  RoutePlanner() 
        {             
        } 
 
         #region  Paln 
         public  RoutePlanResult Paln(ArrayList nodeList , strin
g  originID , string  destID) 
        { 
            PlanCourse planCourse  =   new  PlanCourse(nodeList
 ,originID) ; 
            Node curNode  =   this .GetMinWeightRudeNode(pla
nCourse ,nodeList ,originID) ; 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 232



 

 

 
             #region   
             while (curNode  !=   null ) 
            { 
                PassedPath curPath  =  planCourse[curNode.ID] ; 
                 foreach (Edge edge  in  curNode.EdgeList) 
                { 
                    PassedPath targetPath  =  planCourse[edge.EndN
odeID] ; 
                     double  tempWeight  =  curPath.Weight  +  edge
.Weight ; 
 
                     if (tempWeight  <  targetPath.Weight) 
                    { 
                        targetPath.Weight  =  tempWeight ; 
                        targetPath.PassedIDList.Clear() ; 
 
                         for ( int  i = 0  ;i < curPath.PassedIDList.Coun
t ;i ++ ) 
                        { 
                            targetPath.PassedIDList.Add(curPath.Passe
dIDList[i].ToString()) ; 
                        } 
 
                        targetPath.PassedIDList.Add(curNode.ID) ; 
                    } 
                } 
 
                planCourse[curNode.ID].BeProcessed  =   true  ; 
                 
                curNode  =   this .GetMinWeightRudeNode(planCo
urse ,nodeList ,originID) ; 
            } 
             #endregion 
             
             return   this .GetResult(planCourse ,destID) ;              
   
        } 
         #endregion 
 
         #region  private method 
         #region  GetResult 
         
         private  RoutePlanResult GetResult(PlanCourse planCo
urse , string  destID) 
        { 
            PassedPath pPath  =  planCourse[destID]  ;             
 
             if (pPath.Weight  ==   int .MaxValue) 
            { 
                RoutePlanResult result1  =   new  RoutePlanResult(
 null  , int .MaxValue) ; 
                 return  result1 ; 
            } 
             
             string [] passedNodeIDs  =   new   string [pPath.Passe
dIDList.Count] ; 

             for ( int  i = 0  ;i < passedNodeIDs.Length ;i ++ ) 
            { 
                passedNodeIDs[i]  =  pPath.PassedIDList[i].ToStri
ng() ; 
            } 
            RoutePlanResult result  =   new  RoutePlanResult(pas
sedNodeIDs ,pPath.Weight) ; 
 
             return  result ;             
        } 
         #endregion 
 
         #region  GetMinWeightRudeNode 
         
         private  Node GetMinWeightRudeNode(PlanCourse pla
nCourse ,ArrayList nodeList , string  originID) 
        { 
             double  weight  =   double .MaxValue ; 
            Node destNode  =   null  ; 
 
             foreach (Node node  in  nodeList) 
            { 
                 if (node.ID  ==  originID) 
                { 
                     continue  ; 
                } 
 
                PassedPath pPath  =  planCourse[node.ID] ; 
                 if (pPath.BeProcessed) 
                { 
                     continue  ; 
                } 
 
                 if (pPath.Weight  <  weight) 
                { 
                    weight  =  pPath.Weight ; 
                    destNode  =  node ; 
                } 
            } 
 
             return  destNode ; 
        } 
         #endregion 
         #endregion 

} 

 

The simulation program automatically generates the 
topological structure of the path graph, and sets the range of 
the specific gravity factor, meanwhile, the factor value of each 
node is generated randomly by the program. We can compare 
the performance and efficiency of different search algorithms 
in different number of nodes by adjusting the scale of nodes. 
After adding the orientation factor, the mobile path can be 
ensured to move in the direction of the target node. At the same 
time, due to the increase of heuristic factor, the operation 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 233



 

 

process is more close to the reality.  

The improved path planning algorithm is based on MPI 
parallel programming technology of path search and 
optimization algorithm. In theory, it can reduce the time 
complexity of 50% compared with the traditional path 
planning algorithm. The experimental environment is: CPU 
Intel Core2 Duo, internal memory is 2 GB, the compiler tool 
is Mat lab 7.0. We simulate the path planning of the mobile 
robot with the random distribution of obstacles in different grid 
environments, and then give the simulation results.In this 
paper, the path between nodes and nodes is (s, x, u, v), the 
length is 10. In the simulation, two kinds of grid scale obstacles 
random were distributed: 50 ×50, 300 ×300. We choose a 
standard path planning algorithm in this paper, and then search 
the different size of the path graph. Inspire the specific gravity 
factor range, and we can get the results which was shown in 
Table 1. 

Table 1. Comparison of algorithm and founder results 

 The traditional path 
planning algorithm 

Improved path planning 
algorithm 

Scal
e 

Numbe
r of 

point 

Sum of 
weight

s 
Tine 

Numbe
r of 

point 

Sum of 
weight

s 
Tine 

30 14 72 0.83 16 38 0.75 

150 - - - 70 490 3.59 

300 396 435 45.3
7 407 1134 32.8

5 

1000 933 702 56.5
9 892 1983 48.5

3 

 

From the comparison of the simulation results, in the search 
of the small-scale path graph, the standard path planning 
algorithm and the improved path planning recursive algorithm 
are quite similar.  

A number of straight lines and a number of symmetrical 
polar polynomial curve are used to connect it with transitions 
between adjacent gestures, and when the attitude angle is an 
obtuse angle with piecewise polynomial curves instead of 
polar polynomial. Finally, it can generate a global smooth path, 
which was shown in Figure 7. The control period is 100ms, the 
moving speed is 30mm/s, and path follows the simulation 
results are shown in Figure 7.  

 

 

 Fig.7 Path follows the simulation results  

V. CONCLUSION 
In this paper, we study the path planning of different grid 

scale obstacles by using the improved algorithm. The 
improved algorithm is introduced to optimize the key points, 
and the path is simplified as a key point. In the end, the path is 
generated by the position, slope and curvature. Its calculation 
is simple, and it can greatly improve the efficiency of the robot 
when encountering obstacles. 

 

ACKNOWLEDGEMENTS 

 

This work is supported by Scientific Research Fund Project 
of Yunnan Education Department (2019J0758) 

REFERENCES   
[1] Yinka-Banjo C O , Agwogie U . Mobile Robot Path Planning in an 

Obstacle-free Static Environment using Multiple Optimization 
Algorithms. Nigerian Journal of Technological Development, 2020, 
17(3):165-173. 

[2] Zheng Y, Yan B , Ma C , et al. Research on obstacle detection and path 
planning based on visual navigation for mobile robot. Journal of Physics, 
2020, 1601(6):062044 (10pp). 

[3] Zhong X , Tian J , Hu H , et al. Hybrid Path Planning Based on Safe A* 
Algorithm and Adaptive Window Approach for Mobile Robot in Large-
Scale Dynamic Environment. Journal of Intelligent & Robotic Systems, 
2020, 99(1):65-77. 

[4] Sun Y , Zhang C , Sun P , et al. Safe and Smooth Motion Planning for 
MecanumWheeled Robot Using Improved RRT and Cubic Spline. 
Arabian Journal for Science and Engineering. Section A, Sciences, 2020, 
45(4):3075-3090. 

[5] Ould Mohamed Mohamed Vall, Modeling and Networked Control of 
Two-rigid Link Robot Arm, WSEAS Transactions on Systems and 
Control, Volume 15, 2020, Art. #39, pp. 375-382. 

[6] Lyubomira Miteva, Kamen Delchev, Kaloyan Yovchev, Evgeniy 
Krastev, Design of Biped Robot with Anthropomorphic Gait, WSEAS 
Transactions on Systems and Control, Volume 14, 2019, Art. #33, pp. 
257-263. 

[7] Van Den Berg J, Abbeel P, Goldberg K. LQG-MP: Optimized path 
planning for robots with motion uncertainty and imperfect state 
information. The International Journal of Robotics Research, 2019, 30(7): 
895-913. 

[8] Liao C , Liao Y , Xie J . Obstacle Avoidance Trajectory Planning of 
Loading Robot Based on Improved RRT Algorithm. International Core 
Journal of Engineering, 2020, 6(5):209-213. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 234



 

 

[9] Atia M G B , El-Hussieny H , Salah O . A Supervisory-Based 
Collaborative Obstacle-Guided Path Refinement Algorithm for Path 
Planning in Wide Terrains. IEEE Access, 2020,170: 257-266. 

[10] Das S K, Dutta A K, Debnath S K. OperativeCriticalPointBug algorithm-
local path planning of mobile robot avoiding obstacles. Indonesian 
Journal of Electrical Engineering and Computer Science, 2020, 
18(3):1646. 

[11] Asgari M , Foghahayee H N . State Dependent Riccati Equation (SDRE) 
controller design for moving obstacle avoidance in mobile robot. SN 
Applied Sciences, 2020, 2(11), pp. 47-55. 

[12] Jung J W , Park J S , Kang T W , et al. Mobile Robot Path Planning Using 
a Laser Range Finder for Environments with Transparent Obstacles. 
Applied Sciences, 2020, 10(8), pp.2799. 

[13] Ajeil F H , Ibraheem I K , Azar A T , et al. Autonomous navigation and 
obstacle avoidance of an omnidirectional mobile robot using swarm 
optimization and sensors deployment. International Journal of Advanced 
Robotic Systems, 2020, 17(3):172988142092949. 

[14] Martyshkin A I . Motion Planning Algorithm for a Mobile Robot with a 
Smart Machine Vision System. Nexo Revista Científica, 2021, 33(2), 
pp.651-671. 

[15] Persson S M, Sharf I. Sampling-based A* algorithm for robot path-
planning. The International Journal of Robotics Research, 2019, 33(13), 
pp. 1683-1708. 

[16] Badmos T A , Omolaye P O , Mebawondu J , et al. Robot Path Planning 
Performance Evaluation of a Dynamic Environment. IOSR Journal of 
Electronics and Communication Engineering, 2020, 13(6), pp.19-26. 

[17] Delgado R, Choi B W. Practical high curvature path planning algorithm 
in joint space. Electronics Letters, 2015, 51(6): 469-471. 

[18] Wang L L , Pan L X . Research on SBMPC Algorithm for Path Planning 
of Rescue and Detection Robot. Discrete Dynamics in Nature and 
Society, 2020, 2020(10):1-11. 

[19] Shih B Y, Chang H, Chen C Y. RETRACTED: Path planning for 
autonomous robots–a comprehensive analysis by a greedy algorithm. 
Journal of Vibration and Control, 2019, 19(1): 130-142. 

[20] Islam M R , Protik P , Das S , et al. Mobile robot path planning with 
obstacle avoidance using chemical reaction optimization. Soft 
Computing, 2021(10), pp.1-28. 

[21] Zhang X , Lai J , Xu D , et al. 2D Lidar-Based SLAM and Path Planning 
for Indoor Rescue Using Mobile Robots. Journal of Advanced 
Transportation, 2020, 2020(3), pp. 1-14. 

[22] Liu L S , Lin J F , Yao J X , et al. Path Planning for Smart Car Based on 
Dijkstra Algorithm and Dynamic Window Approach. Wireless 
Communications and Mobile Computing, 2021, 2021(4), pp.1-12. 

[23] Chen J , Zhang R , Han W , et al. Path Planning for Autonomous Vehicle 
Based on a Two-Layered Planning Model in Complex Environment. 
Journal of Advanced Transportation, 2020, 2020(9), pp.1-14. 

[24] Liu Z , Liu H , Lu Z , et al. A Dynamic Fusion Pathfinding Algorithm 
Using Delaunay Triangulation and Improved A-star for Mobile Robots 
(January 2021). IEEE Access, 2021,  PP(99):1-1. 

[25] Fethi, Matoui, Boumedyen, et al. Contribution to the path planning of a 
multi-robot system: centralized architecture. Intelligent Service Robotics, 
2020, 13(1), pp. 147-158. 

 
 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.26 Volume 15, 2021

E-ISSN: 1998-4464 235




