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Abstract— Sensor-based obstacle avoidance and 

Autonomous vehicle parking have been immensely 

researched in recent times. An integration of both will 

increase the usability of autonomous parking systems in 

dynamic and uncertain environments. The fuzzy logic 

theory is widely used to learn expert human skills for 

machines. However, existing fuzzy-based expert systems 

generally fail to mimic the natural adaptive skills of 

humans. The expert driver has a natural tendency to adapt 

to machine dynamics, especially vehicle-related. This paper 

proposes a novel non-holonomic dimension-based obstacle 

avoidance parking algorithm that integrates obstacle 

avoidance capabilities to a standalone parking controller. 

This algorithm is developed based on adaptive fuzzy 

membership inferences concerning passenger cars' 

different sizes and segments. It is tested for various vehicles 

in simulation results to show the effectiveness of the 

algorithm. 

 

Keywords— Autonomous parking system, Fuzzy 

Systems and Fuzzy Control, Sensors, Applied system 

theory.  

I. INTRODUCTION 
esearch in autonomous parking systems is rapidly 
increased in the last decade with an increase in advanced 

automation and robotics. It provides intelligence and safety to 
human drivers who feel parking a difficult, especially in the 

 
 

case of rear parking. An autonomous parking system gives a 
vehicle the ability to park itself without any human intervention 
in any environmental conditions. The majority of work in this 
domain is related to the static and partially known environment. 
Practical situations are dynamic and unpredictable, so the 
systems should be designed with different sensing mechanisms 
and additional intelligence to make more complex decisions in 
any circumstances with safety standards. It remains a very 
crucial challenge to address in commercial autonomous 
vehicles.  

Traditionally an autonomous vehicle parking involves two 
tasks: path planning and tracking control. Path planning 
involves joining a feasible path between a start point and an 
endpoint of parking considering non-holonomic constraints. If 
it has to be done in a dynamic environment, sensor-based 
motion planning techniques are used. Tracking control theories 
are generally fuzzy-based, neural network-based, and nonlinear 
control system-based methods. A fuzzy-based approach used 
for parking gives many advantages as it gives a relatively 
simple, low cost, and computationally efficient design. Also, a 
fuzzy system can transfer the skills and intelligence to the 
autonomous vehicles from the expert drivers using linguistics 
rule-base. In an earlier approach [1], a fuzzy-based intelligent 
autonomous motion control for parallel parking was presented. 
A fuzzy behavior-based control system with collision-free 
maneuver in case of parallel and diagonal parking was given in 
[2], [3]–[5] developed a linguistic fuzzy-based fifth-order 
polynomial path generation and tracking method for parallel 
and garage parking.  Another automatic fuzzy-based diagonal 
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parking controller was proposed in [6] that performs multitask 
of deciding driving direction, speed control, and shortest path 
planning. A skill-based fuzzy logic approach for tight parking 
space was given in [7]. [8] used a fifth-order polynomial path 
data along with sensors for training their adaptive neuro-fuzzy 
control algorithm for parking. A hybrid approach based on 
FLC, Petri net, and genetic algorithm is proposed in [9] for an 
automatic parallel parking system. They combined the genetic 
algorithm and Petri net to determine the optimal path and 
genetic algorithms to optimize the fuzzy controller's 
membership function. A similar fuzzy logic-based parking 
system was also proposed in [10]–[14]. 

These systems discuss various design and development 
problems, including trajectory design, steering control, and 
continuous scanning for dynamicity in the field. According to 
the literature, scholars have focused on them independently or 
in groups of many as multitasking. The complex nature of the 
environment and feedback management remain significant 
challenges in the development of these systems. Reactive 
behavior-based fuzzy control architectures for the unknown or 
dynamic environment can be found in mobile robot navigation 
problems [15]–[23]. It can be utilized as an integrated part of 
the vehicle parking system to track any unforeseen obstacle 
present in the surrounding. In separate studies, [24] proposed 
an omnidirectional camera-based fuzzy controller automatic 
parallel parking. [25] also used a CCD vision sensor with the 
fuzzy system for backing up an autonomous vehicle. Another 
image-based fuzzy controller for automated car parking 
systems is developed [26]. The choice of sensors for 
autonomous vehicles depends upon environmental conditions, 
the complexity of an algorithm, and computational power 
availability [27]. A vision-based system provides a bird view, 
but its algorithm and can be time-consuming.  The selection of 
an ultrasonic sensor may provide a cheaper and accurate 
solution compared to infrared sensors. In this paper, a group of 
ultrasonic sensors are used for environmental sensing. 

Numerous algorithms for parking problems are available in 
the literature to use fuzzy logic theory because of its potential 
to use linguistic knowledge needed for complex systems to 

formulate a controller's rule base. Machines can easily imitate 
human intelligence according to fuzzy set theory. For obstacle 
avoidance navigation, linguistic data from sensors is fuzzified 
to pick membership functions and values heuristically, either by 
experiments or expert rules. On the other hand, these fuzzy 
membership values remain fixed for a particular group of 
models. 

A skilled human driver can navigate between optimum 
spaces with little awareness about obstacles and a thorough 
understanding of vehicle dynamics. When driving a compact 
hatchback or a big Special Utility Vehicle, the drive-through 
experience is different. Similarly, a fuzzy system with a fixed 
set of membership ranges may not fit all the cars, i.e., 
hatchback, sedan, SUV, etc. The multiple vehicles with 
different dimensions percept small, medium, and far distances 
in different ways. As the car changes, the fuzzy membership 
values must be changed, as conceptualized in Fig. 1. (a-c). 

 This paper contributes a novel vehicle dimension-based 
obstacle avoidance parking algorithm that employs a parameter 
derived from the vehicle's actual dimensions that can adapt 
fuzzy variables membership values of the parking module and 
effectively parks a car of various sizes. We created a hybrid 
intelligent autonomous vehicle parking system with an obstacle 
avoidance module as part of this research. In literature, the 
control system’s behavior is validated by the simulation 
modelling[28], [29]. This algorithm is also tested for two 
different segments of the vehicle in a simulated environment.  

This paper's layout is as follows: A block diagram of the 
autonomous parking system is discussed briefly in Section 2. 
Section 3 describes the dimension-based obstacle avoidance 
algorithm is described in detail in Section 3. Different scenarios 
for two distinct segments of vehicles are simulated in a confined 
area with moving obstacles in Section 4 to illustrate the 
proposed algorithm's validity. Finally, the conclusions are 
presented. 

 

 
 

 

   
(a) Small size vehicle (b) Medium size vehicle (c) Large size vehicle 

Fig. 1.  Change in the inference of the environment concerning the size of the vehicle 
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II. FUZZY-BASED AUTONOMOUS PARKING ARCHITECTURE 
A hybrid intelligent autonomous parking system architecture 

is developed, as shown in Fig. 2. It is a multi-level fuzzy logic 
control architecture. It has two major blocks: one for parallel 
parking and one for navigation. Third decision controller 
switches and passes the output of both controllers to the vehicle 
for the steering action. We utilize the non-holonomic data to 
convert our navigation controller into a dimension-based 
obstacle avoidance controller. During parking maneuver, if the 
obstacles are sensed in a nearby environment, a fuzzy controller 
called a decision controller would switch Car-like mobile 
robot's (CLMR) command to the dimension-based obstacle 
avoidance. The dimension-based obstacle avoidance gives 
novelty to this work compared to the traditional navigation 
algorithm found for mobile robots because it is made variable 
concerning the vehicle's dimension. 

 

A. Parking Controller  

 The system shown in the previous section is designed to 
enable autonomous parking successfully in a dynamic 
environment without a collision. The system has a standalone 
design for parallel parking. It is a two-input one output fuzzy 
logic control. This controller aims to steer the CLMR towards 
parking space following the fifth-order polynomial path by 
utilizing basic geometric information provided in Fig. 3. 

 
Fig. 3 Geometry used for parallel parking 

 

Let the target location for parking is (xt, yt), and the current 
vehicle state is (xc, yc, θ), where θ is the orientation of the 
vehicle w.r.t positive X-axis. The angle between vehicle 
orientation and target location (theta_head) can be defined as 
per (1), 


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And the orientation of the vehicle (θ) concerning the positive 

X-axis is defined as, 
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The parking control design has two inputs (x1 and x2) to 

command the steering angle (φ) of CLMR to perform a parking 
task. The two inputs x1 and x2, are defined as follows: 

   




2

1 _
x

headthetax          (3) 

 

 
Fig. 2. An architecture of a hybrid autonomous parking system 
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The linguistic rules designed for parking mode FLC follow 
the fifth-order polynomial trajectory between initial and final 
locations. Such a fifth-order path following is best modeled as 
a sliding mode line (x1-x2) on which the vehicle follows to reach 
the goal. When (x1-x2) becomes zero, it indicates that the car is 
correctly moving towards theta_head. When (x1-x2) is non-
zero, appropriate steering action φ is taken to converge them to 
zero. A rule-based is generated based on the fact that both input 
angles of this fuzzy system remain equal. When the vehicle is 
near to target, both angles co-aligned with each other 
horizontally, and it gives the final posture of the car inside the 
parking space. 

 

 
(a) 

 
(b) 

Fig. 4 Detailed rule-base for (a) forward parallel parking and (b) 
reverse parallel parking 

 
Our conceptualization regarding fuzzy membership 

functions for input and output variables is explained in our 
previous work [30], [31] with their shapes and threshold values. 
They are fuzzified into a total of seven different membership 
functions such as Negative_Big (N.B.), Negative_Medium 
(N.M.), Negative_Small (N.S.), Zero (Z.E.), Positive_Small 
(P.S.), Positive_Medium (PM), and Positive_Big (P.B.). As 
there is a total of 7 membership functions for both input 
variables, a distinct 49 rules are also determined. Fig. 4 shows 
detailed 49 fuzzy rules to perform parallel parking in a forward 
and a reverse manner. 

B. Obstacle avoidance controller  

The obstacle avoidance controller is a typical reactive 
navigation-based architecture. It uses sensed information and 
navigates through obstacles toward reach goals. It is a four-
input two output fuzzy system. Total eight sensors are used to 
take distance measurements from nearby obstacles, which then 
grouped intro 3, left, middle and right, and minimum (each 
group sensor) three inputs are given to the fuzzy system. The 
grouping is done depending on forward or reverse motion. The 
fourth input is the heading angle derived from the target 
position and current position of CLMR. This controller's output 
is a change in the heading angle (called the new heading angle). 
Membership functions of all inputs are shown in Fig. 5. Among 
four inputs, all left, front, and right sensor inputs membership 
function is given in Fig. 5(a). The heading angle is fuzzified 
into Negative, Zero, and Positive membership functions, as 
shown in Fig. 5(b). The output of a fuzzy system is a new 
heading angle fuzzified into the same output as the parking 
controller. 

 

 
(a) 

 
(b) 

 
Fig. 5 Membership Functions of (a) Input: Sensor Distance (b) 

Input: Heading angle 
 
Based on this input information, the fuzzy rule base is 

defined to realize various behavior like target steer, obstacle 
avoidance, edge following, etc. A few samples of these rules 
are given in Table 1. These fuzzy rules show that the CLMR 
mainly updates its motion direction and quickly tries to reach 
the goal if no obstacles are found around the robot. When sensor 
data indicates that there are obstacles nearby the robot, it must 
try to change its path to avoid those obstacles. 
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Table 1 Fuzzy If-then rules for obstacle avoidance 

If Then 

Rule 
no. 

Fuzzy 
Behaviour 

Left 
Obs 

Front 
Obs 

Right 
Obs 

Head 
Ang 

New 
Head 
Ang 

1 Target 
Steer 

Far Far Far N Neg 

2 Target 
Steer 

Far Far Far Z Zero 

3 
Target 
Steer Far Far Far P Pos 

4 
Obstacle 
Avoidanc

e 
Near Near Far N Pos 

5 
Wall 

Following Far Far Near P Zero 

III. PROPOSED ALGORITHM 
 Assume a  car-like mobile robot (CLMR)  with length L 

and a width of W.   
 Let a total of 8 ultrasonic sensors be placed on the robot to 

sense the surrounding environment, as shown in Fig. 6. 
These sensors are represented as S1, S2…  S8. 
 

 
Fig. 6.   Placement of ultrasonic sensors on the perimeter of the 

vehicle 
 
 Let assume the sensors' information is grouped into three 

different sensor distances, d1, d2, and d3, as shown in Fig. 7. 
Let us presume grouping for reverse parallel parking. 

 
 
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4322
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SdistSdistSdistd

SdistSdistd







 (4) 

 
 As mentioned below, all three distance groups are further 

fuzzified into three separate membership functions: Near, 
Medium, and Far. 

 

 
Fig. 7.   Ultrasonic Sensors grouping on CLMR for backing up the 

vehicle 

 
 Their thresholds are calculated as a function of length L, 

which width W, and are considered constant regardless of 
vehicle size. These membership functions are defined as: 
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








W

L
x

3,0 for all the distances 

 

 
Fig. 8.   Modified fuzzy membership function for distances d1, d2, and 

d3. 
 
The shape and value of membership functions are modified for 
distance d1, d2, and d3 are shown in Fig. 8. 
 
A. Generalization Steps  

 

 We define a Constant K, chosen from the actual vehicle 
dimension and used to adjust fuzzy membership function 
thresholds that differ with vehicle dimension.  The constant 
K can be derived from the given length (L) and width (W) 
as equation (8). 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.40 Volume 15, 2021

E-ISSN: 1998-4464 371



 

 















WL

WL

L

W
K

L

W ,min
2

 (8) 

 
 The factor "K" will be multiplied with a threshold range of 

fuzzy membership functions using equations (9) – (11), 
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 Apply these updated threshold membership functions to 
the parking of a given CLMR, as seen in Fig. 2. 

 
This algorithm can be extended to any vehicle of any scale and 
in any complex environment scenario. 

IV. SIMULATION RESULTS 
A parking scenario incorporating a moving obstacle is 

developed to demonstrate the proposed algorithm's practicality 
and efficacy. Different parking scenarios for CLMR are 
considered, indicating the suggested algorithm's potential to 
perform additional capabilities such as reverse parking, 
obstacle avoidance, redirection in the event of parking inability, 
and so on. A parking slot with static and moving obstacles are 
used to build a Matlab simulation environment ranging 22 by 
22 meters. CLMR's speed is assumed to be 1m/second, and the 
vehicle contains ultrasonic sensors mounted on both front and 
rear sides to detect obstacles. A traveling obstacle's velocity is 
considered smaller than CLMR's speed. 
 To illustrate the effect of adding the scaling factor 'K,' two 
distinct possibilities are considered. Both cases are simulated 
for various CLMR lengths and widths and various 'K' values, 
with a moving obstacle. The results will demonstrate how 
CLMR will pass through the narrow pass during parking 
efficiently and intelligently, which is generally avoided with 
prefixed membership feature thresholds. Since this algorithm is 
generalized, it can be used for various sized four-wheel 
autonomous vehicles. 
 

A. Case 1: Huyndai i20 Length-3996 mm, width- 1734 mm 

 
To function in the area setup seen in Fig. 9, the L: W ratio is set 
to balance the actual vehicle axis of the Hyundai i20. Apart 
from the static obstacles shown as parking space limits, a 
moving obstacle is considered to be in the direction of the 
CLMR as it approaches from the opposite end. For a given 
parallel parking algorithm, CLMR is deemed to be performing 
a reverse parking technique. Furthermore, the moving 

obstacle's relative speed is considered to be lower than the 
CLMR rate for functional purposes. 
 

 
Fig. 9.  Scenario indicating the initial and the final locations of 

CLMR and the initial position and direction of a moving obstacle. 
  
 Fig. 9 depicts a typical case scenario with CLMR's initial 
and final positions and the initial position and trajectory of a 
moving obstacle. Fig. 10 and Fig. 11 show two different routes, 
each followed by two CLMRs with varying values of K. 
 In the first case (having K equals 1), fuzzy variable 
membership thresholds are set as per (5), (6), and (7). Fig. 10(a-
b) shows CLMR entering parking (moving left). 
Simultaneously, a moving obstacle (moving right) is getting 
closer to CLMR. Fig. 10(c) depicts the moment when a moving 
object blocks CLMR's route and, with no other choice, CLMR 
begins moving correctly (start of obstacle avoidance behavior). 
CLMR successfully avoids obstacles in Figure 10(d-f). CLMR 
eventually hits the target parking position after resuming 
reverse parking, as seen in Fig. 10(g-i). 
   

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 10.   The step sequence frames of reverse parking with K=1, no 
scaling 

  

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.40 Volume 15, 2021

E-ISSN: 1998-4464 372



 

 

 Fuzzy variable membership thresholds are set as per (9), 
(10), and (11) in the second case (K is set to 0.25). CLMR 
attempts to detour the appropriate route when parking with 
these values, and the inference is modified. CLMR is 
approaching parking in this situation, as seen in Fig. 11(a-b) 
(moving left). Simultaneously, a moving obstacle (moving 
right) is getting closer to CLMR. Fig. 11(c) depicts the moment 
when a moving object attempts to obstruct the road, but CLMR 
still finds enough room to navigate between the moving 
obstacle and the wall (target steering behavior). CLMR is 
successfully maneuvered in Fig. 11(d-f) while still under the 
moving obstruction's control. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 
Fig. 11.   The step sequence frames of reverse parking with K=0.25 

 

B. Case 2: Hyundai Verna Length-4440 mm, width-1729 

mm 

 To function in the environment setup seen in Fig. 12, the L: 
W ratio is adjusted to suit Hyundai Verna's actual vehicle 
measurements. To assess the result for a sedan car, all of the 
environmental parameters used in this case are identical to those 
used in the Hyundai i20 scenario. Fig. 12 depicts a typical case 
scenario with CLMR's original and final positions, as well as 
the initial position and trajectory of a moving obstacle. 
 

 
Fig. 12.   A scenario indicating the initial and the final locations of 
CLMR and the initial position and direction of a moving obstacle 

  
The fuzzy variable membership thresholds are set as seen in (5), 
(6), and (7) in the first case (with K equal to 1). The inference 
of fuzzy thresholds is large in the Hyundai Verna due to its 
larger dimensions than the Hyundai i20. As a result, CLMR 
follows a path that avoids moving obstacles while maintaining 
a higher safety margin. The CLMR steering behavior is shown 
in a step-by-step sequence Fig. 13(a-i).  
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 13.   The step sequence frames of reverse parking with K=1, no 
scaling 

Fuzzy variable membership thresholds are set as per (10), 
(11), and (12) in the second case (K is set to 0.25).  CLMR 
attempts to detour the ideal path when parking with these 
values, and the inference is adjusted. Although fuzzy thresholds 
are higher in the sedan segment than in the hatchback segment, 
Fig. 14(a-i) shows CLMR entering parking (moving left) with 
the best route, so space is sufficient to travel through obstacles. 
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.40 Volume 15, 2021

E-ISSN: 1998-4464 373



 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 14.   The step sequence frames of reverse parking with K=0.25 
 
From the simulation results obtained for both vehicles, it can be 
inferred that scaling of the thresholds for fuzzy variables makes 
it possible for the car to pass through the narrow gaps and tight 
spaces. When the value of K is decreased, the minimum 
distance from the vehicle's body to the obstacle (dist_min) at 
any instant is also reduced. So there should always be a bottom 
limit for scaling down. In semi-automatic drive, the tuning of 
the scaling factor K can significantly improve the vehicle's path 
with expert driver inference from the environment. Simulation 
results for other passenger vehicles are summarized in table 2. 
The selection of K is heuristically set to 0.25 for the dataset and 
kept above the bare minimum thresholds. Kmax in table 2 
shows the upper threshold of selecting K with allowing the 
vehicle to pass the narrow gaps. Any value higher than K may 
not result in the car passing through tight spaces. 
 

Table 2 Minimum safe distance achieved for a different 
vehicle in the simulation 

Passenger 
vehicle Length(mm) Width(mm) Kmin Kmax 

Dist_min 
(mm) 

(K-0.25) 

      
Nano 3164 1495 0.24 0.47 238 

Datsun 
Go 3429 1560 0.23 0.45 247 

Alto 3430 1515 0.22 0.44 255 
WagonR 3599 1475 0.20 0.42 275 

i10 3585 1595 0.22 0.44 253 
polo 3987 1698 0.21 0.43 264 
Swift 3840 1735 0.23 0.45 249 
i20 3985 1734 0.22 0.44 259 

Honda 
City 4549 1748 0.19 0.44 293 

Dzire 3995 1735 0.22 0.43 259 
Verna 4440 1729 0.19 0.44 289 
Amaze 3995 1695 0.21 0.42 265 
Tigor 3993 1677 0.21 0.42 268 
Civic 4656 1799 0.19 0.44 291 
Creta 4300 1790 0.21 0.42 270 

Fortuner 4795 1855 0.19 0.44 291 
Harrier 4598 1894 0.21 0.42 273 

XUV500 4585 1890 0.21 0.42 273 

Range 
Rover 5200 2220 0.21 0.43 264 

Audi A6 4933 1874 0.19 0.45 296 
BMW 3 4824 1811 0.19 0.45 300 
Volvo 
XC90 4950 2140 0.22 0.43 260 

BMW 5 4936 2126 0.22 0.43 261 
Audi Q8 4986 1995 0.20 0.47 281 

Rolls 
Royce 5399 1948 0.18 0.44 312 

 

V. CONCLUSION 
This paper aims to provide a solution to the two problems 

that autonomous parking systems face. First, it incorporates 
obstacle avoidance-based navigation intelligence into a 
standalone parking controller to handle a dynamic environment 
of moving and stationary obstacles. It achieves target steering 
to the parking due to a navigation module's inclusion, even 
though the car is momentarily detoured. Second, the obstacle 
avoidance module is kept adaptive for the passengers' vehicle 
dynamics to make this system suit every vehicle segment, 
regardless of its curvature. This algorithm is suitable for non-
holonomic vehicles to navigate across small gaps and corners. 
The vehicle's route planning is greatly affected by choice of K. 
It concludes that the value of K should be chosen lower when 
available space is limited and higher when space is not a 
restriction. 
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