International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: Simulation Research on Acoustic Detection Technology of Buried PE Pipes

 

Authors: Bo Chen, Jiao Lan, Liang Ge, Yunfeng Lu, Yingbo Hu, Wenhai Li, Cui Lai, Xiaoting Xiao, Qi Huang

Pages: 400-409 

DOI: 10.46300/9106.2021.15.44     XML

Certificate

Abstract: Polyethylene (PE) pipe has been widely used in gas transportation pipeline system because it overcomes the shortcomings of non-corrosion resistance of metal pipelines. However, the stiffness and strength of PE pipe are small, and it is easy to be destroyed in the third-party construction process. Moreover, PE pipe is not electrically or magnetically conductive, and it is unable to use the developed metal pipe detection method, which has brought great security risks. Urban gas pipeline accidents occur frequently, and the situation during the production is complex and severe. Therefore, it is of great significance to study how to effectively realize the detection of underground PE pipe. This paper verifies the feasibility of the acoustic method from the perspective of simulation. Firstly, it studies the influence of buried pipe depth on the received signal of geophone. Secondly, it studies the influence of buried pipe size on the received signal of PE geophone with a certain depth Finally, it studies the received signal of geophone when PE pipe is in mixed soil. The simulation results show that the method based on acoustic wave is suitable, the signal source emits a sweeping frequency single tone sine wave, which propagates to the target and is reflected. A string of geophones on the ground measure the velocity of the surface vibration. Given the propagation rate of wave in the material, time delay can be used between signal sent and received on the ground to obtain the estimated distance to the target.