International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: Research on the Extraction Method of Book Number Region Based on Bayesian Optimization and Deep Learning

 

Authors: Qianqian Zhang, Jianglei Sun, Jing Zhao, Zilin Xia, Kai Zhang

Pages: 1150-1158 

DOI: 10.46300/9106.2021.15.125     XML

Certificate

Abstract: The continuous development of artificial intelligence technology has promoted the construction of smart libraries and their intelligent services. In the process of intelligent access to books, the extraction of the requested book number region has become an important part of the process. The requested book number is generally affixed to the bottom of the spine of the book, which is small in size, and the height of the book is not always the same, so it’s difficult to identify. By the way, due to the images’ resolution, shooting angle and other practical problems, the difficulty of the extraction work will be increased. To improve the identification accuracy, in this paper, Bayesian Optimization (BO) and one kind of deep neural networks ‘Faster R-CNN’ are combined for the extraction work mentioned above. The data preparation, network training, optimization variable selection, establishment of BO objective function, optimization training, and network parameter evaluation have been introduced in detail. The performance of the designed algorithm has been tested with actual images of book spines taken in the academy library and compared with several other conventional recognition algorithms. The experimental results show that the requested book number region extraction method based on Bayesian optimization and deep neural network is effective and reliable, and its recognition rate can reach 91.82%, which has advantages in both recognition rate and extraction time compared with other algorithms.